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Abstract

An arbitrary memoryless source is considered to be sent
over a binary symmetric channel. We develop an algo-
rithm, with some similarities to the Lloyd algorithm, ca-
pable to optimally make a bitwise decomposition. For a
uniform source, this turns to simple quantification with
a soft decoding. For other kinds of sources, however, the
algorithm has a more important effect. For example, for
a Gaussian source, a permutation of indices is imposed.
The algorithm is efficient for small number of decomposing
bits, say below 6 bits per sample and for the generalized
Gaussian sources with a large decay rate (8 > 2).

1 Introduction

To transmit a continuous source over a binary channel, a
quantizer is needed somewhere in the transmission chain.
A scalar quantizer (SQ) is considered in this chapter
which can be considered as providing a bitwise decompo-
sition of the source. We have already studied the situation
with a uniform source in a decomposition of the bits in [5].

As proved in 1969 by Crimmins et al. [1] and confirmed
by McLaughlin et al. in 1995 [4], for a uniform source,
the optimum scalar quantization is obtained by a natural
binary coding (NBC). However, this is not necessarily
the case for other kinds of sources. In this paper, this
problem is treated for an arbitrary memoryless source.

The first hypothesis to be considered here is to have a
memoryless source. However, this is not a very restricting
hypothesis. In fact, the considered source is the output of
a transformation which can theoretically produce a mem-
oryless output.

Kurtenbach and Wintz have proposed an algorithm to
design an optimum encoder/decoder pair with respect to
the mean Euclidean distance between the source and the
reconstructed signal, in 1969 [3]. In their proposed algo-
rithm, as well as in channel optimized scalar quantization

(COSQ) proposed by Farvardin and Vaishampayan [2],
the decision thresholds can take any value. This hypoth-
esis is different from that assumed here, i.e., the decision
thresholds are chosen such that the quantization intervals
are equiprobable, and consequently the decomposed bits
become independent.

Hence, despite the recommendation of Kurtenbach
and Wintz [3], and that of Farvardin and Vaisham-
payan [2], in this paper, our second hypothesis is to con-
sider equiprobable quantization intervals.

Moreover, it 1s imposed for the total distortion to be a
weighted sum of the distortions due to the different de-
composed bits. Having a simple mathematical expression
that gives the quantization levels in function of the chan-
nel outputs, this condition is easily satisfied.

In this paper, we propose an algorithm which 1s as a
special type of Lloyd’s algorithm. The first element of the
algorithm consists of updating the quantizer, assuming a
fixed dequantizer and the second element is vice versa.

This paper is organized as follows: first we introduce
the model, the notations and the hypothesis. Then, we
propose our algorithm with its optimality proof. Finally,
we give some simulation results.

2 General formalization

In this section we present the global model considered in
this paper and introduce its important parts. Also, we
give the constraints that we consider in each part and
express why these constraints are taken into account.

A source with arbitrary known PDF is considered. Yet,
for simplicity, it is assumed that the source has zero mean
value. Remark that this does not affect the generality of
the presented proofs or algorithms. Figure 1 reflects the
configuration considered in this paper.
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Figure 1: Transmission scheme considered in this paper.

2.1 Quantizer (Qj)

Restriction 1:
equiprobable

it 1s assumed that the intervals are

the quantization rule is defined as follows

u €Ly S w=[wg ... wg wy]

where w; € {0,1} and [wy ... w2 wq] is the binary rep-
resentation of w. The assumption of the equiprobability
hypothesis results in

k

pw) = [Towi) = (5)*

1
p(Wi) = 5 Vi =
i=1

In other words, the different decomposed bits are inde-
pendent from each other. Note that they are also inde-
pendent in time since the source is assumed to be memo-
ryless.

2.1.1 Interval centroids

Without any constraint on the reconstruction levels and
for a noise-free channel, the optimum reconstruction levels
can be found by the centroid principle

¢ = E(U|U S Ii)

In vector form, ® is introduced as the set of all centroids,
in an increasing order, or simply the centroid vector

= [¢o ¢1 ¢ ... ar_q]

where the ¢ superscript denotes the transpose.

2.1.2 Permutation

In matrix form, the permutation matrix, J is intro-
duced as a row-permuted version of the unity matrix,
Izkxzk

1
Jw,i—{ 0

Where Q(u) and Qj(u) represent respectively the non per-
muted and the permuted version of the quantized source
sample, u, by the permutation matrix J. Then ®3 can be
written as a permuted version of ®

Qu)=1i & Qj(u)=w

otherwise

P;=J.0

Restriction 2: In order to keep a simple mathematical
expression between the channel outputs and the recon-
struction levels, a constraint is imposed on them as in the

following equation

k
v=1 = E ;7
i=1
In matrix form, the expression becomes

(1)

v=¢Y = da=daduz
v =

where W is the reconstructed centroid vector, a =
[ag ... az a1]t, 2 = [z ... 22 21]' and B is the nat-
ural binary encoding matrix (A matrix whose successive
rows are the binary representations of the natural num-
bers 0,1,---,2% —1).

This constraint gives the conditions to prove the addi-
tivity of distortion:

N N
D= ZO[?E ((ul — Vi)z) = Za?Di
i=1 i=1

where D; = E ((ul — Vi)z) is the MSE corresponding
to the i-th bit, and depends on the channel transition
probability, p.

2.2 Channel model

Here we consider +1 values as in figure 2, in order to
simplify our calculations.

-1 1-p -1
p

X Yi
p

+1 1-p +1

Figure 2: Binary symmetric channel model with +1 out-
puts.

It is further assumed that the z; parameters, i.e., the
decoder reconstruction outputs, have soft values. This
assumption is considered because we aim to minimize the
MSE distortion measure and not the error probability.



3 Lloyd type algorithm

We propose an algorithm which can be viewed as a spe-
cial type of Lloyd-Max algorithm to optimize the distor-
tion due to source and channel. We aim to minimize the
average Euclidean distance:

D =E(U-V)?

Like other algorithms of Lloyd type, this algorithm con-
sists of two elements: optimizing the quantizer, assuming
a known dequantizer and vice versa.

3.1 Optimizing the dequantizer assuming

a fixed quantizer

In this part, the distortion is minimized, due to the source
and to the channel, assuming a known quantizer, @y, by
optimizing the parameters of the dequantizer, Q*, i.e.,
the a parameters.

D=E((U-¢)-(V-9)) =

E(U-0))+ E((V-9)*) —2B((U-0)(V-9))
D E ((Z’;l oc,z,—¢)2)

2A=0

For the first term, let us define D, = E((U — (/))2)

This is the distortion purely due to the quantization and
is independent of the dequantizer. The nullity of the third
term can be easily proved.

So we rewrite the above equation, derivate it with re-
spect to @ and set it equal to zero

=9E((V - ¢>)8—V) -

Jdat

B(-0 (v -0p)

Jdat

QE((V - (/))z) —0
Using equation (1) and the orthogonality principle yields

E(z.z') .a = E(¢.2) (2)

N—— N—_——’
R r

hence it can be concluded the optimum value for a is

o =R 'r

(3)

3.1.1 Calculation of minimized distortion

With V* = z'.a* = 2/, R™'r = 2/, R"1L.E(¢.z), we can
write

Din = Dy + E((V* — ¢)2)

Dy +E((V* = 6).( 0" = 9))

The term E((V* — (b).zt.a*) is equal to zero because of
the orthogonality principle.

Diin = Dq+E((¢—V*).¢)

= D+ E((l - zt.R_l.z).q/)Z)

1 _

= Dy+ 2—k<1>t.<1> A
Remark: Equation (4) gives a simple way to calculate

the distortion as it can be remarked that o2 = D, +

Lol

2F = -

_ 2 t p-1
Dpin =0, — "R "r

(4)

3.1.2 Calculation of R, r

It can be shown that for these conditions we have:

{E(ZMJ)] .

nJ

R = = Lxr

{E(zi.qf))L - i(J.f3)t.<1> - 2%?3#,1?@

r Qk

where Bi,j = Echannel(z|w = BZ,])

B;; = {

B = (1-2p)B

+1=>Bi;=1(1-p) —1lp=1-2p
-1 = Biyj —1(1—p)+1p: —1+2p

With these values of R and r, we rewrite the expression
for ac as

3.2 Optimizing the quantizer assuming a
fixed dequantizer

The second part of algorithm consists in optimizing the
quantizer, Qy, assuming a known dequantizer, Q*. Since
the equiprobability constraint must be respected, the only
flexibility is in the permutation of indices. The following
lemma proves that a permutation sorting the reconstruc-
tion levels in an increasing order is the optimum permu-
tation.

Lemma 1 For a known decoder, the optimum encoder s
the one which sorts the decoded centroids in an increasing
magnitude order.

4 Complete algorithm

The complete algorithm of bitwise decomposition 1s de-
scribed below for a memoryless source U, either knowing
its PDF | or having sufficient number of its samples. Both
versions of the algorithm are depicted in the block dia-
gram of figure 3. The only difference of these two versions
is in their initializations.
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Figure 3: Block diagram of the optimized bitwise decom-
position algorithm for either a known PDF or a source
with enough known samples.

In practice, to avoid the local minima, the algorithm
may be applied several times with different initializations
and the best obtained results will be taken. For small
values of NV this is less important, as usually the global
optimum is obtained rapidly. For larger values of N, more
initializations is suggested.

5 Practical experiments

In order to test the performance of the bitwise decompo-
sition algorithm, the generalized Gaussian distribution is
considered as the source model. This distribution is given

below
p = G e (= (o 0u))
W0.0) = (iﬁi)

with # > 0 describing the exponential rate of decay, ¢ a
positive quantity representing a scale parameter, and T'(.)
being the Gamma function. The variance of the associ-

ated random variable is given by o2 = 2.

Generalized Gaussian PDF’s
0.8 T T T T

Laplacian
Gaussian
theta =3
theta=4
uniform

0.7

=
s04

Figure 4: PDF of Generalized Gaussian sources with 6 =
1,2,3,4, cc.

It 1s known that ¢ = 1,2 and oo correspond to Lapla-
cian, Gaussian and uniform sources, respectively. See fig-
ure 4, where these distributions are illustrated for o2 = 1.
In the following subsections, some sources are chosen to
be treated with the proposed bitwise decomposition algo-
rithm. The performances and results will be presented.

5.1 Uniform source

For a uniform source, the optimization yields the same re-
sults obtained analytically by Crimmins et al., in 1969 [1],
using Fourier transform on finite Abelian groups. More
recently, in 1995, McLaughlin et al. [4], proved the same
theorem, using a vector for formulating the index assign-
ment and showing that the MSE due to channel errors
is determined by the projections of its columns onto the
eigenspaces of the multidimensional channel transition
matrix. This result is a natural binary coding (no per-
mutation) and a; o< 2°.

5.2 (Gausslan source

The Gaussian source 1s studied here, as a second example
with k& = 4 bits per sample and p = 10~2?. Contrarily to
the uniform source case, here, we have not a natural bi-
nary permutation. Figure 5 depicts the quantization tree.
It is obvious that with these a;s, the optimum permuta-
tion is not the natural one.

We obtain a = [0.6206 0.5332 0.4351 0.2810]" and an
SNR equal to 12.05 dB.

5.8 Generalized Gaussian source

In this paper, some generalized Gaussian sources with dif-
ferent values of § have been studied as examples. Fig-
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Figure 5: 4 bits Quantization tree for a Gaussian source:
permutation is not natural.

ure 6 depicts a global comparison of all of the performance
bounds obtained for some generalized Gaussian sources
with various values of #, using the Lagrangian method as
explained in [7].
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Figure 6: Lagrangian performance bound for some gener-
alized Gaussian PDF’s for p = 1072,

In the following section, some concluding remarks are
provided about the bitwise decomposition algorithm.

6 Conclusion

The bitwise decomposition algorithm provides an ex-
tremely simple system. All the parameters of this system
consist of 2V — 1 quantization thresholds, a 2V length
mapping table in the encoder and an N size a vector in
the decoder.

For all kinds of sources, the system performance is good
for relatively small values of N, say for N below 5 or 6 bits.
We observed that for example with a Gaussian source and
values of N up to 4 bits, the performance of the simple
bitwise decomposition system is very close to its optimum

value (the Lagrangian bound). The same statement holds
for other kinds of sources with this algorithm.

However, the performance begins to saturate for N >
6 bits (except for the uniform source). In general, the
performance obtained by bitwise decomposition algorithm
for the generalized Gaussian sources is better when ¢ has
a big value. For small values of 8, such as Laplacian source
(0 = 1), the performance is not very good for N > 4 bits
per sample.

In fact, the algorithm tries to represent 2V centroids
just by N parameters of the a vector. For small values of
N this is possible but for larger values of N, this becomes
more difficult (except for the uniform source which is a
particular case).

A possible improvement of this system can be obtained
by including a channel coding scheme to the system. For
example, a hierarchical protection may be implemented.
This is the subject of our future research and is a gen-
eralization of [6] from a uniform source to an arbitrary
generalized Gaussian source.
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