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ABSTRACT
Synthetic aperture radar (SAR) and optical satellite image
registration is a field that developed in the last decades and
gave rise to a great number of approaches. The registra-
tion process is composed of several steps: feature definition,
feature comparison and optimization of a geometric transfor-
mation between the images. Feature definition can be done
using simple traditional filtering or more complex deep learn-
ing (DL) methods. In this paper, two traditional approaches
and a DL approach are compared. One can then wonder if
the complexity of DL is worth to address the registration
task. The aim of this paper is to quantitatively compare
approaches rooted in distinct methodological areas on two
common datasets with different resolutions. The comparison
suggests that, although more complex, the DL approach is
more precise than traditional methods.

Index Terms— Multi-modality registration, SAR, optical
imagery

1. INTRODUCTION

The currently unprecedented number of missions and sensors
leads to an increased interest of the remote sensing commu-
nity for multi-modal satellite image registration. The present
paper focuses on the automatic registration of SAR and op-
tical satellite images. Despite a substantial literature on this
subject, this problem can still be considered as only partially
solved for several reasons. First, the geometry of SAR images
is very particular and completely different from optical im-
ages. Secondly, a SAR image looks very different compared
to an optical image as it is sensitive to different characteris-
tics of the ground. At last, the on-going increase of resolution
and diversification of acquisition modes makes this problem
challenging to tackle for a unique algorithm.

The registration process is usually preceded by a pre-
processing step so that images are in a common geometry.
The aim of registration is to find a geometric transformation
so that the input images can be superimposed. The registra-
tion process can be divided into three steps [1]. The first one

is feature definition, which can be a collection of particular
points, windows or even whole images. Feature definition
is generally dedicated to SAR or optical images to take into
account their different properties. The second step is feature
comparison. A comparison function is used in order to match
features from the two images. This function is adapted to the
nature of the features, for example SIFT-like features [2, 3] or
windows matching [4, 5]. The third step is the computation
of a geometric transformation between the input images, typ-
ically modeled by a simple function, e.g., a global translation
with optional homothetic and rotation terms. The third step
can be computed by the direct optimization of the comparison
function of step 2 or by an optimization relying on a set of
previously matched candidates. Steps 2 and 3 are sometimes
jointly performed, as in the methods discussed here but also
in optical flow approaches [6].

The aim of this paper is to compare the results of two
methods using traditional filters versus a deep learning (DL)
approach, tested on common datasets with various spatial res-
olutions and sensors, described in Section 2. These methods
mainly differ in the feature definition step (see Figure 1), as
described in Section 3. Two methods are used for the feature
comparison and optimization steps and are described in Sec-
tion 4. Different combinations of the last two steps are tested
to compare separately the performance of each approach for
each step. Section 5 compares the results of the methods on
common datasets and Section 6 draws conclusions according
to this experimental investigation.

2. DATASETS AND PRE-PROCESSING

Two datasets have been used for the comparisons. The first
one is composed of a Pleiades panchromatic image and a
COSMO-SkyMed SAR image acquired in Spotlight mode on
an ascending orbit over a countryside area near Bussac-Forêt
(France). The study zone is composed of woods, fields, roads
and a few buildings. This dataset has very high spatial resolu-
tion (50 cm). The SAR image is in full resolution and the op-
tical image has been projected into the radar geometry using



ALOS DEM. The COSMO-SkyMed image was despeckled
using two techniques (see Figure 1): a Wiener filter applied
with a homomorphic filtering strategy (logarithmic scale) and
the wavelet-based method in [7].

The second dataset has been derived from Sentinel-1 (S1)
SAR and Sentinel-2 (S2) optical data, acquired in 2018 over
Amazon, north of Pozo Colorado (Paraguay). The area cov-
ers crops, forests and rivers. The S2 image is made of the
Sentinel-2 channels with 10 m resolution (i.e. RGB-NIR).
The S1 data come from multitemporally despeckling a time
series of 7 Sentinel-1 acquisitions using the method in [8].
Before registering, the S1 data were resampled on the same
pixel lattice as the S2 image.

Fig. 1. Block diagram of the different steps of the registration
process for the methods compared here.

3. FEATURE DEFINITION

This section presents the traditional and the DL methods
tested here for feature definition.

3.1. Traditional methods

The first proposed traditional approach is based on gradient
matching. Indeed, most edges are common features shared
by optical and SAR images. This is especially true in coun-
tryside landscapes, with various kind of fields. In dense urban
areas with buildings signatures, it can be more appropriate to
use linear features for SAR data and edges in the optical data

as proposed in [9]. Thus, the features are gradient magni-
tude maps (see Figure 1). The gradient computation on op-
tical images is done using Deriche’s approach [10], derived
from Canny’s criteria [11], while the SAR gradient can be
efficiently computed using Gradient by Ratio (GR) in [2].

The second method is a multi-scale technique called OS-
CAR (Optical to SAR Correlation-based Automatic Registra-
tion). At each scale, the SAR image is automatically thresh-
olded in order to avoid very high values to mislead the fol-
lowing correlation step. The optical image is filtered so that
it looks like a SAR image (see Figure 1). As a rule of thumb,
bright SAR pixels often correspond to areas with local varia-
tions on the optical image whereas homogeneous parts of the
optical image are often quite dark in the SAR image (e.g. flat
areas as roads or water). Five filters are used to reproduce this
first-order correspondence: the first one is the standard devia-
tion on a square window and the second is the minimum of the
standard deviations already computed on the same window.
The three other filters are the classical Sobel filter, morpho-
logical gradient and absolute value of the Laplacian. These
five filtered optical images can be considered as handcrafted
fake SAR images.

3.2. Image-to-image translation through DL

Image-to-image translation based on DL has attracted con-
siderable attention for registration lately. It aims to transform
one or both multisensor images to a common domain. That
way, it is easier to compare their inherently different charac-
teristics and get features useful to register. Generative adver-
sarial networks (GANs) proved to be particularly efficient. A
GAN is made of two networks trained in competition [12]. In
particular, a conditional GAN (cGAN) is aimed to generate
output data whose distribution matches that of a target source
from a non-noise input source [13]. Here, the desired output
is an image with SAR-like distribution (“fake SAR”), while
the non-noise input is the optical image. The adopted DL
method is the one in [14], which consists of two steps: first,
a translation stage by means of the pix2pix cGAN [13],
and then, an area-based registration stage using an `2 simi-
larity (see Section 4.2). Details can be found in [14]. The
application of the cGAN to the Amazon dataset is also de-
scribed in [14]. Regarding the Bussac dataset, the Pléiades
panchromatic image was manually warped to the COSMO-
SkyMed image grid (which was around 5500 × 5500 pixels)
to have paired patches to be used for training. Around 75%
of the scene was used to train the cGAN. The training set was
made of 101 patches (512× 512 pixels each) drawn from the
whole scene except the South-West corner, which was used
for testing. This training strategy was used here for experi-
mental purposes, but in a general application of the method,
the training would make use of pre-registered patches coming
from the same data sources but not from the specific images
to be registered [14]. pix2pix, which is aimed at RGB im-



ages, was modified to map from the single-channel panchro-
matic to the single-channel SAR domains. The filter size was
enlarged to 5× 5 to account for possible residual misregistra-
tions in the training patches. The number of training epochs
was experimentally fixed at 200. The training set size is rather
limited, so it is important to minimize the risk of overfitting.

4. FEATURE COMPARISON AND
TRANSFORMATION COMPUTATION

This section describes the two tested approaches for feature
comparison and optimization of the transformation.

4.1. Correlation and RANSAC based transformation
computation

The comparison and optimization steps for the OSCAR algo-
rithm is a multi-scale approach. Phase correlation between
the thresholded SAR image and each of the five filtered opti-
cal images is performed on windows of 256x256 pixels with
an overlap of 32 pixels. Five disparities maps are then ob-
tained and filtered altogether by the RANSAC filter to obtain
a rotation scale translation (RST) transform. Finally the SAR
image is resampled to be superimposed to the optical image.
As the optimization step described is based on correlation, it
is relatively similar to that of the next section.

4.2. `2 area-based similarity metric

Area-based registration operates on the whole image directly,
with no focus on specific points or linear features. It generally
provides low registration error at the cost of high computa-
tional burden, often relying on information-theoretic compar-
ison functions [15, 1]. However, if the feature definition stage
is effective at mapping the multisource data to a common
domain, then a simpler and faster correlation-type similarity
may become feasible. Here, the area-based function in [14] is
used, that is the `2 similarity between the outputs of the fea-
ture definition stage, expressed as a function of an RST trans-
formation. Since it is generally a nondifferentiable function
of the transformation parameters, a derivative-free minimiza-
tion method is necessary. Among this family of algorithms,
an accurate and efficient constrained maximization technique
is identified in COBYLA. It iteratively approximates the op-
timization problem by a suitable sequence of linear program-
ming subproblems. Details can be found in [14].

5. COMPARISON OF THE PRESENTED METHODS

In order to quantitatively compare the different methods, the
SAR and optical images were first registered using manual tie
points. Then, four RST transformations were applied with ro-
tations ranging from 1.4° to 2.5°, a scale factor of 1.01 and
translations from 25 to 45 pixels in each dimension. As the

Fig. 2. Results for transformation 4 on Bussac. (a) Overlay
of fake SAR and SAR image before registration. (b) Same
as (a) after registration. (c) Optical and SAR gradients af-
ter registration by gradient and `2/COBYLA. (d) Optical and
SAR image after registration by OSCAR. SAR products are
in green and optical ones in magenta.

ground truth transformation was known, it was possible to es-
timate the Root Mean Square Error (RMSE) as in [16]. On
the Amazon test area, the GR and DL methods were both
tested with the optimization step in Section 4.2 and compared
with OSCAR. Results are shown in Table 1. It appears that
the DL approach outperformed the OSCAR approach as it at-
tained sub-pixel RMSE while RMSE varied between 1 and
8 pixels for OSCAR. However, even being not very precise,
the final RMSE of OSCAR was significantly reduced com-
pared to the initial one. Using GR and the `2 function, small
RMSEs (down to ∼0.2 pixels) were obtained in the case of
some transformations, whereas the method did not converge
to accurate solutions in other cases. This might be ascribed
to the presence of local maxima in the `2 similarity between
the GR features. When the same functional was applied to the
DL features, this variance was not observed and low RMSEs
were consistently achieved in the case of all transformations.

This first comparison suggests that the whole DL pro-
cessing chain yielded smaller RMSE than OSCAR, at least
on the considered datasets. However, this analysis cannot
separate the effects of the feature definition and compari-
son/optimization steps. To focus on the role of the latter
step, the fake SAR and despeckled SAR images were fed to
both the `2 function and the correlation-RANSAC approach
on the Bussac dataset (see Figure 1). The gradient maps
were combined with the `2 function. The results are shown



Test Initial GR + `2 DL + `2 OSCAR
1 76.45 0.19 / 87 0.34 / 0.35 4.35 / 7.82
2 72.23 0.16 / 85 0.24 / 0.22 2.95 / 5.46
3 60.35 0.19 / 0.11 0.22 / 0.42 2.63 / 3.64
4 36.22 30 / 40 0.22 / 0.27 1.89 / 2.48

avg. 61.31 7.63 / 53.02 0.25 / 0.31 2.96 / 4.85

Table 1. RMSE in pixels (area1 / area2) for the Amazon
dataset and four test transformations.

Test Initial GR + `2 DL + `2 OSCAR DL + RANSAC
1 111.02 3.15 0.87 11.04 2.96
2 96.38 23 0.81 13.30 2.69
3 88.92 47 0.85 11.14 3.65
4 34.37 2.83 0.89 14.67 1.04

avg. 82.67 18.99 0.85 12.53 2.59

Table 2. RMSE in pixels for the Bussac dataset and four test
transformations.

in Table 2. Again, the full DL approach provided the best
results among the considered techniques. Comparison of
columns 3 and 5 shows that the `2 similarity yielded smaller
RMSE than RANSAC by a factor of about 3. Comparison of
columns 4 and 5 shows that the first step had a greater impact
as there was a factor of about 4 between OSCAR and the
DL/RANSAC combination. This led to a gain of 12 between
the DL and OSCAR methods. The GR + `2 combination
yielded RMSE ∼ 3 pixels for two of the considered trans-
formations, while it did not achieve accurate solutions in the
remaining cases, thus confirming the variance observed with
the Amazon dataset. The DL + `2 method consistently led
again to subpixel RMSE.

6. CONCLUSION

The experiments indicate that all considered methods im-
proved the registration of the optical and SAR images as
compared to the initial input multisensor data. This con-
firms their potential in the framework of this challenging
multimodal fusion task. The comparison shows that the
considered DL approach is especially effective on the con-
sidered datasets. Yet, an intrinsic drawback is that the net-
work should be trained on a pre-registered dataset, contrarily
to traditional methods, which do not require training pro-
cesses. This suggests a tradeoff between DL and traditional
approaches in terms of registration accuracy vs training re-
quirement/complexity. DL approach complexity is justified
when post-processing requires very high registration accu-
racy. While DL training generally takes a considerable time
and a dedicated computing infrastructure (e.g., GPU), the
prediction of the fake SAR image from the input optical
scene through the trained network is quite fast. Although less
precise, the GR and OSCAR methods are both fast and easy
to run and give reasonable results that significantly reduce the
initial offset between the images.
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