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Abstract—The SoftCast scheme has been proposed as a promis-
ing alternative to traditional video broadcasting systems in
wireless environments. In its current form, SoftCast performs
image decoding at the receiver side by using a Linear Least
Square Error (LLSE) estimator. Such approach maximizes the
reconstructed quality in terms of Peak Signal-to-Noise Ratio
(PSNR). However, we show that the LLSE induces an annoying
blur effect at low Channel Signal-to-Noise Ratio (CSNR) quality.
To cancel this artifact, we propose to replace the LLSE estimator
by the Zero-Forcing (ZF) one. In order to better understand the
perceived quality offered by these two estimators, a mathematical
characterization as well as an objective and subjective studies
are performed. Results show that the gains brought by the
LLSE estimator, in terms of PSNR and Structural SIMiliraty
(SSIM), are limited and quickly tend to null value as the CSNR
increases. However, higher gains are obtained by the ZF estimator
when considering the recent Video Multi-method Assessment
Fusion (VMAF) metric proposed by Netflix, w hich evaluates
the perceptual video quality. This result is confirmed b y the
subjective assessment.

Index Terms—SoftCast, Linear Video Coding, Quality assess-
ment, Visual artifacts, Joint Source-Channel Coding

I. INTRODUCTION

SoftCast and recent extensions referred as Linear Video
Coding and Transmission (LVCT) systems [1]-[6] have been
recently proposed as a promising alternative to H.264/AVC
or HEVC-based [7] wireless video transmission schemes.
Compared to these schemes which experience the so-called
cliff-effect [8] referring to a sudden and abrupt loss of quality,
the received video quality obtained with LVCT schemes such
as SoftCast [1], WaveCast [2], etc. scales linearly with the
Channel Signal-to-Noise Ratio (CSNR) [3]. Particularly useful
in broadcast and mobile applications, they provide quality of
service even in the presence of suddenly degraded channel
quality as shown in Fig. 1. This property comes from the
linear processing applied to the pixels, avoiding quantization
or entropy coding, and the transmission carried out without
channel coding.

While LVCT avoid annoying freezes and glitches of the
video, they reconstruct videos presenting distortions referred

(a) H.264/AVC (b) SoftCast

Fig. 1: Example from [1] of visual quality comparison be-
tween SoftCast and H.264/AVC video coding and transmission
scheme at CSNR=9dB. The complete videos are available at
http://people.csail.mit.edu/szym/softcast/videos.html.

as snow effect. This artifact is illustrated with the SoftCast
scheme in Fig. 2. It is strongly visible for low CSNR values
(< 10dB) but becomes almost invisible for higher values.

In order to reduce this distortion, traditional LCVT ap-
proaches use a LLSE estimator at the receiver, which max-
imizes the reconstructed PSNR. However, we show in this
paper that although the PSNR obtained is higher, it modifies
at low CSNR, the edges’ sharpness of the transmitted video.
This modification introduces a blur effect that can be annoying
for the user as shown in Fig. 2a. In contrast, the edges remain
sharp when using the ZF estimator (Fig. 2b), however the price
to be paid is a stronger snow effect over the video.

To this end, this paper proposes to investigate the trade-
off between blur and snow effects and therefore to better
understand the quality of experience [9] offered by these
two estimators in a SoftCast context. First, the estimators are
characterized mathematically. Then, an objective evaluation of
the received quality offered by the two estimators is performed
by considering the metrics suggested by [10] as they offer the
best correlation with human judgment. Finally, a subjective
evaluation based on a forced-choice PairWise Comparison
(PWC) and statistical analysis is proposed.

The paper is organized as follows: Section II introduces and
reviews the SoftCast scheme. In Section III, the estimators
are characterized mathematically. The performance of the two
linear estimators is then assessed through objective assessment



(c) LLSE: PSNR=24.63dB (d) ZF: PSNR=23.24dB

Fig. 2: Illustration of the artifacts generated by SoftCast on the
Lena image transmitted without compression in a channel with
CSNR=0dB. (a) Reconstructed images with SoftCast(LLSE)
depicting snow and blur effects. (b) Reconstructed image with
SoftCast(ZF) depicting snow effect. (c),(d) Resulting LLSE
and ZF error images, respectively.

in Section IV. The subjective quality assessment is finally
presented in Section V. Conclusions and discussions are given
in Section VI.

In what follows and for ease of reading, we denote the
SoftCast with LLSE estimator and the SoftCast with ZF
estimator: SoftCast(LLSE) and SoftCast(ZF), respectively.

II. SOFTCAST SCHEME REVIEW

The basic scheme of SoftCast [1] is introduced in Fig. 3.
SoftCast first takes a Group of Pictures (GoP) and uses a 3D
full-frame DCT as a decorrelation transform. The DCT frames
are divided into N small rectangular blocks of transformed
coefficients called chunks. The data compression can be done
in SoftCast after the decorrelation transform. Specifically,
when the available channel bandwidth for the transmission
is smaller than the signal bandwidth, SoftCast discards the
chunks with less energy ie, only M < N chunks may
be transmitted. This is generally the case especially for the
transmission of High Definition (HD) content as mentioned in
[6]. At the receiver side, these discarded chunks are replaced
by null values [1]. To represent the bandwidth limitation, one
may use the Compression Ratio (CR) [6] defined as:

CR = M/N. (1)

The third block at the transmitter consists of a chunk scaling
operation to match the transmission power constraints. The
scaling coefficients denoted g;,¢ = 1,2, --- , M are chosen so
as to distribute the available power P to all the chunks in a
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Fig. 3: Block diagram of the SoftCast scheme.
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way that minimizes the Mean Square Error (MSE) between
transmitted and decoded chunks. This is a typical Lagrangian
problem and the solution is given by:

gi=c- A )

where ¢ = and )\; is the energy of the i*" chunk.
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A Hadamard transform is then applied to the scaled chunks
to provide packet loss resilience. This process transforms the
chunks into slices. Each slice is a linear combination of all
scaled-chunks. Finally, the slices are transmitted in a pseudo-
analog manner using Raw-OFDM [1]. Classical channel cod-
ing and modulation are skipped.

In parallel, the SoftCast transmitter sends an amount of
data referred as metadata. These data consist of the mean and
the variance of each transmitted chunk as well as a bitmap,
indicating the positions of the discarded chunks in the GoP.
Metadata are strongly protected and transmitted in a robust
way [1] to ensure correct delivery and decoding.

At the receiver side, a Linear Least Square Error (LLSE)
decoder is used to estimate the values of the chunks based
on channel noise estimation. Using the metadata, the decoded
values are then reassembled to form DCT-frames, which are
then passed through an inverse 3D-DCT process.

III. CHARACTERIZATION OF THE TWO ESTIMATORS

In this section, we analyze the behaviors of the two
estimators. For ease of understanding and without loss of
generality, we consider the transmission of images i.e., only
the spatial DCT 1is considered for this analysis. Furthermore,
the Hadamard transform is not considered in the following
analysis as it does not change either the transmission power
or channel noise characteristics [3].

At the transmitter side, we recall that SoftCast first scales
the magnitude of the chunks to offer a better protection against

transmission noise:
Yi = Gi * Tj. 3)

where x; and y; represent the it

respectively.
The transmitted signal is then corrupted by Additive White
Gaussian Noise (AWGN):

chunk and scaled chunk,

Ui = Yi+tn 4)
= G T+

where n; is the channel noise defined as N (0, 02).



When the ZF estimator is used, the received chunks are
simply estimated by performing the inverse scaling operation:

2:(ZF) , )

n;
= x;+ —.
i

After undergoing an inverse DCT process, the reconstructed
image I,.. using the ZF estimator is the sum of the original
image I,.; and B; the resulting noise after inverse DCT
process:

e = DCT™Y&:(ZP)}, (6)
= DCT '{z;} +DCT {1},
= I, + Bi. ”
In the case of the LLSE estimator, the chunks are estimated
by leveraging channel noise estimation [1], [11]:

. GiNi "
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By substituting the values of g; according to (2), we get:

1 .
——— - Li(ZP). )
As observed in (8), the estimated DCT coefficients obtained
by the LLSE estimator are attenuated version of the ones
obtained by the ZF estimator:

4:(LLSE) =

o When considering high CSNR values, i.e., low o2 value,

the LLSE and ZF estimator perform similar.

¢ When considering low CSNR values, we observe that the

lower the energy \; of the chunk is, the higher the attenu-
ation is. It is well known that high frequencies represent
the edges of an image, and that for still images, these
high frequencies carry low energy after DCT process.
Therefore, although the LLSE estimator allows to reduce
the MSE i.e., increase the reconstructed PSNR, it acts
as a filter that attenuates more strongly the edges of the
images. The decoded images in Fig. 2 clearly illustrates
this phenomenon, where using the LLSE estimator allows
to improve PSNR value of about 1.4dB. However, the
perceived quality may not be as good as with the ZF
estimator since the edges of the image obtained with the
LLSE estimator are clearly modified as shown in the error
image.

Finally, we note that to be able to perform the decoding pro-
cess with the SoftCast(LLSE) scheme, the receiver needs an
additional information, which is an estimate of the channel’s
noise (02) as shown in (7). This data may not be available
for some applications. In that case, only the ZF estimator
can be used since it does not require any channel quality
information to decode the video. Therefore, a study needs
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Fig. 4: Resulting Spatial and Temporal Information (SI, TI)
indexes for the considered video sequences.

to be conducted to compare the two estimators and to better
understand the quality of experience offered by themselves.
In the following, we first evaluate their performance based on
well-known objective metrics.

IV. OBJECTIVE EVALUATION

To assess the performance of the two estimators, we select
and retain the four following objective metrics: PSNR, SSIM,
MS-SSIM and the recent VMAF [12] metric proposed by
Netflix, which is known to evaluate the perceptual video
quality. The metrics are chosen due to their high correlation
with the subjective scores obtained in our recent study [10].

Configuration: Three GoP-sizes of 8, 16 and 32 frames and
four CRs ranging from 0.25 (75% of discarded chunks) to
1 (no compression applied) by 0.25 step are considered as
in [6]. Transmissions through AWGN channels are simulated
and represented by a CSNR value varying from 0 to 27dB
by 3dB step. Each frame is split into 192 chunks as in [10].
As classically done in the literature [1]-[6] and as it does not
influence the perception of the blur, only the luminance is
considered in this paper.

Material: The objective evaluation is performed considering
different video samples, each with a duration of 5 seconds.
Their spatiotemporal complexity is computed and displayed in
Fig. 4 using a modified version of the Spatial and Temporal
Information (SI, TI) indexes proposed by the ITU-R [13]:

SI = meaniime{ stdspace[Sobel (F (i, j))}, 9)
TI = meantime{Stdspace[Fk(iaj) - Fk—l(%])]} (10)

where Fy(i,j) represents the k' frame, (i,j) the corre-
sponding spatial coordinates and Sobel() the Sobel filtering
operation, respectively.

Note that, in the original definition of the SI,TI indexes,
the highest value along the time axis is selected instead of
computing the mean value. We choose to average the results
over the sequence in order to better characterize the video
complexity. Indeed, when using the original definition of the
TI index for a video with relative slow motions that contains
cut(s), the final TI value will be high due to the scene change,
even if the video contains relative slow motions.



PSNR(dB) MS-SSIM SSIM VMAF
25 0.0251 0 = 88—
—e—BasketBallDrive —e—BasketBallDrive —e—BasketBallDrive / - —e—BasketBallDrive
Cactus Cactus Cactus Cactus
—e—CrowdRun —e—CrowdRun —e—CrowdRun 5 7 —e—CrowdRun
—e—ParkJoy —% —e—ParkJoy - —o—ParkJoy c —e—ParkJoy
v ParkScene 0. ParkScene ‘® 0. ParkScene =S ParkScene
1l —e—Tractor = —e—Tractor g —e—Tractor w -10 —e—Tractor
M —e—Snow Mnt 8 —e—Snow Mnt @ ——Snow Mnt <§( —e—Snow Mnt
@] —o—West 2] —o—West 2} —o—West s —o—West
BQTerrace = BQTerrace BQTerrace 15 BQTerrace
Touchdown Touchdown Touchdown Touchdown
& — L NP >— L N 20
0 5 10 15 20 25 30 15 20 25 30 15 20 25 30 0 5 10 15 20 25 30
CSNR(dB) CSNR(dB) CSNR(dB) CSNR(dB)
(@) (®) (©) (@
25 0.1 0.06 0 ot - e = Or—0—
—o—BasketBallDrive * —o—BasketBallDrive —o—BasketBallDrive o T o ;g; a‘;—* BasketBallDrive
5 Cactus 0,080 Cactus 0.054" Cactus 5 > ﬁ; gis Cactus
- ' —o—CrowdRun b3 —o—CrowdRun L ‘\ —o—CrowdRun y 27 - v —0—CrowdRun
wn © i'\ —o—ParkJoy £ 3 —o—ParkJoy < 0.04%y | —o—ParkJoy c-10 s 8., —o—ParkJoy
(\l. 215 i\\ ParkScene ©0.06 ParkScene s Y\ » ParkScene S ‘% i, ParkScene
S 8 AW —o-Tractor % —o-Tractor = 0.08F —o—Tractor w 15§, B0 —o—Tractor
I < PR @ =0=Snow Mnt D 004 —o—Snow Mnt ] N ¥ —o—Snow Mnt % 7 , =0—Snow Mnt
m 5) \o\\\\ —o—West g . —o—West D 5ok @ W —o—West > 5 7 —o—West
@] o NS BQTerrace BQTerrace A BQTerrace 4 BQTerrace
0.5 o §‘ Touchdown 0.02 Touchdown Touchdown o5/ Touchdown
A A 4
B=y L
0 B e g | 0 fecge—gip——o-—o | > o | 30
0 5 10 15 20 25 30 0 5 10 15 20 25 30 20 25 30 0 5 10 15 20 25 30
CSNR(dB) CSNR(dB) CSNR(dB) CSNR(dB)

(e (6] (8) (h)
Fig. 5: Average objective quality gains of the LLSE estimator over the ZF one for the considered videos. (a),(b),(c),(d): CR=1.
(e),(f),(g),(h): CR=0.25. (a),(e): PSNR(dB). (b),(f): MS-SSIM. (c),(g): SSIM. (d),(h): VMAF.

Methodology: To assess the performance of each estimator,
we define the quality gain as the difference between the
SoftCast(LLSE) and SoftCast(ZF) scores (the former minus
the latter). For ease of reading, only the results for the
green selected sequences in Fig. 4 are shown in this paper.
Furthermore, due to space limitations, we only show the results
for two CRs (0.25 and 1) and one GoP-size of 32 frames.
Similar quality gains are obtained for the other video content
displayed in Fig. 4 and when considering different GoP-sizes
(8 and 16) as well as different CR (0.5 and 0.75).

Results displayed in Fig. 5 show that:

o Regardless of the considered objective metric and the
configuration (GoP-size, available bandwidth, transmitted
video content), the quality gain quickly decreases as
the CSNR increases and becomes almost null when
CSNR>10dB. This is perfectly explained in Section III,
since the two estimators perform similar for high CSNR
values;

o For low CSNR values (< 10dB), as already known and
regardless of the transmitted video content, the LLSE
estimator outperforms the ZF one in terms of PSNR.
However, this gain is limited and remains low as shown
in Fig 5a and Fig Se. Furthermore, the quality gain is less
pronounced when considering the SSIM and MS-SSIM
metrics with a maximum quality gain of only 0.08;

o However, as shown in Fig. 5d and Fig. 5h, regardless
of the considered video, SoftCast(ZF) performs better
when considering the VMAF metric with significant
quality gain at low CSNR (recall that the VMAF metric
ranges between [0-100]). This is due to the fact the
final VMAF score is partially generated using the Detail
Loss Metric (DLM) [14]. The DLM measures the loss
of details affecting the content visibility. In our case and

as illustrated in Fig. 2, the reconstructed videos with the
SoftCast(ZF) are less affected by the loss of details than
the SoftCast(LLSE) ones.

V. SUBJECTIVE EVALUATION

In addition to objective assessment, we also provide a
subjective study described hereafter.

Environment: The test was performed respecting the
BT.500-14 recommendation [13] provided by the ITU-R.
Specifically, it took place in a dark and quiet room, with a
measured ambiant luminance of 2 lux and color temperature
of 6500K. The screen used for display had a 1920 x 1080
resolution and a height H of 40cm. Users were placed at a
fixed distance from the screen which equals three times the
height of the display.

Observers: Thirty observers including 21 men and 9 women
took part in the experiment. The group’s average age is 33
varying between 25 and 62. All of the observers have normal
or corrected to normal visual acuity.

Test methodology: The pairwise comparison with forced
choice was used in this study. Specifically, the reconstructed
videos for each estimator were presented to the user in a side-
by-side fashion. Each video was cropped using a window
of 955 x 1980 pixels so as to separate the video with a
black border of 10 pixels. Due to the limited duration of
the videos (5 seconds), each pair was presented two times
to the users before asking them to select the video that they
preferred (left or right). Users were first familiarized with the
procedure and environment through a training test. Training
videos, i.e., BQTerrace and Touchdown are not considered in
the results. Each participant was asked to evaluate 88 stimuli
including four dummies (scores not saved) at the beginning
of the test. These dummies were replayed at the end of the
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(e) ParkScene, crop (185:1139) (f) Snow Mountain, crop (966:1920)

test. The stimuli were carefully randomly presented to each
user by making sure that each content does not appear twice
consecutively.

Test material: Ten HD 1080p sequences from [15] and [16]
were selected and used in this study to represent different
levels of spatiotemporal complexity. Among the ten sequences,
seven sequences were used in [10]. In addition, three more
content that present different features (text on the videos, rich
textures, etc.) were added. The crop over the videos were
made in order to keep a maximum of information over the
duration of the video. An illustration of the selected videos
and corresponding crops is available in Fig. 6.

In order to satisfy the suggested maximum duration of
a subjective test [13] and based on previous observation
[10], we carefully selected a subset of all generated video
content. Specifically, we selected two CRs of 0.25 and 1 to
study whether or not the compression influences the user’s
preference. Furthermore, among all the GoP-size, we chose the
GoP-size of 32 frames as it usually gives the best reconstructed
video [3]. Finally, more stimuli were considered in the low
CSNR range [0-15dB] since as explained in Section III no-
ticeable difference between SoftCast(ZF) and SoftCast(LLSE)
only appears for such CSNR values.

Statistical analysis: Prior to the data processing step, the
outlier detection mechanism proposed by Mantiuk et al. [17]
was used. The latter is based on the computation of the max-
imum likelihood of each observer with respect to the whole
observers. At the end of this detection mechanism, a score is
assigned to each observer and those obtaining a score close or
above the threshold of 1.5 should be further investigated. In
such case, a visual comparison (plot) should be made between
the responses of this observer and the rest of the group. Note
that the final decision on whether the latter observer should

(g) Tractor, crop (210:1164)

(h) West, crop (55:1009)

Fig. 6: Evolution of the preference probability to select the ZF estimator over the LLSE one as a function of the CSNR.
Sequences: a) BasketBallDrive, b) Cactus, c) CrowdRun, d) ParkJoy, e) ParkScene, f) Snow Mountain g) Tractor, h) West. The
red rectangle on the starting frame of each video represents the crop used for the PWC test.

be considered as an outlier or not is left to the designer of the
test. In order to improve the detection of a potential outlier, we
randomly added six “obvious” comparison stimuli in the test.
By “obvious”, we mean for instance a pair that is composed
of the reconstructed video with the ZF estimator in a bad
channel (0dB) compared to the one reconstructed with the
LLSE estimator in a good channel (15dB). Among the 30
observers, the mechanism of Mantiuk et al. only highlighted
one user that required more attention. After having carefully
checked the results of this observer and based on the results
he provided for the “obvious” comparisons, we concluded that
there was no outlier in the panel.

To analyze the obtained results, we verified if a preference
for one of the estimators could be statistically observed by
using the analysis proposed in [18].

Specifically, for stimulus k, we computed the preference
probability of choosing the ZF estimator over the LLSE one:

WZFk

V )
where wgzp, represents the number of votes in favor of
SoftCast(ZF) for the k" stimulus and V' represents the total
number of observers.

We then define two thresholds or critical regions to sta-
tistically determine whether the ZF estimator outperforms, is
equal or is inferior to the LLSE estimator. We start from the
hypothesis that the two estimators have an equal probability
to be preferred. The preference probability therefore comes
from a Bernoulli process B(V, p) where p = 0.5. By using the
Cumulative Distribution Function (CDF) B(wgzgk, V, p) and
selecting 5% and 95% as the level of significance of the test,
we can determine whether the choice is statistically significant
or not. Since B(19,30,0.5)=0.9506, we consider that if there

(1)

Pzri =



are more than 19 votes for the ZF estimator it offers significant
better quality. Reciprocally, since B(10,30,0.5)=0.0493, we
consider that if there are less than 10 votes for the ZF estimator
it offers lower quality than the LLSE one. These thresholds
are represented in Fig. 6 with dashed blue (é—g = 0.63) and red
lines (% = 0.33). Values on or above the superior line (dashed
blue line) indicate statistically significant preference for the
ZF estimator whereas values on or below the inferior line
(dashed red line) indicate statistically significant preference
for the LLSE estimator.

The resulting database with associated objective metrics as
well as the preference probability for each pair are avail-
able at https://ieee-dataport.org/open-access/perceptual-study-
decoding-process-softcast-wireless-video-broadcast-scheme.

Results in Fig. 6 show that:

o When considering high CSNR values (> 10dB), for most
of the cases and as expected, there is no statistical prefer-
ence since the results lie in between the two dotted lines.
This is in accordance with the mathematical analysis and
the objective study;

o There is no statistical preference for the Snow Mountain
sequence even at low CSNR values. Indeed, when select-
ing the material for the test, we noticed only very small
visual differences between the two estimators;

o Although the West sequence contains a lot of blur due
to the scrolling text, the preference is not statistically
significant. Users mentioned at the end of the test that the
black background where the text scrolls was particularly
noisy with the ZF estimator, therefore influenced their
overall judgment;

o Users also mentioned that the choice was not easy for the
sequences with strong motions such as Cactus;

e On average, the preference for the ZF estimator is
observed at low CSNR. It is especially true for the
Tractor sequence where observers mentioned that the blur
effect was clearly annoying and especially visible on the
tractor’s logo;

VI. CONCLUSION

In this paper, we study the perceived quality considering
two different estimators (LLSE and ZF) for the SoftCast
scheme. To this end, objective and subjective studies are
performed. Based on extensive simulations on video content
with different characteristics (spatiotemporal complexity, text,
textures, etc.), different CR and CSNR values, we show that
the ZF estimator can be a good choice when considering the
perceived quality. The differences between the two estimators
are mainly observed at low CSNR (< 10dB) since for higher
CSNR values, they perform similar. According to the objective
assessment, the gains brought by the LLSE estimator at low
CSNR values are limited when considering the PSNR, SSIM
and MS-SSIM metrics. In contrast, when considering the
VMATF metric higher gains are obtained with the ZF estimator
due to the fact that the edges are kept sharp. At low CSNR
values, the preference for the ZF estimator is also statistically
observed with the subjective comparison for most of the

videos. Indeed, the preference probability not only depends on
the estimator used but also on the spatiotemporal complexity
of the video as well as the content itself since blur may not be
well perceived for videos with strong motions due to temporal
masking effect. Future works may concern the design of a
linear estimator that further reduces the noise while keeping
the edges of the images sharp.
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