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Abstract—We use linear programming (LP) to derive upper
and lower bounds on the “kissing number” Ad of any q-ary linear
code C with distance distribution frequencies Ai, in terms of the
given parameters [n, k, d]. In particular, a polynomial method
gives explicit analytic bounds in a certain range of parameters,
which are sharp for some low-rate codes like the first-order
Reed-Muller codes. The general LP bounds are more suited
to numerical estimates. Besides the classical estimation of the
probability of decoding error and of undetected error, we outline
recent applications in hardware protection against side-channel
attacks using code-based masking countermeasures, where the
protection is all the more efficient as the kissing number is low.

I. INTRODUCTION

The kissing number Ad of a linear code is the number of
nonzero codewords of minimum weight d. This fundamental
invariant is the leading term in the well-known Bhattacharyya
upper bound on the probability of decoding error on a binary
symmetric channel BSC(p) [1, § 6.8]

Pde ≤
n∑

i=d

Aiγ
i ∼ Adγ

d

as p→ 0, where γ = 2
√
p(1− p). It is also the leading term

in the probability of undetected error [2, Chap. 1]

Pue =

n∑
i=d

Aip
i(1− p)n−i ∼ Adp

d(1− p)n−d

as p → 0. We are also motivated by a recent application to
code-based masking as explained in the next section.

For a given minimum distance d, the kissing number can
vary significantly as shown in Fig. 2. Therefore, the problem
we consider is given the length, size, and minimum distance
of a code, how to bound the kissing number above and below.

Building on MacWilliams formula of q-ary codes for Ham-
ming weight enumerators [2, Chap. 5, Eq. (47)], we solve
this problem by linear programming. This approach can be
exploited numerically, using the linear programming solver
of [4], or analytically via the polynomial method of [2, Chap.
17, Th. 20]. As shown in Tables I and II, for binary codes,
the numerical method is more precise, while the polynomial
method is useful to create insightful bounds with an explicit
analytical expression.

The more general problem of bounding arbitrary weight fre-
quencies is studied using similar techniques in [5]. However,
the results in [5] are mostly asymptotic: it gives non-explicit

asymptotic bounds on all weight frequencies. In Ashikhmin’s
work [11], he investigated the existence of codes whose kissing
number satisfying an asymptotic lower bound. In the present
paper we have strived to derive explicitly possibility bounds
for any q-ary linear codes with given parameters [n, k, d].

The material is arranged as follows. Section II motivates
our study in terms of code-based masking. Section III collects
the notions and notations needed for the rest of the paper.
Section IV is devoted to the linear programming bounds and
Section V to the polynomial method. Section VI applies the
results to code-based masking. Section VII concludes the
article and presents some open problems.

II. MOTIVATION

In the field of embedded cryptography, one attack strategy
consists in the measurement and subsequent analysis of so-
called side-channel emanations. In this kind of attack, the at-
tacker aims at correlating measurements with internal sensitive
values which depend on the secret key.

In order to mitigate this threat, the designer can implement
countermeasures, such as random masking of sensitive values.
One formalization of this is referred to as “code-based mask-
ing”: the sensitive variable is encoded and added to a random
mask which lives in a complementary set.

Several papers study cases where the sensitive data and the
random mask encodings are linear. It can then be proved that
the impact of the countermeasure depends on two properties
of the dual of the masking code: its minimum distance d and
its kissing number Ad [6].

Fig. 1 shows the impact of the kissing number on the
security level in four cases of code-based masking, as mea-
sured by mutual information between side-channel leakage
and the sensitive variables. It can be shown [6, Theorem 4]
that the mutual information is asymptotically proportional to
the code kissing number for large noise variance σ2. From
the defender’s viewpoint, for a given minimum distance,
the random masking is all the more secure as the kissing
number is small. By contrast, from the attacker’s viewpoint,
the countermeasure is all the more breakable as the kissing
number is large.

III. BACKGROUND

Let C be a linear code over finite field GF (q), with length
n, size M = qk for some integer k, and minimal distance d.
q can be any prime power.
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Fig. 1. The impact of the kissing number on information leakage [6].

We recall several known definitions on linear codes.
Definition 1 (Hamming Weight [2, Chap 1, §3]): The
Hamming weight, or simply the weight, of a vector x =
(x1, · · · , xn) is the number of nonzero xi. It is denoted as
wH(x).
Definition 2 (Weight Distribution [2, Chap 2, §1]): If C is
an (n,M, d) code, let Ai be the number of codewords of
Hamming weight i: Ai = |{x ∈ C | wH(x) = i}|. The
sequence A0, A1, . . . An is called the weight distribution of C.
Definition 3 (Dual Weight Distribution [2, Chap 5, §2]): If C
is an [n, k, d] linear code, let A′i be the number of codewords
of its dual code of Hamming weight i: A′i = |{y | wH(y) =
i and x · y = 0 ∀x ∈ C}|. The sequence A′0, A

′
1, . . . A

′
n is

called the dual weight distribution of C.
By definition, A0 = 1, and

qk = 1 +Ad +

n∑
j=d+1

Aj . (1)

Definition 4 (Krawtchouk Polynomial [2, Chap 5, §7]):
For any prime power q and positive integer n, define the
Krawtchouk polynomial

Pk(x;n) = Pk(x) =

k∑
j=0

(−1)j(q − 1)k−j
(
x

j

)(
n− x
k − j

)
(2)

where k = 0, 1, . . . , n.
See [2, Chap 5, §7] for background on these polynomials, and
[2, Chap 17, §4] for their use in the context of LP bounds.

For linear codes over GF (q), by MacWilliams formula for

q-ary codes [2, Chap. 5, Eq. (47)] we have qk
n∑

i=0

A′ix
n−iyi =

n∑
i=0

Ai(x+ (q − 1)y)n−i(x− y)i, which means

qkA′i =

n∑
j=0

AjPi(j). (3)

for all i = 0, 1, . . . , n.

IV. LINEAR PROGRAMMING BOUNDS

To implement linear programming, we need the following
theorem:
Theorem 1 (Lower Bound on the Kissing Number): If C is an
[n, k, d] q-ary code then Ad ≥ qk− 1−bLc, where L denotes

the maximum of
n∑

j=d+1

Aj subject to the 2n− d constraints

−Pi(0)− (qk − 1)Pi(d) ≤
n∑

j=d+1

Aj(Pi(j)− Pi(d)) (4)

for i = 1, 2, . . . , n, and Aj ≥ 0 for j = d+ 1, d+ 2, · · · , n.
Proof: By definition of A′i, we have A′i ≥ 0 for

i = 1, 2, . . . , n which, from (3), reads Pi(0) + AdPi(d) +
n∑

j=d+1

AjPi(j) ≥ 0. Substituting Ad = qk − 1 −
n∑

j=d+1

Aj

gives (4). The Theorem is proved by using (1) again.
We have a similar result for upper bounds.

Theorem 2 (Upper Bound on the Kissing Number): If C
is an [n, k, d] q-ary code then Ad ≤ qk − 1 − dSe where S

denotes the minimum of
n∑

j=d+1

Aj under the same constraints

as above.
Proof: The proof is similar as Theorem 1, so it is omitted.

Consider the n inequality constraints (Eq.(4))

−Pi(0)− (qk − 1)Pi(d) ≤
n∑

j=d+1

Aj(Pi(j)− Pi(d)).

for i = 1, 2, . . . , n, along with the n−d constraints Aj ≥ 0 for
j = d+1, d+2, · · · , n. In this mathematical program, the Aj’s
are considered as rational variables if linear programming is
used, or integral variables if integer programming is intended.
Both approaches can be tried in Magma [4].

The calculation result of the linear programming method is
presented in Fig. 2 (on the next page). Here we focus on binary
codes, and take different rates R = k

n as different examples
(R ≈ 1

2 and R ≈ 1
3 ), with d being the best known for given

parameters [n, k]. The LP bounds are represented for n ranging
from 3 to 16. We omit the cases when k = 1 because they are
trivial situations with only two codewords. For some choices
[3, 2, 2], [6, 3, 3], [7, 4, 3], [8, 4, 4], [5, 2, 3], [6, 2, 4], [15, 5, 7]
and [16, 5, 8], the lower and upper bounds agree and the kissing
number is necessarily unique.

However, in general, the lower and upper bounds do not
agree, and it is possible to find actual codes with different
kissing numbers between those bounds, as represented in light
blue color in Fig. 2. The research has been carried out by
randomly selecting linear codes of parameters [n, k, d] and
the range displayed in blue correspond to actually discovered
codes amongst the ones we explored. Our search could not
be exhaustive so that there might exist codes with lower or
higher kissing numbers. Some exceptions are when:
• [n, k, d] = [8, 4, 4] and [16, 8, 5], as those are unique

codes (extended Hamming code [2] and shortened QR
code [2]). The uniqueness of the latter is proven in [9].
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Fig. 2. Linear programming bounds on the kissing number for R ≈ 1/2 (left) and R ≈ 1/3 (right). Bounds are tight for n = 3, 4, 5, 6, 7, 8, 9 (left) and
n = 5, 6, 7, 8, 9, 15, 16 (right).

• [n, k, d] ∈ {[3, 2, 2], [6, 3, 3], [7, 4, 3], [5, 2, 3], [6, 2, 4], [11,
4, 5], [12, 4, 6], [15, 5, 7], [16, 5, 8]}, as the room between
lower and upper bounds is limited.

We also superimposed in Fig. 2 the special case of Magma Best
Known Linear Code (BKLC). The function BKLC(n,d) returns
a code with the largest known dimension, for a given length
and minimum distance, consistently with Grassl database [8],
which favors codes obtained by some algebraic construction.
On several occasions, especially for rate 1/2 codes, the kissing
number of BKLC is relatively high, hence Magma is not
adapted to applications requiring a small kissing number.

V. POLYNOMIAL METHOD

The following identity is a polynomial way of expressing
the duality of LP.
Lemma 1 (Polynomial Method [7, Eq.(18)]): Let β(x) ∈ Q[x]
denote a polynomial with Krawtchouk expansion

β(x) =

n∑
j=0

βjPj(x).

The following identity holds
n∑

i=0

β(i)Ai = qk
n∑

j=0

βjA
′
j . (5)

Proof: Immediate by (3), upon swapping the order of
summation.

A. Lower Bounds

Using Lemma 1 we have the following theorem. This
theorem can also be obtained by setting appropriate parameters
in [5, Thm 1].
Theorem 3 (Lower Bound [5]): Let β(x) ∈ Q[x] satisfying

βj ≥ 0, ∀j = 0, 1, . . . , n, (6)
β(x) ≤ 0, ∀x ∈ (d, n], (7)
β(d) > 0, (8)
qkβ0 > β(0). (9)

Then we have the lower bound

Ad ≥
qkβ0 − β(0)

β(d)
.

Proof: By Lemma 1 we have

β(0) +Adβ(d) +

n∑
i=d+1

β(i)Ai ≥ qkβ0A′0 = qkβ0,

implying
β(0) +Adβ(d) ≥ qkβ0.

The last two inequalities come from the assumptions on β(x).

The main result of this paragraph are the following corol-
laries. First, we consider the case of β linear.
Corollary 1: If d = [(n− 1)(q − 1)/q], then

Ad ≥
qk − nq + n− 1

(n− d)q − n+ 1
.

Proof: Take β(x) = nq − n + 1 − qx, where P1(x) =
(q−1)n−qx. By construction β0 = β1 = 1. Note that β(0) =
nq−n+1, and β(d) = nq−n+1−qd. We see that β(x) ≤ 0,
for x an integer ≥ nq−n+1

q . So in order to satisfied β(x) ≤
0, ∀x ∈ (d, n], we must have d+1 ≥ nq−n+1

q . Combine with
β(d) > 0 we have (q− 1)(n− 1) ≤ qd < (q− 1)(n− 1) + q.
Plugging this data into Theorem 3, the result follows.

Next, we consider the case of β a quadric.
Corollary 2: If qd > nq − n− 2q + 1 then

Ad ≥
qk−2n(n− qn+ qd+ 2q − 1)− nd− n

n− d
.

Proof: Assume β = 1 + β1P1(x) + β2P2(x). Here
P2(x) = q2

2 x
2 + q(q−2nq+2n−2)

2 x + (q − 1)2
(
n
2

)
. To ensure

the negativity of β for x ∈ (d, n] the simplest is to assume
β(d + 1) = β(n) = 0. This gives a system of two equations
in β1, β2. The solution according to Wolfram alpha is

β1 =
nq − 2n− dq − 2q + 2

n(n− qn+ qd+ 2q − 1)
, β2 =

−2

n(n− qn+ qd+ 2q − 1)
.



This yields β(d) = q2(n−d)
n(n−qn+qd+2q−1) , and β(0) =

q2(d+1)
(n−nq+qd+2q−1) . The result follows by Theorem 3.

Example: Consider the binary code C = RM(1,m),
when k = m + 1, and d = 2m−1. It is well-known
that C is a two-weight code with A0 = A2m = 1, and
A2m−1 = 2m+1−2. Since 2d−n+3 > 0, using Corollary 2 we
have Ad ≥ 2m+1 − 2. So RM(1,m) meets the lower bound.

Remark: For binary codes, if n = 2d, Corollary 2 always
works better than Corollary 1. And if n = 2d+1, Corollary 2
works better if and only if 2k−1 ≥ (n− d).

This result can be improved in some cases.
Corollary 3: If C is a binary code and all weights of C lie in
the range [d, n-d], with distance d < n

2 and (n− 2d− 1)2 <
n+ 1, then

Ad ≥
2k−2(n2 − 4nd− 3n) + (2k + 1)d(d+ 1)

(2d− n)
− d− 1.

Proof: Because all weights of C lie in the range [d, n-d],
for a quadratic β, to ensure its negativity on the weights it
is enough to assume β(d + 1) = β(n − d) = 0. This gives
a system of two equations in β1, β2, if we write β = 1 +
β1P1(x)+β2P2(x). The solution according to Wolfram alpha
is

β1 = β2 =
2

n+ 1− (n− 2d− 1)2

This yields β(d) = −4n+8d
n2−4nd−3n+4d2+4d , and β(0) =

4(d2+d−nd−n)
n2−4nd−3n+4d2+4d . The result follows by Theorem 3.

B. Upper Bounds

Like Theorem 3, the following theorem can also be obtained
by setting appropriate parameters in [5, Thm 1].
Theorem 4 (Upper Bound [5]): Let β(x) ∈ Q[x] satisfying

βj ≤ 0, ∀j = 1, . . . , n, (10)
β(x) ≥ 0, ∀x ∈ (d, n], (11)
β(d) > 0, (12)
qkβ0 > β(0). (13)

Then we have the upper bound

Ad ≤
qkβ0 − β(0)

β(d)
.

The proof is analogous to that of Theorem 3 and is omitted.
The main result of this paragraph are the following corol-

laries. First, we consider the case of β linear.
Corollary 4: If n− nq + 1 + qd > 0, then

Ad ≤
qk + nq − n− 1

n− nq + 1 + qd
.

Proof: Take β(x) = n − nq + 1 + qx, where P1(x) =
(q − 1)n − qx. By construction β0 = 1, and β1 = −1. Note
that β(0) = n−nq+1, and β(d) = n−nq+1+ qd. We see
that β(x) > 0, for x an integer > n−nq+1

q . Plugging this data
into Theorem 4, the result follows.

Next, we consider the case of β a quadric.

Corollary 5: If d < (q−1)n+1
q , then

Ad ≤
qk−2n(qn− n− qd+ 1) + n(d− 1)

n− d
.

Proof: Assume β = 1 − β1P1(x) − β2P2(x), with
β1, β2 > 0. To ensure the positivity of β for x ∈ (d, n] the
simplest is to assume β(d − 1) = β(n) = 0. This gives a
system of two equations in β1, β2. The solution according to
Magma [4] is

β1 =
2n+ dq − 2− nq
qn2 − n2 − qdn+ n

, β2 =
2

qn2 − n2 − qdn+ n
.

This yields β(d) = q2(n−d)
qn2−n2−qdn+n , and β(0) = q2(1−d)

qn−n−qd+1 .
The result follows by Theorem 4.

Example: Still consider the binary code C = RM(1,m),
where n = 2m, k = m+1, and d = 2m−1. Using Corollary 5,
we have Ad ≤ 2m+1 − 2. From Corollary 2 we know Ad ≥
2m+1−2. So Ad = 2m+1−2. Because A0 = 1, it proved that
RM(1,m) is a two-weight codes. RM(1,m) is the only code
we know that satisfies the upper bound and the lower bound
at the same time.

This result can be improved in some cases.
Corollary 6: If C is a binary code and all weights of C lie in
the range [d, n-d], with n− 2d > 0 and (n− 2d+ 2)2 > n,
then

Ad ≤
2k−2

(
(n− 2d+ 2)2 − n

)
+ (d− 1)(n+ 1− d)

n+ 1− 2d

Proof: For a quadratic β, of concavity ∩, to ensure its
positivity on the weights it is enough to assume β(d − 1) =
β(n− d+ 1) = 0.

This gives a system of two equations in β1, β2, if we write
β = 1 − β1P1(x) − β2P2(x). The solution according to
Magma [4] is

β1 = 0, β2 =
2

(n− 2d+ 2)2 − n

This yields β(0) = 4(d−1)(d−n−1)
(n−2d+2)2−n and β(d) = 4(1−2d+n)

(n−2d+2)2−n .
The result follows then by Theorem 4.

Table I,II contain the results of binary codes.
Table I shows that the LP bound is more precise in general

than the polynomial method. The interest of the latter resides
in producing intuitive bounds with a closed formula.

Table II shows the LP bounds for n ranging from 17 to 32.
It is a supplement to the results in Fig. 2. Because it is difficult
to calculate all possible values of Ad, we did not compare the
bounds with the range of Ad as Fig. 2. As we can see from
Tab. II, for some values [22, 11, 7], [23, 12, 7] and [24, 12, 8],
the lower and upper bounds agree, which means the LP bounds
must be tight at these values. It also shows that when n is large,
the lower bounds for some values may be trivial (smaller than
1), while the upper bounds are much smaller than the trivial
bounds (Ad ≤ 2k − 1).



TABLE I
UPPER/LOWER BOUNDS FOR SOME LINEAR CODES

Binary code Lower bound of Ad Upper bound of Ad

[n, k, d] Poly. method LP bound LP bound Poly. method

[8, 3, 4] 2 3 7 10

[8, 4, 4] 14 14 14 14

[9, 3, 4] −2 1 7 12

[9, 4, 4] 6 6 14 19

[10, 3, 5] 0 2 4 12

[10, 4, 4] −2 12 15 25

[11, 4, 5] 4 5 7 22

[12, 4, 6] 10 11 14 18

[13, 4, 6] 2 4 14 24

[14, 4, 7] 8 8 8 20

[14, 5, 6] 2 7 27 50

[15, 4, 8] 15 15 15 15

[15, 5, 7] 15 15 15 41

[16, 4, 8] 6 7 15 22

[16, 5, 8] 30 30 30 30

TABLE II
LP BOUNDS FOR SOME LINEAR CODES

Binary codes (R ≈ 1
2

) Binary codes (R ≈ 1
3

)

[n, k, d] lower bound upper bound [n, k, d] lower bound upper bound

[17, 9, 5] 17 50 [17, 6, 7] 12 23

[18, 9, 6] 69 142 [18, 6, 8] 32 50

[19, 10, 5] −14 72 [19, 6, 8] 12 51

[20, 10, 6] 40 209 [20, 7, 8] 29 83

[21, 11, 6] 56 282 [21, 7, 8] 9 83

[22, 11, 7] 176 176 [22, 7, 8] -3 88

[23, 12, 7] 253 253 [23, 8, 8] -2 143

[24, 12, 8] 759 759 [24, 8, 8] -12 163

[25, 13, 6] −23 526 [25, 8, 9] −29 64

[26, 13, 7] −67 295 [26, 9, 9] −43 100

[27, 14, 7] −33 353 [27, 9, 10] 31 247

[28, 14, 8] 295 1138 [28, 9, 10] −4 259

[29, 15, 7] −182 509 [29, 10, 10] −5 396

[30, 15, 8] 105 1724 [30, 10, 11] −14 178

[31, 16, 8] 168 1985 [31, 10, 12] 149 442

[32, 16, 8] −36 2274 [32, 11, 12] 298 639

VI. APPLICATIONS IN CODE-BASED MASKING

Recall from Section II that the kissing number is one of the
two factors that determines the concrete side-channel security
level in the code-based masking [6] because the mutual
information that measures the informativeness of leakage is
proportional to the kissing number. In this respect, Theorem 3
and 4 enable us to bound the security gains induced by the
corresponding code-based masking. In particular, given the
code parameters [n, k, d], these two theorems indicate the best
and the worst cases of codes that can be achieved in practice.

Taking the code [8, 4, 4] in Tab. I as an example, it is
unique and has been proven to be the best case in the code-
based masking with two shares over F24 , given the variance of

Gaussian noise is greater than 1.0 [10]. In this case, both lower
bounds and upper bounds coincide in 14. Another example is
the code [12, 4, 6], which is the optimal choice in three share
cases over F24 [6]. In the latter case, the lower and upper LP
bounds are 11 and 14, respectively, where the BKLC code in
Magma gives Ad = 12. It is worth mentioning that Ad = 12 is
unique for all codes [12, 4, 6] which is verified by exhaustive
code search, although there are several non-equivalent classes.

In general, algebraic codes owing to their large automor-
phism group have a large kissing number. At the opposite,
the application of code-based masking favors codes with low
kissing number, which are less studied and certainly deserve
more attention.

VII. CONCLUSION AND OPEN PROBLEMS

In this article, we have derived novel lower and upper
bounds on the kissing number of linear codes (Corollaries 1
to 6). It would be interesting to extend its applicability to
wider classes of codes by considering polynomials of higher
degrees. In another direction, restricting our attention to some
special classes of codes like the BCH codes for instance could
lead to sharper bounds by addition of new linear constraints.
Besides, the derivation of asymptotic lower bounds on the
kissing number (when n→∞) is interesting to lower bound
the information leakage of code-based masking for very high-
order masking orders.
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