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ABSTRACT

This paper proposes a new linear scalar quantization algo-
rithm. A modified Lloyd’s optimum algorithm, based on a
linear quantization, is proposed to decompose a memory-
less source into the bits. This is the case of the considered
source which is the output of the wavelet transformation.
The developed algorithm gives acceptable results for gen-
eralized Gaussian sources. Our approach is compared with
the Lloyd max one’s and a second one where the quantiza-
tion intervals are equiprobable.

1. INTRODUCTION

For image transmission over a binary channel [3], a quan-
tizer is used for the reduction of the image plane transform
dynamics. In general, both scalar and vector quantization
[6] could be used. A scalar quantizer is considered in this
paper, providing a more simple bitwise decomposition of
a still image.

In [7], Lloyd proposed two algorithms to design opti-
mum quantizers in term of minimum distorsion [8]. It is
based on a joint optimization of the encoder and the de-
coder. In [3], it is shown that for a uniform source, the
optimum scalar quantization is obtained by a natural bi-
nary coding. However, this is not necessarily the case for
other kinds of sources.

In this paper, this problem is treated for an arbitrary
memoryless source and a modified version of Lloyd’s al-
gorithm, based on a linear quantization, is proposed. It
is an optimization version of the algorithm proposed in
[1, 5], where they consider equiprobable quantization in-
tervals. The hypothesis to be considered here is to have a
memory-less source. However, this is not a very restricting
hypothesis. In fact, the considered source is the output of
the wavelet transformation [2] which produce a memory-
less output.

2. WAVELET IMAGE DECOMPOSITION

The wavelet transform allows the decorrelation of the im-
age information by filtering the original image in to dif-
ferent frequency components using a filterbank. This filter

bank divide each dimension of the image into a lowpass
and a highpass region. Then only the lowpass region is di-
vided into new lowpass- and highpass regions in the same
way, and so on. The number of decomposition levels is the
number of times the process is repeated. All the wavelet
transformations considered in this paper use a minimum
phase Daubechies low-pass filter for the image decompo-
sition [4].

The lowpass-lowpass subimage must always be treated
with special caution. This subimage contains a lot of es-
sential information and do not have the same favorable
statistical properties of the other subimages. Some extra
processing is needed for this subimage.

3. JOINT OPTIMIZATION OF THE QUANTIZER

The goal of source coding or quantization is to reproduce
the source by as few channel transmission symbols as pos-
sible, which means mapping a broad range of input values
to a limited number of output values. In this paper, we
choose the scalar quantization which is a case of lossy
compression. The motivation behind lossy image com-
pression is the limited channel bandwidth.

The scalar quantization is a function, Q: IR −→ V
where IR is the set of real numbers and V = {v1...v2N }
the codebook (the output set). The thresholds of quantiza-
tion are called decision levels, ui, and the output levels are
called the reconstruction levels or output levels, vi. Thus,
the compression done by the scalar quantization consists
on selecting an output level vi, and the only saved informa-
tion is the index i. Two major functions are distinguished
in scalar quantization: encoding: the inputs positioned in
the i-th quantization interval, are encoded to i ; decoding:
the encoded value i, is decoded to vi.

Optimization of the scalar quantizer can be achieved
by optimizing the encoder and decoder functions. The
Lloyd-Max algorithm is today a common tool of joint opti-
mization, and it can be used for different types of sources.
The algorithm is based on iteratively optimizing the en-
coder and decoder. We can begin by optimizing the en-
coder assuming a known decoder, then assuming this op-
timized encoder, we proceed to optimize the decoder. We
continue this iteration until convergence to an optimum so-



lution. Considering this methodology, we propose to de-
velop an optimized linear decoder without the constraint
of equiprobable quantization intervals. It can be viewed
as a special adaptation of Lloyd’s algorithm to optimize
the distorsion due to the source and the channel. The
quantizer optimization is then achieved by minimizing the
mean square error (MSE) between the centroid, vi, and the
decision level ui. Analytically, it is equivalent to minimize
the expectation value of (u − v)2,

E[(u−v)2] =

∫

(u−v)2p(u)du =

2
N

∑

j=1

∫

Vj

(u−vj)
2p(u)du

(1)
where N is the number of quantization bits, u is the vector
of decision levels known the probability density function
p(u) and v the corresponding centroid vector. vj is the
centroid of the quantization interval Vj . It is given by:

vj =
N∑

i=1

αibij (2)

where the α vector is the reconstruction weights. As for
all Lloyd-Max algorithm, the initialization of α’s values is
important for both the convergence speed and the final re-
sult. There are plenty of local minima solutions, but choos-
ing initialization values for a with care, will most likely
give the global minima solution or a value very close to
that one. Equation 2 is equivalent with a matrix represen-
tation to

v = α.B (3)

where B is the natural binary encoding matrix (0 ≤ j ≤
2N − 1) where 0 are replaced by -1. bij is then the i-th
bit of the binary encoding (-1 or +1) of the integer j [9].
Thus, minimisation of (1) gives:

∂E[(u − v)2]

∂αi

=

2
N

∑

j=1

∫

Vj

(

u −

N∑

i=1

αibij

)

bijp(u)du = 0

(4)
which is equivalent to

2
N

∑

j=1

(
∫

Vj

up(u)du

)

bij =
2

N

∑

j=1

(
∫

Vj

p(u)du

)
N∑

i′=1

αi′bi′jbij

(5)
Putting Pj =

∫

Vj
p(u)du and Ej =

∫

Vj
up(u)du, we ob-

tain:
N∑

i′=1

αi





2
N

∑

j=1

Pjbi′jbij





︸ ︷︷ ︸

aii′

=

2
N

∑

j=1

Ejbij

︸ ︷︷ ︸

ci

(6)

which is equivalent with a matrix representation to

A.α = C (7)

As A is a non singular square matrix, α is deduced by
inverting equation (7).

4. ALGORITHM DESCRIPTION

The quantization rule is defined as follows

u ∈ Vw ⇐⇒ w = [wk · · · w2 w1] (8)

where wi ∈ {0, 1} and [wk · · · w2 w1] is the binary rep-
resentation of w. In other words, we have to compute the
decision levels and the corresponding centroids in order to
define the quantizer. The developed quantizer is based on
the Lloyd Max’s rules:

• nearest neighbor rule: this rule states that for a given
decoder, the optimum encoder is the one that en-
codes each source input to the nearest codevector,

• centroid rule: this rule states that for a given en-
coder, the optimum reconstruction level is the cen-
troid of all input vectors encoded to this codevector,
weighted by their probability.

The developed algorithm is described in three main steps:

1. Initialization of the algorithm

• Initialize the reconstruction weighs, α, using a
uniform source, only for the first step of ini-
tialization;

• Calculate the centroids for each interval

vj =
N∑

i=1

αibij for 1 ≤ j ≤ 2N (9)

An increasing order of the centroids vj must
be considered.

2. Lloyds iterations

• With α and V , calculate the reconstruction lev-
els vector U ;

• Calculate Pj and Ej ;

• Calculate A using (6);

• Compute the new value of α with (7).

3. Termination of the algorithm

• α and V are the solution to the optimization
problem. α represents the optimum dequan-
tizer while V represents the optimum quan-
tizer.

As exemple, let’s consider a scalar quantization us-
ing the developed algorithm with N = 4 bits: the corre-
sponding optimized reconstruction weight vector is given
by α = [1.50 0.84 0.45 0.25], where the weight is pro-
portional to the importance of the bit in the reconstruction
process. As mentioned earlier, initializing the α vector is
extremely important both for the convergence speed and
for the final solution (because of local minima). Several
initializing strategies can be used. One possibility is to use
a set of more or less random values which statistically per-
form well. In [5], a more systematic approach based on a
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Figure 1. Rate SNR plots of Lena for Low pass - Low pass subimage with (a) 2, (b) 3, (c) 4 decomposition levels and (d)
the rate SNR plot of Lena for the second subimage (High pass - High pass).

theoretical fundament is given. In [1] the optimal α-values
are computed through exhaustive search. This is done for
the most common perfect sources like uniform, Gaussian
and Laplacian. Most subimages have a pdf that are close to
Laplacian when normalized (except the low-low subimage
which is more Gaussian-like).

5. EXPERIMENTAL RESULTS

When dealing with image quantization and dequantiza-
tion, we need some fidelity criteria to evaluate these tech-
niques. In fact, they introduce distorsion to the recon-
structed image. It is common to separate between ob-
jective fidelity criteria and subjective fidelity criteria. All
though objective fidelity criteria provide a simple and con-
venient way to compare different systems, subjective fi-
delity criteria should not be neglected.

It is not necessarily a direct link between an objective
fidelity criterion and the subjective human perception of
the image. Small objective changes in the image qual-
ity can have a considerable impact on the perceived qual-
ity, and objective changes can have no effect on the ob-
served image. Subjective fidelity criteria are therefore al-
ways necessary as a control / evaluation of the objective re-
sults. A common objective fidelity criteria in image quan-
tization is the mean-square signal-to-noise ratio SNRms.
The SNR (in dB) is defined as SNR = 10 log

10
(σ2/D),

where σ2 is the variance of the source pdf. The distorsion
D is given by the minimization of the mean square error

D =
2

N

∑

j=1

∫

Vj

(u − vj)
2p(u)du

=

∫

u2p(u)du

︸ ︷︷ ︸

1

+

2
N

∑

j=1

(
∫

Vj

p(u)du

)

︸ ︷︷ ︸

Pj

v2

j

−2

2
N

∑

j=1

∫

Vj

up(u)du

︸ ︷︷ ︸

Ej

(10)

Thus, the distorsion is computed as follows

D = 1 +

2
N

∑

j=1

v2

j Pj − 2

2
N

∑

j=1

vjEj (11)

Three different quantizers / dequantizers have been simu-
lated and compared:

1. The Lloyd max algorithm.

2. Lloyd-Max algorithm adaptation to optimize the α-
values using equiprobable quantization intervals.

3. The proposed algorithm.

Figure 1 and 2 show the rate SNR results of Lena for
Low pass - Low pass subimage with different decomposi-
tion levels (2, 3 or 4). The histograms of these subimages
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Figure 2. Rate mean SNR plots of Lena with (a) 2, (b) 3, (c) 4 decomposition levels and (d) untill 8 quantification bits.

(Low pass - Low pass) have a non zero mean values. Thus,
for the equivalent distorsion computation of these subim-
ages, a normalization parameter (maximum plus minimum
values divided by two) is removed from the processed subim-
age. The SNR is used as a quality criteria of the recon-
structed images. This does not necessarily mean that a
higher SNR-value gives a superior visually percepted im-
age, but generally we accept this assumption. The quanti-
zation with the constraint in equation (2) gives an increas-
ing quantization loss with increasing bit rates compared
with Lloyd max quantization. All the curves confirm this
result. However, we remark the significant improvement
of the proposed algorithm against the one proposed in [1].
For low rates, the difference between the proposed system
and the Lloyd max quantization is negligible. For high
rates, the difference becomes quite large.

6. CONCLUSION

In this paper, we have presented a linear scalar quantizer of
wavelet image decomposition (memoryless source) using
joint quantizer/dequantizer optimization. The developed
algorithm is based on the Lloyd Max rules. The illustrated
rate SNR on this paper show a significant improvement of
the proposed algorithm. To have a more objective idea on
the robustness of the developed algorithm, the quantizer
has to be tested in a transfer system with different noisy
channels.
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