.fr in the information theory society to do the source and the channel coding separately because they can be treated separately without any loss of performance for the overall :

system [ 5 ] . However, such a tandem source-' channel coding necessitates very long blocks and very complex coders Despite its optimality, Shannon's separation theorem does not ''-,?.

s ? o -6 . '-

iheoietcal bounds
equal) the desired bit rate. As a result of Shannon's joint source-channel coding theorem, there was a great tendency is given by: see that since different bits have different contributions to the total error, it is rather reasonable to send different bits with unequal compression and/or protection rates. So, the blocks of n1 most significant bits (msb) are arouDed topether; the blocks of nz bits from ---

R d D )

C the next row, until n N least significant bits (l) (lsb) and each bit stream is a BSS [SI.

R ( D ) = ~

It can be shown that the distortion introwhere R , ( D ) is the source rate-distortionfunction and C is the channel capacity.

duced by each row of bits is additive [SI:

For our model, the BSC is parameterized 

R(D) 5 P ( D ) =

The R ( D ) curve of any source is below this of bit rates Ri that minimizes the total disbound.

tortion D , as developed in 3, for a given rate budget R = E; Ri. This gives the best perfor-Bitwise decomposition A memoryless mance obtainable for our structure of figure 3. source with uniform probability density ffflnc-We solve this problem by the Lagrangian mdtion (pdf) is considered in this section. We tiplier method. best attainable performance of our structure is

U=O

where x is the encoded word to be transmitted on the channel and Cx is the region Here, we study the case of binary source. encoded to X . In a BSC, the factor P(Y1X) =

The practical algorithms used to design coders PdH(y'x)(l~)"-dH(y'x) is the conditional probfor binary input, real-valued outputs are ex-ability of observed Y , c h n d Output, given X plained. These coders are desirable in our as channel input; where dH denotes Hamming approach since we need to minimize the distance. The dependency of distortion to inclidean distance of output and input (and not dex assignment is due to the d H ( Y > x ) factor. the error probability, as is usually the case).

Analogousb' to LBG, COCD is also an iteraour proposition, we aim at &mizing the tive algorithm which makes use of the two foldistortion measure, D, which includes h a m e l lowing operations: centroid update and boundnoise effect, directly by derivating the expresa V Update. These two steps are carried out sion of D, Once with respect to the encoder iteratively until a stability in the distortion is parameters and once with respect to the de-observed. coder parameters. The approach is quite similar to that of Farvardin and Vaishampayan [4] Centroid update Supposing that the enwhere they propose Channel Optimized Vec-coder is k e d (the boundaries of the regions), tor Quantization (COVQ), as a generalization the decoder is updated. As we consider the channel effect in these expressions, the resulting expression for centroids is called generalzzed 10 centrozd. Derivating the expression for distortion, D in respect to vy, we have:

This expression says that all input possibilities, U E Cx affect all centroids, vy and that this effect is weighted by the p ( y 1 x ) factor.

Boundary update Supposing a given decoder (a set of centroids), the encoder is updated. In other words, the boundaries of the regions are updated in order to minimize the distortion. This condition is obtained directly by derivating the expression for distortion, D , and we call it the principle of generalized nearest neighbor.

u t c , b

2"-1 x = Argmin, 1 / l ~U V , / I 2 P ( Y / X ) y=o Again we observe the effect of channel noise in this expression. Presence of the factor p ( y l x ) makes the encoding dependent to the channel. In other words, in a highly noisy channel, the encoded information word does not necessarily represent the nearest centroid to the input word, but its generalized nearest neighbor.

We can summarize the whole algorithm as follows:

I. Initialization:

-Consider a n initial state f o r the encoder: f(.)O.

Iterations: FOT the k-th iteration:

-Update all centroids (decoder g( . ) k ) r given en--Update all boundaries (encoder f(.)k), given decoder [ g ( . ) k ) .

Terminat ion:

coder (f(.)I,-J. We observe that the sequence of DI, is a decreasing sequence and we can terminate the algorithm when it stabilizes. In our experiments, we observed also that the number of necessary iterations before reaching any local minimum is usually very low (mostly less than five iterations), and that many local minima can be found, according to different initializations.

Practical considerations

In practice, there are some problems which limit the application of COCD. The major problem is its complexity. In fact finding a good optimum for the values of m and n greater than, say roughly 15, confronts to practical limitations.

We used the classical coders, as proposed in [2], with n = 15, for the initialization of the encoder, f ( . ) , and obtained the local optimum coders. Figure 4 To complete our set of coders, we added two Hamming coders of slightly longer lengths,

The algorithm presented here, works inde-H63,57, H31,26.

P 0 01 pendent of the fact that m < n or m > n. For m = n, the best coding is to do nothing at aU! For the m > n case, we observed that the best minima obtained by the algorithm were the travzal coders. In a trivial coder, n bits are transmitted and m e n other bits are not trans-_20. mitted at all. In the receiver, in place of these m +n bits, their mean value (0.5, for a binary $ 7 6source) is introduced. The performance of a trivial coder can be simply obtained as a linear l o - In m~ practical experiments, we consider a~ sults for the coders used in this simulation trivial coders with the form (COCD) and those in [i'] (Hamming and repetition codes), for p = lo-'. Also is shown a (i2) curve when no coding is applied and also the results in COSQ.

SE

t(100,n) n = 1 , 2 , . . .,99.

4 Uniform source special coding where all 4 bits are transmitted

For the uniform source, we considered the same directly on the channel, one observe that coders obtained for the binary Source and exthere is a tendency to the distortion plained in last section. For the general struc-due to each row, W . d. in figure 6-a ture, we consider the structure in figwe 3. We to figure 6 the bit allocation algorithm as proposed by Shoham and Gersho [6]. This method fits a polyline on the R/D plane. The numerical result is shown in figure 5. For a highly condensed cloud, Shoham's algorithm can deliver

Figure 5 shows the result of optimizationand compare it to the Lagrangian bound as well as Using our new method, COCD, we had signifthe no-coding bound for p = lo-'. The re-icantly improved the performance of a bitwise sult of a Channel Optimized Scalar Quantira-decomposition system. tion (COSQ) are also shown for comparison.

It must be indicated however that using It is clear that with COSQ, only integer values more powerful codes might lead more effective of bit rate can be obtained. Also we see that optimization. In fact, our experiment can be the proposed algorithmoverperforms COSQ in improved, using a more complete set of coders. this experiment.

Further work will be dedicated to apply-Figure 6 illustrates the result of optimiza-ing this technique on the generalized Gaussian tion for p = IO-' and for R d = 4 also it corn-sources, and then to the set of sources encoded pares this result with a system without any by a transform coder. (0.30, 7289) t(1Oi 3) > 1.
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Figure 2 :

 2 Theoretical bound of rate-distortion curve obtained from the Gaussian source Rg(D); Theoretical Shannon's lower bound of Some bounds In this section, we obtain distortion, R " ( D ) and R ( D ) for a uniform the relation between the source rate-distortion source obtained by Blahut's algorithm, all for function and the optimum performance theo-p = 0.01. retically attainable (OPTA), R ( D ) , on a BSC, compared to the bounds for a given BER, p . The OPTA function is the expression of the smallest possible distortion as a function of the bit rate, when transmitting a given source on a given channel. According to Shannon's theory [ 5 ] , the OPTA curve, R(D),

  More precisely, C = 1 " H z ( p ) , where Hz is the i=l i=l binary entropy fvnction.The Gaussian upper bound is expressed as follows and drawn in figure2, where we considered U: = as in a [d $1 distributed Lagrangian bound of distortion for a uniform source In [SI we have obtained optimal performance R ;( D i ) for each bit stream i:

Figure 3 :

 3 Figure 3: Bitwise decomposition structure: each row of bits (msb, . . ., lsb) is coded separately.

c

  to minimize R = of the LBG algorithm for noisy channels. We ELl R;(D;) subject to D = w0;D;. summarize below, the main features of the al-This problem has been addressed in [SI and gorithm and the results that we use in our furthe result is: ther simulations. We aim at minimizing the average distortion between U and w, with respect to MSE criterion 1 + = XWi(l*Hz(P)) as defined in the following equation: Jm l o g 4 . ad-With any positive value of A, this condition gives the optimal values of the Di's. The Di's were computed from X by inverting the complicated function (5) numerically. The result is, for any positive A, a bit rate Ri and known as generalized distortion measure [l]: a value of total distortion D = C; w;D; which gives a solution to the problem. This result is drawn in figure 5. It is clearly seen that the close to the OPTA curve. EYllu*VYIl2P(U) (7) = -c c c I/u*vY/12 P(YIX) P ( 4 (8)

Figure 4 :

 4 Figure 4: R ( D ) and the coders used in the practical experiments.

  , shows the performances of the coders that we have obtained. The figure shows how much these new coders act better than their classical counterparts (Hamming and Repetition codes) and even better than the specifically designed coders proposed in [2] with n = 15 (v(m,n)).

Figure 5 :

 5 Figure 5: Lagrangian bound, optimization re-

  &, Di Pair for each I O W , i, in order to minimize the o v e r d distortion, R = xi Ri 5 R d , for a given p .

  is sparse, otherwise, one could expect a much more error contribution of all rate to each row, &, is inversely proportional D , as in equation (31, with the constraint that E ~~~. R ~~~M ~ the distribution ofbitThe optimization was done with the use of to the line number i, so:
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