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Abstract—A conditional version of Sibson’s a-information is
defined using a simple closed-form ‘log-expectation” expression,
which satisfies important properties such as consistency, uniform
expansion, and data processing inequalities. This definition is
compared to previous ones, which in contrast do not satisfy all
of these properties. Based on our proposal and on a generalized
Fano inequality, we extend the case o = 1 of previous works
to obtain sharp universal upper bounds for the probability of
success of any type side-channel attack, particularly when o = 2.

I. INTRODUCTION

Mutual information as a theoretical tool to analyse the
capability of an attacker to perform side-channel analysis has
been advocated since Standaert et al. [14]. The communication
channel model for this problem was used in [7] to optimize
the side-channel attack distinguishers for any given type of
leakage model. Recently, Chérisey et al. [2], [3] used such
information-theoretic tools to establish some universal in-
equalities between the probability of success of a side-channel
attack and the minimum number of queries to reach a given
success rate. Such inequalities are “universal” in the sense that
they can apply to any type of attack and depend only on the
leakage model.

In this paper, we aim at extending the approach of [2], [3]
to Rényi information quantities depending on a parameter c.
For that we need the following ingredients that were crucial
in the derivation steps of [2], [3]:

o a closed-form expression of conditional mutual informa-
tion, amenable to efficient numerical estimation;

e a data processing inequality of conditional mutual infor-
mation over a “conditional” Markov chain for a given
plain or cypher text 1" (known to the attacker);

e a expansion property of conditional mutual information,
i.e., its decomposition as a difference between conditional
entropies, valid at least when the secret is assumed
uniformly distributed,

o a Fano inequality which yields a lower bound on mutual
information that depends on the probability of success (or
equivalently on the probability of error).

Our aim, therefore, is to establish all of these properties
for a suitably defined conditional Rényi version of mutual
information of order av > 0.

The rest of this paper is organized as follows. Section II
reviews some useful definitions and properties of Rényi infor-

mational quantities. Emphasis is made on consistency, uniform
expansion and data processing inequalities. Section III then
proposes a natural definition of conditional «-information
satisfying the required properties and Section IV makes a
detailed comparison to previous proposals. Section V presents
the main result applied to side-channel analysis, which is then
validated using simulations.

II. BACKGROUND AND DEFINITIONS
A. a-Entropy and o-Divergence
Rényi entropy and divergence are well-known generaliza-

tions of Shannon’s entropy and Kullback-Leibler divergence:

Definition 1. Assume that either 0 < a < 1lor 1l < a < 400
(the limiting values 0, 1, +o00 being obtained by taking limits).

The «-entropy of a probability distribution P and a-
divergence of P from () are defined as

Ho(P) = 725 log [|pla (D)
Da(P||Q) = 511 log(pllg)a 2)
where we have used the special notation:
o 1/
lplle = (/p )" 3)
a l—a 1/a
(pllg)a = (/p g edp) " “)

with the following convention: All considered probability
distributions P, @) possess a dominating measure p such that
P < pand @ < p, the corresponding lower-case letters p, ¢
are densities of P, ) with respect to p.

Remark 1. When p is a counting measure we obtain the
classical definitions for discrete random variables; when p is
the Lebesgue measure we obtain the corresponding definitions
for continuous variables. While it is easily seen that the
definition of «-divergence does not depend on the chosen
dominating measure y, that of a-entropy does.

A link between these two quantities is the following uniform
expansion property (UEP). Let U ~ U(M) be uniformly
distributed over a set of finite p-measure M. (In the discrete
case U simply takes M equiprobable values.) Since v = %

a—1

we have (p|lu), = M =

Property 1 (UEP of «-Divergence [16]). D, (P|U) =
Ha(U) - Ha(P) =logM — Ha(P)

llp|la, hence



Another important property is the data processing inequal-

ity (DPI). A random transformation iiven by a conditional

distribution Py |x is noted Px — | Py|x | = Py if a random
variable X ~ Py is input and the output distribution Py~ satis-
fies py (y) = fpy‘X(y|x)pX (z) du(x). Similarly for Qx —
— Qy we have ¢y (y) = [, p(y|z)qx (z) du(z).

Property 2 (DPI for a-Divergence [10], [11]). Any trans-
Sformation can only reduce «-divergence: D, (Px|Qx) >
Do (Py[|@y).

B. Conditional o-Entropy and «-Divergence

Both definitions of a-divergence and a-entropy have been
extended to conditional versions, in a fairly natural way:

Definition 2. The conditional a-divergence is defined as [17]

Do (Pyx||Qy|x|Px) = Do(Py|x Px||Qy|x Px) (5
This definition is consistent with the unconditional one:

Property 3 (Consistency of Conditional a-Divergence w.r.t.
a-Divergence). If X = 0 then Do(Pyx|Qy|x|Px) =
Do (Py[|Qy)-

Here following Shannon [12] we have noted X = 0 for any
random variable independent of everything else considered
(e.g., a constant variable).

In Definition 2 we remark that the expectation over the
conditioned variable is only taken inside the logarithm in the
a-divergence’s expression:

Dao(Pyx1Qyx|Px) = 757 log Ex (py x lavix)s  (6)

A similar “log-expectation” definition holds for the following
preferred form of the conditional a-entropy (a.k.a. Arimoto’s
conditional entropy). Considering the expression H, (X) =
H,(Px) = 1% log ||px|| and taking the expectation over a
conditioned variable inside the logarithm yields the following

Definition 3. The conditional a-entropy of X given Y is
defined as [1], [6]
@

Ho(X[|Y) = 1 log Ey [|px|y |la @)

—

Among other variations of conditional «-entropy [6] it
is this definition that enjoys all three important properties:
consistency, UEP and DPI. Consistency is obvious from the
definition:

Property 4 (Consistency of Conditional a-Entropy w.r.t.
a-Entropy). If Y =0 then H,(X|Y) = H,(X).

As in the case of the a-entropy, since (pxy|u)a =
M=
Property 5 (UEP). If U ~ U(M) is uniform independent

of X, Do(Pyx||U[Px) = Ho(U) — Ha(Y[X) = log M —
Ho(Y|X).

Property 6 (DPI for Conditional a-Entropy [6], [11]). If X —
Y — Z forms a Markov chain, then H,(X|Y) < Ho(X|Z).

|Pxy ||la» We have the following

In particular for Z = 0, conditioning reduces a-entropy:
H,(X|Y) < H,(X]|0) = Ho(X). More generally one has [6]
H,(X|YY') < H (X|Y").
C. a-Information

Sibson’s a-information is perhaps the preferred generaliza-

tion of Fano’s classical mutual information and has found
various applications [4], [5], [10], [11], [15], [17]:

Definition 4. The a-information [13], [17] of X from Y is
defined as

L(X;V) =2

a—1
This is again a “log-expectation” expression where one takes
the expectation over Y inside the logarithm in the expression
of the divergence

Do (Px|y—yllPx) = p—

Remark 2. This construction focuses on the distribution of
X, conditioned on Y or not. In contrast to the classical case
ao = 1, the resulting definition of information is not symmetric:
I,(X;Y) # 1,(Y, X). Therefore, a-information is no longer
“mutual” when o # 1.

log Ey (px |y [Ipx) 8

(07

log(px|y=yllPx)a

As in the case of the conditional «-entropy, since

(puyllu)a = M lpu|y [la> We have the following
Property 7 (UEP for a-Information [11], [16]). If U ~
U(M) is uniformly distributed, then I,(U;Y) = H,(U) —
H,(U|Y)=1logM — H,(U|Y).

Property 8 (DPI for a-Information [10], [11]). [f W — X —
Y — Z forms a Markov chain, then I,(X;Y) > I,(W; Z).

Proof (for completeness). Let Pxy — —
Px 7z —>—> Py, 7. By the Markov condition, one
has PX,Z|X7Y = X\XPZ|X,Y = PX\XPZ\Y where PX\X is
the identity operator; similarly Py, zx,z = Pw|x,zPz1z =
PW|XPZ|Z- Thus if QY — Pz‘Y — QZ, we find PXQY —

—) PXQZ — PW,Z|X,Z — PWQZ Now by

the data processing inequality for a-divergence (Property 2),
Do (Px y||PxQy) > Do(Pw,z||PwQz) > 1o(W; Z). Min-
imizing over Qy gives the announced DPI. O

Remark 3. Because of the non-symmetric nature of a-
information, the DPI corresponds to two separate statements
of pre- and post-processing inequalities [10].

We remark that the Lapidoth-Pfister mutual information,
which is symmetric, J,(X;Y) = J,(Y; X) does also enjoy
data processing inequalities but unfortunately does not seem
to possess a closed-form expression [8].

D. Sibson’s identity

An important property of a-information is Sibson’s identity.
It is straightforward to compute

<pXY||quY>g = //p%p?{lypi(—aq;—a (9)

= <pY<pX|Y||pX>a | qY>z. (10)



Defining the (suitably normalized) distribution ¢35 =

Py (0x v [[Px )a/Ey (Px|v ||PxX )a- substituting and taking the
logarithm gives the following

Proposition 1 (Sibson’s identity [13], [17]). One has

Do(Pxy || PxQy) = Da(Qy |Qy) + 1o (X;Y), (11)
hence the following alternate minimizing definition:
I.(X;Y) :HQlinDa(PXYHPXQY)~ (12)
Y

E. Generalized Fano’s Inequality

Assume X is discrete and estimated from Y using the MAP
rule, with (maximal) probability of success P, = P, (X|Y) =
Esup, px|y(z]Y). Also let P;(X) = suppx be the proba-
bility of success when guessing X without even knowing Y.
Using the DPI for a-information and «-divergence, we have
the following

Lemma 1 (Rioul’s Generalized Fano Inequality [11, Thm. 1]).

La(X;Y) 2 da (Bs (X|Y)|[PS(X)) (13)
where dn(pl|q) denotes binary a-divergence:
da(plla) = Gy log(pd' ™" + (1 =p)*(1 - q)' ™). (14)

III. CONDITIONAL -INFORMATION
A. Definition as a Log-Expectation Expression

As a natural continuation of the definitions in the preced-
ing section, we define the conditional a-information with a
“log-expectation” closed-form expression, obtained by tak-
ing the expectation over the conditional variable inside the
logarithm in the expression of Sibson’s (unconditional) a-
information (8):

Definition 5 (Conditional a-Information, Closed-Form Defi-
nition).

(0%
I.(X3Y|Z2) = — 1 log EzEy |z (px|y z[IPx|2)a

(6%
=7 logEy z(px|yzlpx|iz)a (15)

To the best of our knowledge, this definition has not been
considered elsewhere.

B. Basic Properties

Our definition enjoys three important properties: comnsis-
tency, UEP and DPI.

Property 9 (Consistency of Conditional «a-Information
w.r.t. a-Information). If Z is independent of (X,Y) then
I,(X;Y|Z) = I,(X;Y).

Proof. Obvious from the definitions. O

Property 10 (UEP for Conditional a-Information). If U ~
U(M) is uniformly distributed independent of Z, then
I,U;Y|Z) = Ho(U) — H,(UYZ) =log M — H,(U|Y Z).

Proof. Similarly as for the preceding UEPs, we have
a—1 .

(puyzlw)a = M~ |lpy|y z|la- Averaging over (Y, Z) and

taking the logarithm gives the announced formula. O

We say that a sequence of random variables forms a
conditional Markov chain given some random variable 7' if
it is Markov for any T = t¢.

Property 11 (DPI for Conditional a-Information). If W —
X =Y — Z forms a conditional Markov chain given T, then
L(X;Y|T) > [,(W; Z|T).

Proof. By Property 8, I,(X;Y|T =t) > I,(W; Z|T = t)
for any t. From Definition 4 this gives (px|v,r[Px|7)a >

(pw|z7llPw|T=t)a for a > 1 and the opposite inequality for
0 < a < 1. This in turn from Definition 5 gives the announced
inequality for any a. O

C. Conditional Sibson’s Identity
Proposition 2 (Conditional Sibson’s Identity). One has

Do(Pxyz||Px1zQy z) = Do(Qy 71|Qyz) + 1.(X;Y]Z),
(16)
hence the following alternate minimizing definition:

I.(X;YZ) = glin Do(Pxyz||Px1zQvz)  (17)
YZ

Proof. Similarly as in the case of a-information, it is straight-

forward to compute
1
///pysz\yszé‘lyza

pYZ<pX\YZ||pX|Z> ||QYZ>Z

(pxvzllpx|zavz)a (18)

19)

Defining the (suitably normalized) distribution ¢35, =

pyz(Px|yzIIPx|2)e/By z(Px |y z|IPx|2)a> substituting and
taking the logarithm gives the announced identity. O

IV. COMPARISON TO PREVIOUS DEFINITIONS
A. Various Other Definitions

All previous definitions of conditional c-information we are
aware of are variations of the form (17) where a-divergence
is minimized with respect to different probability measures
Qx|z, Qy|z, Qz or combinations. There are exactly 22 =8
possibilities:

(o) IP(X;Y|Z)=  Doa(Pxvz|PxzPyzPz).

() IPN(X;Y[2) = min Do (Pxyz|[Px|zPy12Qz)-

(i) 19'%(X;Y|Z) = mln Do (Pxyz||Px|zQy|zPz)-

(iii) 19 (X;Y|Z) = mlnD (Pxyz||Px|2Qy z)-

(v) I}(X;Y|Z) = InlnD (Pxyz||Qx|zPy|zPz).

) I}Y(X;Y|Z) = mlnD (Pxyz||QxzPy|z)-

i) P(X;Y|Z) = min  Do(Pxyz||Qx2Qy|2Pz2).

Qx1zQy|z
min Do (Pxyz||QxzQy z).
x1zQvz
Definition (o) is mentioned in [15, Eq. (70)]. Definition
(1) is the main proposal of Esposito et al. [5]. Definition (ii)
is discussed by Tomamichel and Hayashi [15, Eq. (74)] and

(vii) I1M(X;Y|Z) =



is equivalent to definition (iv) by permuting the roles of X
and Y: I'°9(X;Y|Z) = I9°(Y; X|Z). Our definition (17) is
definition (iii), and is equivalent to definition (v) by permuting
the roles of X and Y: I}V (XY |Z) = I (Y; X|Z). Finally,
definitions (vi) and (vii) seem new and related to a condi-
tional version of the Lapidoth-Pfister mutual information [8]:
Jo(X3Y) = ming g, Da(Pxy || @xQy). Thus we need
only to compare our definition to (o), (i), (ii), (vi) and (vii).
We now discuss various properties for these definitions, by
decreasing order of importance: The fact that they admit or
not a closed-form expression in terms of the involved proba-
bility densities; their consistency with respect to a-information
I,(X;Y1]0) = I,(X;Y); the existence of a uniform expan-
sion of the form I,(U;Y|Z) = logM — H,(U|Y Z) when
U ~ U(M) is independent of Z; and the fact that they satisfy
data processing inequalities for conditional Markov chains.

B. Closed-Form and Consistency

Definition (o) is by itself a closed-form expression but is
clearly inconsistent with respect to Sibson’s «-information
since 19%°(X;Y|0) = D, (Pxy|PxPy) which by (12) is
> I,(X;Y) where the inequality is, in general, strict.

Definition (i) of Esposito et al. does admit a closed-form
expression [5, Thm. 2]. In fact, since

(rxyzllpx|zPy|z4z2)a :///P%P?(ym(PX|ZPY\Z)1_QQ;17)‘
= <pZ<pXY|Z||pX\ZpY\Z>a || QZ>Z,

letting ¢, = pz (Px|v zIlPx|2Py | 2)a/ Bz (Px |y 2||Px | 2PV | Z)a
and taking the logarithm gives the following variation of
Sibson’s identity (whose existence is mentioned but does not
explicitly appear in [5]):

Proposition 3.

Do(Pxyz||PxzPy1zQz) = Da(Q%11Qz) + I (X; Y| Z),
(20)
with the following closed-form expression:

IPNX;Y|Z) = 225 10g Bz (pxy zIlpx 2Py 2)a.  (21)

However, I is inconsistent (with respect to Sibson’s a-
information) for the same reason as in the case of 1200
From (21) we have I29Y(X;Y|0) = D,(Pxy||PxPy) >
I,(X;Y).

Definition (ii) of Tomamichel and Hayashi also admits
a closed-form expression [15, Eq. (75)]. In fact by the
(unconditional) Sibson identity (11) applied to all variables
conditioned on Z = 2z for any z, one easily sees that
Do (Pxyz||Px|zQy|zPz) achieves its minimum when for
Qv |z = q;‘z = pY|Z<PX|YZHPX>a/EY\Z<pX\YZHPX|Z>a as
given above in the proof of (11), which gives

IN(X;Y|Z) = 25 1og Bz (By 2 (px |y z]px12)a)®. (22)

From this it follows that I219(X;Y|0) = I,(X;Y), proving
that 1219 is consistent.

Finally, definitions (vi) and (vii) are neither closed-form
nor consistent; for when Z = 0, the definitions reduce

to the Lapidoth-Pfister mutual information: J,(X;Y) =
ming g, Do(Pxy || @xQy) which already does not ad-
mit a closed-form expression, and for which J,(X;Y) <
I,(X;Y) where the inequality is, in general, strict [8]. In
the following we focus on the other definitions which admit
closed-form expressions.

C. Uniform Expansion Property

The uniform expansion property (UEP) is a crucial require-
ment in our subsequent derivations (Theorem 1). It is naturally
satisfied for a-information (Property 7) and it is important that
it is also satisfied for its conditional version.

Using the above closed-form expressions it is easy to check
the UEP when U ~ U(M) is independent of Z, neither
I9%U;Y|Z), nor 1Y (U;Y|Z), nor I2Y°(U;Y|Z) equals
log M — H,(U|Y Z). This is not surprising since in general,
from the different minimizations of «a-divergence,

1,(X;Y|Z) = Y(X;Y|2)
< min{ ;" (X;Y[2), 1°(X;Y|Z)}
< I"(X:Y|Z)

(23)

where inequalities are, in general, strict. Hence the only case
where the UEP (which is crucial in our subsequent derivations)
holds is for the definition (iii) proposed in this paper.

D. Data Processing Inequality

Finally, since definitions (o) and (i) are inconsistent with
19°(X;Y10) = 1%V X;Y|0) = D,(Pxy|[PxPy), they do
not even satisfy data processing inequalities for a uncondi-
tional Markov chain. Therefore, the only remaining candidate
for DPI is definition (ii).

Property 12 (DPI for I0*°(X; Y |2)). If W —X ~Y —Z forms
a conditional Markov chain given T, then I0*°(X;Y|T) >
19 (W Z|T).

Proof. We mirror the proof of Property 8. Let Pxyr —

Px zrixyr| — Pxzr — |Pwzrixzr| — Pwzr.
By the conditional Markov condition, we have

Pxzrixyr = PxrxrtPzixyr = PxrxrPzyvr
where  Px rxr is the identity operator; similarly
Py zrix,zr = PwixzrPzrizr = Pwix P77 27

Thus if QY\T — PZ\Y,T — QZ|T’ we find PX\TQY|TPT —

Px zrixyr| = PxrQzrPr — —
w|T®@zTPr. By the data processing inequality for a-
divergence (Property 2), Du(Pxyr|PxrQvirPr) >

Do(Pw,z,r|PwirQzirPr) > Io(W;Z|T). Minimizing
over Qy 7 gives the announced DPL O

Table I summarizes the comparison between properties of
(0)—(vii).
V. APPLICATION TO SIDE-CHANNEL ANALYSIS
A. Theoretical Derivation

We follow the framework and notations from [2], [3]
and [7]. Let K be a secret key and T be a plain text known



TABLE I
COMPARISON OF SOME PROPERTIES FOR THE VARIOUS DEFINITIONS.

Definition Ref. Closed-form  Consistency UEP  DPI
0 [15] yes no no no
i [5] yes no no no
ii,iv [15] yes yes no yes
iii,v (this paper) yes yes yes yes

vi,vii — no no

to the attacker. During cryptographic processing, X is leaked
from the implementation and measured as a “trace” Y by the
attacker at the output of some noisy measurement channel.
The secret key K can take M equiprobable values and is
evidently independent of the text 7. The leakage function
X = f(K,T) is unknown, but deterministic. The attacker
then exploits his knowledge of 7" and Y to estimate the secret
K and we let Py = P(K = K) be the probability of success.
The communication channel model is depicted in Fig. 1.

K X Y K
— Leakage Channel Attack |—

T [ T
Fig. 1. Side-channel seen as a communication channel.

One might think at first glance that this model is similar
to a wiretap channel model [9] where K would play the
role of the “message” and the leakage that of an (unknown)
encoder. However, in total contrast to the wire-tap model,
here K should always be kept as secret and is never to
be transmitted reliably to any destination (there is no le-
gitimate receiver). The actual message (plain or cyphertext
T) is assumed known to the eavesdropper, and X is not
an encoded version of it but just some information leaked
when the device executing cryptographic operations (power
consumption, electromagnetic leaks, etc.).

Theorem 1. One has the following upper bound on the
probability of success Py:

1
Ioz(X7Y|T) > da(PGHM) (24)

Proof. The chain K — X — Y is Markov given T by as-
sumption but since X = f(K,T), the chain X — K — Y
is also Markov given T'. Therefore, by the conditional DPI
(Property 11), I,(X,Y|T) = I,(K,Y|T) (inequalities in both
directions). Now since K — Y — K is also Markov given T,
we have I,(K;Y|T) > I,(K; K|T). Since K is equiprobable
independent of T', by the UEP (Property 10), I,(K; K |T) =
log M —Ho(K|K,T) >log M — Ho(K|K) = I,(K; K). Fi-
nally, using Lemma 1, I,(K; K) > do(Ps(K|Y)||Ps(K)) =
do(Ps | 4;), which proves (24). O

Remark 4. From (14), d,(p, q) is increasing in p when p > q.
Hence (24) gives an upper bound on P (which is obviously
> 1/M since P, = 1/M corresponds to a blind guess when
the attacker does not know Y).

B. Numerical Simulations

We consider an implementation of the AES with a large
number ¢ of measurement traces. Here M = 256 and the
most commonly used leakage model is

K:wH(S(E@K))—'_NZ (i:1727"'7Q) (25)
where wy denotes the Hamming weight, S denotes a S-box
permutation and N; are i.i.d ~ N(0,0?). Letting X = (X;);,
Y = (Y;), T = (T});, we can compute [,(X,Y|T) =
I,(K,Y|T) using Monte-Carlo simulation similarly as in [2].

The numerical results on the success probability upper
bounds for o = 1/2, 1, and 2. are shown in Fig. 2, which
compares them to the average performance of the optimal ML
attack (with error bars). Since I, (X, Y|T) increases with g,
these in turn allows us to derive lower bounds on the number
of traces gmin which are needed to achieve a given success
rate PP;. This is illustrated in Fig. 3.

1.0
0.8
Q’
Q 4 i i
E 0.6 / —— 02=1.00
@ Y 0% = 10.00
Coa o
o ; ;
" B8 Bounds by I4(X; Y|T) with a=2.00
0.2 --- Bounds by /(X; Y|T)
V=¥ Bounds by I4(X; Y|T) with a=0.50
mmm ML attacks
0.0 ¢

0 20 40 60 80 100 120 140 160 180
Number of traces: g

200

Fig. 2. Comparison of upper bounds on success rate Ps given a-information
I,(X,Y|T) for different values of «, for a Hamming weight leakage model
in an AES-256 implementation.

1201 —— Predicted by I4(X; Y|T) with @=0.50 §
< —=— Predicted by /o(X; Y|T) with a=2.00 /
S 100 )

9 —< Predicted by /(X; Y|T) % g
N | —e— ML attacks

o 80 —— —

o i

€ 601 7
)

g .o "
= 401

<

§ s

< 209

0= i i i i i i
0.251.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00
Noise level: g2

Fig. 3. Comparison of lower bounds on the number of traces gmin required
to reach Ps > 95% success rate.

It is quite remarkable to see that the case a = 2, corre-
sponding to a collision entropy H,(K|K), gives a very sharp
bound in our setting, which improves the results of [2], [3]
for a = 1 very much.
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