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Joint Optimum Bitwise Decomposition of anyMemoryless Source to be Sent over a BSCSeyed Bahram Zahir Azami1, Pierre Duhamel2 and Olivier Rioul3�Ecole Nationale Sup�erieure des T�el�ecommunicationsURA CNRS 8201;3Communications and electronics department2Signal and image processing department46, rue Barrault, 75634 Paris Cedex 13, Franceemails: 1zahir@com.enst.fr, 2duhamel@sig.enst.fr, 3rioul@com.enst.frAbstractAn arbitrary memoryless source is considered to be sentover a binary symmetric channel. We develop an algo-rithm, with some similarities to the Lloyd algorithm, ca-pable to optimally make a bitwise decomposition. For auniform source, this turns to simple quanti�cation witha soft decoding. For other kinds of sources, however, thealgorithm has a more important e�ect. For example, fora Gaussian source, a permutation of indices is imposed.The algorithm is e�cient for small number of decomposingbits, say below 6 bits per sample and for the generalizedGaussian sources with a large decay rate (� � 2).1 IntroductionTo transmit a continuous source over a binary channel, aquantizer is needed somewhere in the transmission chain.A scalar quantizer (SQ) is considered in this chapterwhich can be considered as providing a bitwise decompo-sition of the source. We have already studied the situationwith a uniform source in a decomposition of the bits in [5].As proved in 1969 by Crimmins et al. [1] and con�rmedby McLaughlin et al. in 1995 [4], for a uniform source,the optimum scalar quantization is obtained by a naturalbinary coding (NBC). However, this is not necessarilythe case for other kinds of sources. In this paper, thisproblem is treated for an arbitrary memoryless source.The �rst hypothesis to be considered here is to have amemoryless source. However, this is not a very restrictinghypothesis. In fact, the considered source is the output ofa transformation which can theoretically produce a mem-oryless output.Kurtenbach and Wintz have proposed an algorithm todesign an optimum encoder/decoder pair with respect tothe mean Euclidean distance between the source and thereconstructed signal, in 1969 [3]. In their proposed algo-rithm, as well as in channel optimized scalar quantization

(COSQ) proposed by Farvardin and Vaishampayan [2],the decision thresholds can take any value. This hypoth-esis is di�erent from that assumed here, i.e., the decisionthresholds are chosen such that the quantization intervalsare equiprobable, and consequently the decomposed bitsbecome independent.Hence, despite the recommendation of Kurtenbachand Wintz [3], and that of Farvardin and Vaisham-payan [2], in this paper, our second hypothesis is to con-sider equiprobable quantization intervals.Moreover, it is imposed for the total distortion to be aweighted sum of the distortions due to the di�erent de-composed bits. Having a simple mathematical expressionthat gives the quantization levels in function of the chan-nel outputs, this condition is easily satis�ed.In this paper, we propose an algorithm which is as aspecial type of Lloyd's algorithm. The �rst element of thealgorithm consists of updating the quantizer, assuming a�xed dequantizer and the second element is vice versa.This paper is organized as follows: �rst we introducethe model, the notations and the hypothesis. Then, wepropose our algorithm with its optimality proof. Finally,we give some simulation results.2 General formalizationIn this section we present the global model considered inthis paper and introduce its important parts. Also, wegive the constraints that we consider in each part andexpress why these constraints are taken into account.A source with arbitrary known PDF is considered. Yet,for simplicity, it is assumed that the source has zero meanvalue. Remark that this does not a�ect the generality ofthe presented proofs or algorithms. Figure 1 reects thecon�guration considered in this paper.1
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Q Figure 1: Transmission scheme considered in this paper.2.1 Quantizer (QJ)Restriction 1: it is assumed that the intervals areequiprobable p(w) = (12)k 8wthe quantization rule is de�ned as followsu 2 Iw () w = [wk : : : w2 w1]where wi 2 f0; 1g and [wk : : : w2 w1] is the binary rep-resentation of w. The assumption of the equiprobabilityhypothesis results inp(wi) = 12 8i ) p(w) = kYi=1p(wi) = (12)kIn other words, the di�erent decomposed bits are inde-pendent from each other. Note that they are also inde-pendent in time since the source is assumed to be memo-ryless.2.1.1 Interval centroidsWithout any constraint on the reconstruction levels andfor a noise-free channel, the optimum reconstruction levelscan be found by the centroid principle�i = E(UjU 2 Ii)In vector form, � is introduced as the set of all centroids,in an increasing order, or simply the centroid vector� = [�0 �1 �2 : : : �2k�1]twhere the t superscript denotes the transpose.2.1.2 PermutationIn matrix form, the permutation matrix, J is intro-duced as a row-permuted version of the unity matrix,I2k�2kJw;i = � 1 : Q(u) = i & QJ(u) = w0 : otherwiseWhereQ(u) andQJ(u) represent respectively the non per-muted and the permuted version of the quantized sourcesample, u, by the permutation matrix J. Then �J can bewritten as a permuted version of ��J = J:�

Restriction 2: In order to keep a simple mathematicalexpression between the channel outputs and the recon-struction levels, a constraint is imposed on them as in thefollowing equationv =  = kXi=1 �iziIn matrix form, the expression becomesv =  = zt:� = �t:z (1)	 = Bt:�where 	 is the reconstructed centroid vector, � =[�k : : : �2 �1]t, z = [zk : : : z2 z1]t and B is the nat-ural binary encoding matrix (A matrix whose successiverows are the binary representations of the natural num-bers 0; 1; � � � ; 2k � 1).This constraint gives the conditions to prove the addi-tivity of distortion:D = NXi=1 �2iE�(ui � vi)2� = NXi=1 �2iDiwhere Di = E�(ui � vi)2� is the MSE correspondingto the i-th bit, and depends on the channel transitionprobability, p.2.2 Channel modelHere we consider �1 values as in �gure 2, in order tosimplify our calculations.
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3 Lloyd type algorithmWe propose an algorithm which can be viewed as a spe-cial type of Lloyd-Max algorithm to optimize the distor-tion due to source and channel. We aim to minimize theaverage Euclidean distance:D = E(U �V)2Like other algorithms of Lloyd type, this algorithm con-sists of two elements: optimizing the quantizer, assuminga known dequantizer and vice versa.3.1 Optimizing the dequantizer assuminga �xed quantizerIn this part, the distortion is minimized, due to the sourceand to the channel, assuming a known quantizer, QJ, byoptimizing the parameters of the dequantizer, Q�, i.e.,the � parameters.D = E�(U � �) � (V � �)�2 =E�(U � �)2�| {z }Dq + E�(V � �)2�| {z }E�(Pki=1 �izi��)2�� 2E�(U � �)(V � �)�| {z }2A=0For the �rst term, let us de�ne Dq � E�(U � �)2�.This is the distortion purely due to the quantization andis independent of the dequantizer. The nullity of the thirdterm can be easily proved.So we rewrite the above equation, derivate it with re-spect to � and set it equal to zero@@�tE�(V � �)2� = E� @@�t (V � �)2�= 2E�(V � �) @v@�t� = 2E�(V � �)z� = 0Using equation (1) and the orthogonality principle yieldsE(z:zt)| {z }R :� = E(�:z)| {z }r (2)hence it can be concluded the optimum value for � is�� = R�1:r (3)3.1.1 Calculation of minimized distortionWith V� = zt:�� = zt:R�1:r = zt:R�1:E(�:z), we canwrite Dmin = Dq +E�(V� � �)2�= Dq +E�(V� � �):(zt:�� � �)�

The term E�(V� � �):zt:��� is equal to zero because ofthe orthogonality principle.Dmin = Dq + E�(��V�):��= Dq + E�(1� zt:R�1:z):�2�= Dq + 12k�t:�� rt:R�1:rRemark: Equation (4) gives a simple way to calculatethe distortion as it can be remarked that �2u = Dq +12k�t:� Dmin = �2u � rt:R�1:r (4)3.1.2 Calculation of R; rIt can be shown that for these conditions we have:R = hE(zi:zj)ii;j = I(k�k)r = hE(zi:�)ii = 12k�J:bB�t:� = 12k bBt:Jt:�where bBi;j = Echannel(zjw = Bi;j).Bi;j = ( +1 ) bBi;j = 1(1� p)� 1p = 1� 2p�1 ) bBi;j = �1(1� p) + 1p = �1 + 2pbB = (1� 2p)BWith these values of R and r, we rewrite the expressionfor � as � = r = 12k bBt:Jt:�3.2 Optimizing the quantizer assuming a�xed dequantizerThe second part of algorithm consists in optimizing thequantizer, QJ, assuming a known dequantizer, Q�. Sincethe equiprobability constraint must be respected, the onlyexibility is in the permutation of indices. The followinglemma proves that a permutation sorting the reconstruc-tion levels in an increasing order is the optimum permu-tation.Lemma 1 For a known decoder, the optimum encoder isthe one which sorts the decoded centroids in an increasingmagnitude order.4 Complete algorithmThe complete algorithm of bitwise decomposition is de-scribed below for a memoryless source U, either knowingits PDF, or having su�cient number of its samples. Bothversions of the algorithm are depicted in the block dia-gram of �gure 3. The only di�erence of these two versionsis in their initializations.
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Figure 4: PDF of Generalized Gaussian sources with � =1; 2; 3; 4;1.It is known that � = 1; 2 and 1 correspond to Lapla-cian, Gaussian and uniform sources, respectively. See �g-ure 4, where these distributions are illustrated for �2u = 1.In the following subsections, some sources are chosen tobe treated with the proposed bitwise decomposition algo-rithm. The performances and results will be presented.5.1 Uniform sourceFor a uniform source, the optimization yields the same re-sults obtained analytically by Crimmins et al., in 1969 [1],using Fourier transform on �nite Abelian groups. Morerecently, in 1995, McLaughlin et al. [4], proved the sametheorem, using a vector for formulating the index assign-ment and showing that the MSE due to channel errorsis determined by the projections of its columns onto theeigenspaces of the multidimensional channel transitionmatrix. This result is a natural binary coding (no per-mutation) and �i / 2i.5.2 Gaussian sourceThe Gaussian source is studied here, as a second examplewith k = 4 bits per sample and p = 10�2. Contrarily tothe uniform source case, here, we have not a natural bi-nary permutation. Figure 5 depicts the quantization tree.It is obvious that with these �is, the optimum permuta-tion is not the natural one.We obtain � = [0:6206 0:5332 0:4351 0:2810]t and anSNR equal to 12.05 dB.5.3 Generalized Gaussian sourceIn this paper, some generalized Gaussian sources with dif-ferent values of � have been studied as examples. Fig-
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Figure 5: 4 bits Quantization tree for a Gaussian source:permutation is not natural.ure 6 depicts a global comparison of all of the performancebounds obtained for some generalized Gaussian sourceswith various values of �, using the Lagrangian method asexplained in [7].
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Figure 6: Lagrangian performance bound for some gener-alized Gaussian PDF's for p = 10�2.In the following section, some concluding remarks areprovided about the bitwise decomposition algorithm.6 ConclusionThe bitwise decomposition algorithm provides an ex-tremely simple system. All the parameters of this systemconsist of 2N � 1 quantization thresholds, a 2N lengthmapping table in the encoder and an N size � vector inthe decoder.For all kinds of sources, the system performance is goodfor relatively small values ofN , say forN below 5 or 6 bits.We observed that for example with a Gaussian source andvalues of N up to 4 bits, the performance of the simplebitwise decomposition system is very close to its optimum
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