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DIFFUSIVE LIMITS OF LIPSCHITZ FUNCTIONALS OF

POISSON MEASURES

E. BESANÇON, L. COUTIN, L. DECREUSEFOND, AND P. MOYAL

Abstract. Continuous Time Markov Chains, Hawkes processes and
many other interesting processes can be described as solution of stochas-
tic differential equations driven by Poisson measures. Previous works,
using the Stein’s method, give the convergence rate of a sequence of
renormalized Poisson measures towards the Brownian motion in sev-
eral distances, constructed on the model of the Kantorovitch-Rubinstein
(or Wasserstein-1) distance. We show that many operations (like time
change, convolution) on continuous functions are Lipschitz continuous
to extend these quantified convergences to diffusive limits of Markov
processes and long-time behavior of Hawkes processes.

1. Introduction

Limit theorems for Continuous-TimeMarkov Chains (CTMC’s) have proven
to be useful tools to approximate the dynamics of the processes under con-
sideration. Fluid approximations can be used to determine ergodicity condi-
tions, a first order approximation of the mean dynamics of the process, or to
analyze the dynamics of discrete-event systems around saturation. Likewise,
diffusion approximations (also called, along the various communities, Func-
tional Central Limit Theorems or invariance principles) usually lead to the
weak approximation of the (properly scaled) difference between the original
CTMC and its fluid limit, to a diffusion process. Such convergence results
allow to assess the speed of convergence to the fluid limit, and thereby, to
gain insights on the behavior of the considered process when the state space
is large, and/or to more easily simulate its paths whenever the dynamics of
the original discrete-event CTMC is too intricate.

The literature regarding weak (fluid or diffusion) approximations of CTMC’s
is vast, and so is the range of their fields of applications: for instance, queue-
ing networks (see e.g. [6, 36, 26, 33] and references therein), biology and
epidemics (e.g. [10, 20, 17] and references therein), physics [12], and so
on. From the mathematical standpoint, we can enumerate at least three
approaches to prove the corresponding convergence theorems. The most
classical one relies on the so-called Dynkin’s Lemma (see e.g. Chapter 7
in [21], or Chapter 7 in [19]), and more generally on the semi-martingale
decomposition of the considered CTMC, together with the usual weak con-
vergence theorems for martingales, to derive the limiting process of the prop-
erly scaled CTMC. An alternative way consists in representing the Markov
process as the sum of time-changed Poisson processes and then to use the

Key words and phrases. Approximation diffusion, Hawkes processes, CTMC, Stein’s
method.
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well-known limit theorems for such processes, see e.g. Chapter 6 in [21]. A
third, alternative way is to represent the CTMC as the solution of a stochas-
tic differential equation (SDE) driven by some independent Poisson random
measures (see e.g. [10]). We mention these different approaches because not
all of them behave nicely for what has to be done here.

As was already mentioned, the diffusion approximation of the CTMC at
hand provides a crucial tool for simulating an approximate behavior of the
system under consideration by a diffusion process. Among a wide variety of
examples and applications, let us set the ideas by considering the classical
case of an infinite server queue of traffic load ρ : it is well-known that the
fluid limit of the process of initial value ρ is constant, and that the limit-
ing behavior of the scaled version of the process is an Ornstein-Uhlenbeck
process (see e.g. Section 6.6 of [36] for an exhaustive survey on the mat-
ter). In such cases, it then becomes of crucial interest to assess the rate of
convergence in such diffusion approximations. This is the main object of
the present work. We present hereafter a unified framework, based on the
third aforementioned approach, namely, on the representation of CTMC’s as
solution of SDE’s driven by Poisson random measures, to derive bounds for
the convergence in the diffusion approximations of a wide class of CTMC’s,
under various mild conditions on the integrand of these Poisson integrals.
By considering a wide range of cases study, from queueing systems to biolog-
ical models and epidemiological processes, we show that these assumptions
are met by many processes that are prevalent in practice. In many cases,
we retrieve existing results concerning the diffusion approximations of the
considered processes, and then go one step further, by establishing bounds
for the latter convergence. We also show that the same procedure can be
applied to study the long-run behavior of Hawkes processes.

For a sequence of processes (Xn, n ≥ 1) with values in a complete, sepa-
rable, metric space which converges to a process X, estimating the rate of
convergence amounts to computing ϕ such that

(1) distC(PXn , PX) := sup
f∈C

E [f(Xn)]−E [f(X)] ≤ ϕ(n),

where C is the set of test functions. The minimum regularity required for the
left-hand-side of (1) to define a distance is to suppose f Lipschitz continuous,
but not necessarily bounded.

If we take for C the set of Lipschitz bounded functions, we obtain a dis-
tance which generates the same topology as that of the Prokhorov distance.
In the seventies, many papers (see e.g. [25, 37], and references therein)
derived the rates of convergence of functional CLT’s such as Donsker’s the-
orem, for this metric. They generally obtained ϕ(n) = O(n−1/4) via the
Skorohod representation theorem and ad-hoc subtle computations on the
sample-paths themselves.

In the nineties, in his pioneering paper [2], Barbour constructed a Malliavin-
like apparatus to estimate the rate of convergence in the Donsker theorem on
the Skorohod space D. The set C under consideration is the set of three times
Fréchet differentiable functions on D with additional boundedness proper-
ties. Once this functional framework is setup, we can proceed similarly to the

2



Stein method in finite dimension (see [32] for a new application of this ap-
proach to the Moran model). Let us also mention several recent applications
of the Stein method in finite dimension, assessing the rate of convergence
of the stationary distributions of various queueing processes: Erlang-A and
Erlang-C systems in [9]; a system with reneging and phase-type service time
distributions in [8], and single-server queues in heavy-traffic in [24].

It is only recently that in [13], Barbour’s result was extended to the
convergence in some fractional Sobolev spaces, instead of D. This result
was then improved in [15] and [14] by allowing, at last, test functions that
are only Lipschitz continuous. When C is the set of Lipschitz continuous
functions, the induced distance is stronger than the Prokhorov distance: not
only does it imply the convergence in distribution, but also the convergence
of the first moments, see [40].

For these test functions, from the theoretical point of view two novelties
arise. As could be expected, their reduced regularity induces additional
technicalities but more strikingly, it also yields different rates of convergence.
The benefit is that the applicability is enriched, for this new set of test
functions embraces many more functions of interest in practice. This can
be used, for instance, to derive the convergence rate for the maximum of
a random walk towards the maximum of the Brownian motion; a result
which cannot be established by the basic Stein method, as we do not have
a convenient characterization of the law of the maximum of the Brownian
motion.

Furthermore, the set of Lipschitz functions is remarkably stable with re-
spect to many operations like time-change, convolution, reflection, etc., so
that we can deduce from a master Theorem, many new convergence rates
which do not seem to be accessible from scratch.

In [4], Stein’s method was used to study the rate of convergence in the
diffusion approximations of the M/M/1 and the M/M/∞ queues. The two
models involved very different ad-hoc techniques and proved to be difficult
to generalize, but led to a satisfying estimate of the speed of convergence
(n−1/2, where n is the scaling factor of the respective models). The ap-
proach of the present paper is more general, at the expense of a lower rate
of convergence (n−1/6), but covers a much wider class of processes. Our
results can be used to assess the precision of the approximation of func-
tionals of sample-path of a Markov process by the same functional for the
limit diffusion. For instance, in [22], the excursions of the telegraph process
are approximated by those of the limiting Ornstein-Uhlenbeck, the distribu-
tion of which is known. The rate of convergence for the limit theorem for
the Hawkes process can also be used to obtain a functional version of the
theorems in [28] for potential applications to mathematical finance.

During the preparation of this work, we became aware of [3] which ad-
dresses a similar problem. The test functions in [3] are much more regular
than simply Lipschitz but the scope of the method seems wider as it can
handle the convergence of some non Markovian processes. The price to pay
seems to be a lower rate of convergence.

The paper is organized as follows. In Section 2, we give some estimates of
the distance between a multivariate point process and its affine interpolation,
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depending on the intensity of its jumps. In Section 3, we establish that
sets of Lipschitz functionals on some function spaces enjoy some remarkable
stability properties. These properties are crucial to transfer the convergence
rate established in the master Theorem 4.7, to more general processes. In
Section 5, we provide a general result regarding the rate of convergence in
the diffusion approximations of a wide class of CTMC’s, and then apply this
result to various practical processes in queueing, biology and epidemiology.
We then quantify the convergence of some functionals of Hawkes processes
in Section 6.

2. Preliminaries

Throughout the paper, we fix a time horizon T > 0. For a fixed integer d,
we denote by DT the Skorohod space (i.e. the space of right continuous with
left limits (rcll) functions from [0, T ] into Rd). It is viewed as the canonical
probability space and equipped with a filtration F = (Ft, t ∈ [0, T ]) which
satisfies the usual hypothesis. All the forthcoming processes are defined on
this filtered probability space and all processes (but the affine interpolations)
are assumed to be adapted to F . The space DT contains CT , the space of
continuous functions on [0, T ]. We denote the sup-norm over [0, T ] by

‖f‖∞,T = sup
t∈[0,T ]

‖f(t)‖Rd ,

for f ∈ DT . In what follows, inequalities will be valid up to irrelevant
multiplicative constants, and we write

a .α b

to mean that there exists c > 0 which depends only on α such that a ≤ c b.
Likewise, for simplicity we often just write a . b, in cases where a and
b both depend on the scaling parameter n, and a ≤ c b for a c that does
not depend on n, but possibly on other parameters that are clear from the
context.

Remark 1. In the forthcoming examples, we consider processes whose sample-
paths are only right-continuous-with-left-limits (rcll) and we wish to compare
them to the Brownian motion (BM) or other diffusions whose sample-paths
are continuous. In the usual proof of the Donsker theorem, the common
probability space on which the convergence is proved is the Skorohod space
of rcll functions on [0, T ], denoted by DT . We do not follow this path for
several reasons. When we began this line of research in [13], we were viewing
our processes as random variables in some fractional Sobolev spaces of not
necessarily continuous functions because these spaces are separable Banach
spaces and then yield a convenient framework (see also [7, 38]) to generalize
the Stein’s method to infinite dimension. Since DT equipped with its usual
distance is a metric and not a Banach space, this procedure could not be
applied to the Skorohod space. Because of the infinite dimensional aspects,
we had to estimate the limit of a trace term, a quantity notably known to be
difficult to handle. In [15], we realized that by considering affine interpola-
tions, which are natural objects to deal with when working on random walks,
we could bypass these delicate computations. By doing so, we can make
all the calculations in some finite dimensional spaces but we still need the
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infinite dimensional structure given by the Wiener space to define the test
functions as weakly differentiable functions as in Definition 2.5 (a notion of
differentiability much weaker than Fréchet differentiability). Since DT when
equipped with the sup norm is a non separable Banach space [31], it cannot
be furnished with a Wiener space structure so we cannot define the concept
of weakly differentiable functions on this space hence our restriction to the
space of continuous functions.

Our first step is thus to replace the initial processes we want to study by
their affine interpolations to work within C([0, T ];Rd) instead of DT . The
estimate of the induced error is easy via martingales techniques and can
be done at a small cost in the convergence rate. Another advantage of the
space of continuous functions is that since it is embedded in the Skorohod
space, the set of Lipschitz functions defined on C([0, T ];Rd) is larger than
the set of Lipschitz functions defined on DT . Finally, by working with affine
interpolations, we can detect which factor is responsible for the slowest rate
of convergence: the difference of regularity or the difference in the dynamics.
Actually, this is the equilibrium to be found between these rates that yields
the unusual order of convergence in n−1/6.

Definition 2.1. A partition π of [0, T ] is a sequence

π = {0 = t0 < t1 < . . . < tl(π) = T},
where l(π) is the number of subintervals defined by π. We denote by |π| its
mesh

|π| = sup
i∈J0,l(π)−1K

|ti+1 − ti|+ f(0).

We denote by ΣT , the set of partitions of [0, T ].

For any function f ∈ DT and any π ∈ ΣT , we denote by Ξπf the affine
interpolation of f on [0, T ] along π, namely for all t ∈ [0, T ],

(Ξπf)(t) =

l(π)−1∑

i=0

[
f(ti+1)− f(ti)

ti+1 − ti
(t− ti) + f(ti)

]
1[ti,ti+1)(t)

=

l(π)−1∑

i=0

f(ti+1)− f(ti)√
ti+1 − ti

hπi (t) + f(0),

where

hπi (t) =
1√

ti+1 − ti

∫ t

0
1[ti,ti+1)(s) ds, i ∈ J0, l(π)− 1K.

When π = {iT/n, i ∈ J0, nK}, we denote Ξπ by Ξn and hπi by hni for all i.

When a point process has not too many jumps per subinterval of a par-
tition π, its affine interpolation along π does not deviate too much from its
nominal path. More precisely we have the following result,

Theorem 2.2. Let m ∈ N∗, and consider (X(t), t ∈ [0, T ]) a Rd-valued
point process admitting the representation

(2) X(t) =

m∑

k=1

(∫ t

0

∫

R+

1{z≤ϕk(s,X(s−))} dNk(s, z)

)
ζk, t ∈ [0, T ],

5



where the Nk’s are independent Poisson measures of respective intensity
measures ρk ds⊗ dz, k ∈ J1,mK, and for any k ∈ J1,mK, ζk ∈ Rd and ϕk is
a bounded function [0, T ]×Rd → R+. Then, for any π ∈ ΣT we have that

E [‖X − ΞπX‖∞,T ] .

m∑

k=1

‖ζk‖Rd Ψ
(
l(π), ρk|π|‖ϕk‖∞

)
,

where for all (q, ν) ∈ N∗ ×R+,

Ψ(q, ν) =
log(qe−ν)

log((νe)−1 log(qe−ν))− log log((νe)−1 log(qe−ν))
·

Proof of Theorem 2.2. Let π = {ti, i ∈ J0, nK}. For any t ∈ [0, T [ there
exists i ≤ n− 1 such that t ∈ [ti, ti+1) and

‖X(t) − ΞπX(t)‖
Rd =

∥∥∥∥X(t) −X(ti)−
X(ti+1)−X(ti)

ti+1 − ti
(t− ti)

∥∥∥∥
Rd

≤ 2 sup
t∈[ti,ti+1]

‖X(t)−X(ti)‖Rd .

Now notice that for all k ∈ J1,mK, for all t ∈ [ti, ti+1],
∫ t

ti

∫

R+

1{z≤ϕk(s,X(s−))} dNk(s, z) ≤
∫ ti+1

ti

∫

R+

1{z≤‖ϕk‖∞} dNk(s, z)

:= Mπ
k,i.

Hence,

sup
t∈[ti,ti+1]

‖X(t) −X(ti)‖Rd ≤
m∑

k=1

‖ζk‖RdMπ
k,i

so that

E [‖ X − ΞπX ‖∞,T ] ≤ 2

m∑

k=1

‖ζk‖Rd E

[
max

i∈J0,n−1K
Mπ

k,i

]
.

But theMπ
k,i, i ∈ J0, l(π)−1K are independent Poisson random variables of

respective parameters ρk(ti+1−ti)‖ϕk‖∞, so they are strongly dominated by
a family of l(π) independent Poisson random variables of respective param-
eters ρk|π| ‖ϕk‖∞. The result then follows from Proposition 7.1 below. �

As to the affine interpolation of the Brownian motion, according to [23,
Proposition 13.20], there exists c > 0 such that for any partition π

(3) E
[
‖ΞπB −B‖pWη,p

]1/p
. |π|1/2−η .

2.1. Malliavin gradient. We give the minimum elements of Malliavin cal-
culus to understand the sequel (see [16] for details). More advanced material
is necessary to prove Theorem 4.2, see [14]. We denote by HT the Hilbert
space, often quoted as the Cameron-Martin space,

HT :=

{
h ∈ CT , ∃ḣ ∈ L2([0, T ], ds) such that h(t) =

∫ t

0
ḣ(s) ds

}
.

The function ḣ is unique so that we can define

‖h‖2HT
=

∫ T

0
ḣ(s)2 ds.
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By convention, we identify HT with its dual (HT )
∗.

Consider (Zn, n ≥ 1), a sequence of independent, standard Gaussian
random variables and let (zn, n ≥ 1) be a complete orthonormal basis of
HT . Then, we know from [29] that

(4)

N∑

n=1

Zn zn
N→∞−−−−→ B :=

∞∑

n=1

Zn zn in CT with probability 1,

where B is a Brownian motion. We clearly have the diagram

(5) C∗
T

e∗−→ (HT )
∗ ≃ HT

e−→ CT ,
where e is the canonical embedding from HT into CT . We denote by µ the
law of B on CT , and by L2(CT ;µ), the space of functions F from CT into R
such that

E
[
F (B)2

]
<∞.

Definition 2.3 (Wiener integral). The Wiener integral, denoted as δ, is the
isometric extension of the map

δ : e∗(CT ∗) ⊂ HT −→ L2(CT ;µ)
e∗(η) 7−→ 〈η, y〉CT ∗,CT

.

This means that if h = limn→∞ e∗(ηn) in HT ,

δh(B) = lim
n→∞

〈ηn, y〉CT ∗,CT
in L2(µ).

Definition 2.4. Let X be a Banach space. A function F : CT → X is said
to be cylindrical if it is of the form

F (y) =

k∑

j=1

fj(δh1(y), · · · , δhk(y))xj ,

where for any j ∈ J1, kK, fj belongs to the Schwartz space on Rk, (h1, · · · , hk)
are elements of HT and (x1, · · · , xj) belong to X. The set of such functions
is denoted by X.

For h ∈ HT ,

〈∇F, h〉HT
=

k∑

j=1

k∑

l=1

∂lf(δh1(y), · · · , δhk(y)) 〈hl, h〉HT
xj,

which is equivalent to say

∇F =
k∑

j,l=1

∂jf(δh1(y), · · · , δhk(y))hl ⊗ xj.

The space D1,2(X) is the closure of cylindrical functions with respect to the
norm of L2(CT ;HT ⊗X). An element of D1,2(X) is said to be Gross-Sobolev
differentiable and ∇F belongs to HT ⊗X with probability 1.

We can iterate the construction to higher order gradients and thus define
∇(k)F for any k ≥ 1, provided that F is sufficiently regular.
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We actually need a stronger notion of weak differentiability. The ordinary
notion of gradient we have just defined, induces that ∇F belongs almost
surely to HT . Hereafter we also need that it belongs to a smaller space,
namely the dual of L2([0, T ], ds). Recall that we have identified HT with
itself, so that we cannot identify L2 with its dual. It is proved in [15] that

JT :=
(
L2([0, T ], ds)

)∗

≃
{
h ∈ CT ,∃ĥ ∈ L2([0, T ], ds) such that h(t) =

∫ t

0

∫ 1

s
ĥ(u) du ds

}
.

Definition 2.5. We denote by ΥT the subset of functions F in D2,2(R)
which satisfy

(6)

∣∣∣∣
〈
∇(2)F (x)−∇(2)F (x+ g), h⊗ k

〉
HT

∣∣∣∣ ≤ ‖g‖CT ‖h‖L2‖k‖L2 ,

for any x ∈ CT , g ∈ HT , h, k ∈ L2([0, T ], ds). This means that ∇(2)F
belongs to Υ⊗2

T and is HT -Lipschitz continuous on CT .

3. Lipschitz functionals

Definition 3.1. Let (E, dE) and (G, dG) be two metric spaces. A function
F : E → G is said to be Lipschitz continuous whenever there exists c > 0
such that for any x, y ∈ E,

(7) dG(F (x), F (y)) ≤ c dE(x, y).

The minimum value of c such that (7) holds, is the Lipschitz norm of F .
We denote by Lipα(E → G, dE) the set of Lipschitz continuous functions
from E to G having Lipschitz norm less than α.

When E is a functional space, the set of Lipschitz functions is rich enough
to be stable by some interesting transformations.

Lemma 3.2. Let r be a positive integrable function on [0, T ] and set

(8) γ(t) =

∫ t

0
r(s) ds.

Then, the map

Γ : CT −→ Cγ(T )

f 7−→ f ◦ γ−1

is invertible and Lipschitz continuous with Lipschitz norm 1. Moreover, if
F belongs to ΥT then F ◦ Γ belongs to Υγ(T ).

Proof. The first part is straightforward. Since Γ is a linear continuous and
bijective map from CT to Cγ(T ), which maps HT (respectively JT ) bijectively
onto Hγ(T ) (respectively Jγ(T )), the second assertion follows immediately.

�

Let us now fix m,d ∈ N∗, and let Md,m(R) be the space of d×m matrices
with real entries. Consider the integral equation

(9) y(t) =

∫ t

0
Ay(s) ds+ f(t), t ≥ 0,
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where A ∈ Md,m(R) and f ∈ CT (Rd). The unique solution of (9) can be
written as

(10) ΘA(f)(t) = f(t) +

∫ t

0
Ae(t−r)Af(r) dr.

We have the following,

Theorem 3.3. For A ∈ Md,m(R), the map ΘA defined by (10) is Lipschitz-

continuous from CT (Rd) to itself. Moreover, if F belongs to ΥT , then so does
F ◦ΘA.

Proof. Since ΘA is linear, we just have to prove that for any f ∈ CT ,
‖ΘA(f)‖∞,T .A ‖f‖∞,T .

From (10), we have

‖ΘA(f)‖∞,T . (1 + ‖A‖)eT‖A‖ ‖f‖∞,T .

Equation (10) also entails that ΘA is linear and that

ΘA(HT ) ⊂ HT and ΘA(JT ) ⊂ JT ,

hence ΥT is stable by ΘA. The proof is thus complete. �

Recall (see e.g. Chapter D in [36]), that for any T > 0 and any Y ∈ DT

such that Y (0) ≥ 0, there exists a unique pair of functions XY and RY in
DT such that XY (t) is non-negative, RY is non-decreasing, RY (0) = 0 and
for all t ≤ T , 




XY (t) = Y (t) +RY (t),∫ t

0
XY (s) dRY (s) = 0.

Define the mapping

Sko : DT −→ DT(11)

f 7−→
(
s 7→ f(s) + ‖f−‖∞,s

)
,

usually referred to as the Skorokhod reflection map of f . Then, it is well
known that in the particular case d = 1, XY has the explicit form XY =
Sko(Y ). We have the following results,

Theorem 3.4. The mapping

max : DT −→ DT

f 7−→ (s 7→ ‖f‖∞,s),

the local time map

ℓ0 : DT −→ DT

f 7−→ (s 7→ ‖f−‖∞,s)

and the Skorohod reflection map Sko are all Lispchitz continuous, and so is
for any ε > 0 the continuity modulus mapping

αε : DT −→ R+

f 7−→ sup
|s−s′|≤ε

‖f(s)− f(s′)‖Rd .

9



Proof. The first three assertions readily follow from the left triangular in-
equality, entailing that for all f, g, and all t ∈ [0, T ],

∣∣∣‖f‖∞,t − ‖g‖∞,t

∣∣∣ ≤ ‖f − g‖∞,t.

Regarding the last assertion, we clearly have for all s ≤ T ,

‖f(s)− f(s′)‖Rd ≤ ‖f(s)− g(s)‖Rd + ‖g(s)− g(s′)‖Rd + ‖g(s′)− f(s′)‖Rd .

Hence for all ε,
αε(f) ≤ 2‖f − g‖∞,T + αε(g).

The same holds with the role of f and g permuted, hence

‖αε(f)− αε(g)‖Rd ≤ 2‖f − g‖∞,T ,

and the proof is complete. �

4. Kantorovitch-Rubinstein distances

Definition 4.1. For µ and ν two probability measures on a metric space
(E, dE), the Kantorovitch-Rubinstein (or Wasserstein-1) distance between µ
and ν is defined as

KE(µ, ν) := sup
F∈Lip1(E→R,dE)

∫

E
F dµ−

∫

E
F dν.

It is the well known [40] that (µn, n ≥ 1) tends to ν in the Kantorovitch-
Rubinstein topology if and only if µn converges in law to ν and the sequence
of first order moments converges: For some x0 ∈ E and then all x0 ∈ E

(12)

∫

E
dE(x, x0) dµn(x)

n→∞−−−→
∫

E
dE(x, x0) dν(x).

In [14], it is proved that

Theorem 4.2. Let (Xi, i ≥ 0) be a sequence of independent and identically
centered, with unit variance and finite third moment distributed random vari-
ables belonging to Lp for some p ≥ 3. Then, for any n ≥ 1,

(13) KCT

(
n−1∑

i=0

Xih
n
i , B

)
.T,E[|X1|3] n

−1/6 log(n).

To explain the somehow surprising exponent −1/6, we quickly describe
the proof of this result. We proceed to a sort of bias-variance decomposition:
for any N < n

KCT

(
n−1∑

i=0

Xih
n
i , B

)
≤ KCT

(
n−1∑

i=0

Xih
n
i , ΞN(

n−1∑

i=0

Xih
n
i )

)

+ KCT

(
ΞN (

n−1∑

i=0

Xih
n
i ), ΞNB

)

+ KCT (ΞNB, B)

= A1 +A2 +A3.

We have seen in (3) that the rightmost term is bounded by n−1/2. The
proof of the latter inequality is based on the scaling invariance and Hölder

10



continuity of the Brownian motion, hence there are strong reasons to believe
that this rate is optimal. Direct computations show that A1 is also bounded
by n−1/2.

It remains to bound the median term A2. For this, we remark that the
two processes under study belong to the finite dimensional space

HN = span
{
hNi , i ∈ J0, N − 1K

}
.

This leads to the definition of finite rank functional,

Definition 4.3. For π ∈ ΣT , let

Hπ = span {hπi , i = 0, · · · , l(π) − 1} .
A function F : CT → R is then said to have a finite rank if there exists a
partition π ∈ ΣT and a function ϕF : Hπ → R such that

(14) F = ϕF ◦ Ξπ.

It amounts to saying that F (x) depends only on the value of x by its value
at the points of π. For any π ∈ ΣT , we denote by Fπ the set of functions of
finite rank associated to π, that is, such that (14) holds.

A straightforward adaptation of the proof of the main theorem in [14] yields

Theorem 4.4. For any π ∈ ΣT , set

Lipπ1 = Lip1(CT → R, ‖ ‖∞,T ) ∩ Fπ.

Then, we have for all n ∈ N∗,
(15)

sup
F∈Lipπ1

{
E

[
F

(
Ξπ

(
n−1∑

i=0

Xih
n
i

))]
−E [F (ΞπB)]

}
.T,E[|X1|3]

|π|−1

√
n

log(n).

If we apply this theorem to ΞN , we are in a position similar (but not
equivalent) to that of bounding the Wasserstein-1 distance between a sum
of independent (but not identically distributed) random vectors in dimen-
sion N , and the standard Gaussian distribution in RN . In this finite dimen-
sional situation, the best known results [35, 5] show that the multiplying

constant of the factor n−1/2 log(n) depends linearly on the dimension, a fact
that we retrieve here.

The exponent −1/6 is then obtained by choosing the optimal N as a
function of n. We have strong confidence that each of the two steps gives
the optimal rate, and consequently, that this overall rate is optimal. For
many practical applications, test functions in Lipπ1 are sufficient, see e.g.
the simple and practical functionals addressed in Section 3. This leads us
to introduce the following distance,

Fπ
CT
(µ, ν) = sup

F∈Lipπ1

{∫

CT

F dµ−
∫

CT

F dν

}
,

for µ, ν two probability measures.
If we allow to take the supremum over a smaller set of test functions like

three times Fréchet differentiable with bounded derivatives (as in [2, 32]),
11



we get a convergence rate bounded by n−1/2. However, we can get this rate
even for much less regular test functions. Let

LipΥ1 = Lip1(CT → R, ‖ ‖∞,T ) ∩ΥT .

Then, setting for all µ, ν,

JCT (µ, ν) = sup
F∈LipΥ1

{∫

CT

F dµ−
∫

CT

F dν

}
,

it is shown in [15] that

JCT

(
Ξπ

(
n−1∑

i=0

Xih
n
i

)
, B

)
.T,π

1√
n
·

In what follows, we deal with renormalized stochastic integrals with respect
to Poisson measures as in (2). One of the trick of our proof is to replace the
random integrands by deterministic and supposedly close functions. This
technical step introduces an error which converges to zero at rate n−1/4 (see

(30)), so much slower than n−1/2 log(n). We thus redefine the usual rates at
which the convergence hold.

Definition 4.5. A sequence of rcll processes (Xn, n ≥ 1) is said to converge
in distribution at the usual rates to a process Z if for any π ∈ ΣT and
any n ≥ 1,

(†)





KCT (ΞnXn, Z) .T n
−1/6 log(n),

Fπ
CT
(ΞnXn, Z) .T |π|−1n−1/4,

JCT (ΞnXn, Z) .T n
−1/4.

A straightforward application of the previous results leads to the following,

Theorem 4.6. Let Pn be a Poisson process on [0, T ] of intensity n. Then,
the sequence of processes

(
Pn, n ≥ 1

)
defined by

(16) Pn(t) :=
Pn(t)− nt√

n
, t ≤ T,

converges at the usual rates to a Brownian motion. Furthermore, for all
n ≥ 1,

E
[
‖Pn − ΞnPn‖∞,T

]
.T

log(n)√
n

·

Proof. Fix n ≥ 1. According to Theorem 2.2, we get that

E
[
‖Pn − ΞnPn‖∞,T

]
.T

Ψ(n, 1)√
n

.T
log(n)√

n
·

Furthermore,

ΞnPn =
n−1∑

i=0

Pn((i+ 1)/n) − Pn(i/n)− 1
√
n
√

1/n
hni

dist.
=

n−1∑

i=0

(Xi − 1)hni

where (Xk, k ≥ 1) is an IID sequence of Poisson random variables of pa-
rameter 1. The result then follows from (13) and (15). �
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Remark 2. In our computations, we do not follow the values of the con-
stants which appear in the different inequalities. It is a tedious and lengthy
work to compute each of them so that we decided not to include these cal-
culations in this paper for the sake of clarity. One can still ponder how
the constants vary with the dimension of the process, or equivalently of the
limiting Brownian motion. If we look closely at the proof of the distance
between ΞπB and B in [23], we easily see that the constant is proportional

to d1/2 where d is the dimension. For the approximation of the linear in-
terpolation of the initial process, Theorem 2.2 says the constants depend on
the growth of supk ‖ζk‖Rd when d is increasing. It is thus impossible to have
a generic answer taking into account all situations. If the ζ ′s are well be-
haved, i.e. if their components do not grow too much with the dimension
(supd supk=1,··· ,m supi=1,··· ,d |ζk(i)| <∞) then the constants is linear with the
dimension. For the core of the Stein’s method, each component is handled
individually, i.e., there is no compensation between the coordinates, hence
the constants vary as the dimension. At the end, the constants are of the
order of the dimension when the latter is large.

We are now in a position to state our main result. It consists of an
extension of the last Theorem to stochastic integral with respect to Poisson
measures,

Theorem 4.7. Let r be a positive integrable function on [0, T ], and γ be
defined by (8). Let N n be a Poisson measure on [0, T ] × R+ of intensity
measure n dt⊗ dz. Consider the compensated Poisson measure

(17) dÑ n(t, z) = dN n(t, z) − n dt⊗ dz.

Define also the process Rn by

Rn(t) =
1√
n

∫ t

0

∫

R+

1{z≤r(s)} dÑ n(s, z), t ∈ [0, T ].

Then, (Rn, n ≥ 1) converges at the usual rates to B ◦ γ.
Proof. According to [11, Theorem 16], for any n ≥ 1, Rn ◦ γ−1 has the
distribution of Pn defined in (16). Therefore, from Theorem 4.6, (Rn ◦
γ−1, n ≥ 1) converges at the usual rates to B. The result then follows from
Lemma 3.2. �

We can now use the last theorem as a blackbox that yields the convergence
rate in numerous applications. The main limitation is that Theorem 4.7
requires the integrand of Rn to be deterministic when most often we have to
deal with stochastic integrands. It turns out that in limit theorems, these
stochastic integrands tend to some deterministic process. The idea is then to
control the error made by replacing these integrands by their deterministic
limit and then to apply Theorem 4.7.

5. Application to Continuous time Markov chains

5.1. General settings. Numerous Continuous time Markov chains (CTMC’s)
can be described as solutions of stochastic differential equations with re-
spect to a finite family of Poisson measures. For any m ∈ N∗, any family
(ζ1, ..., ζm)1≤k≤m of elements of Rd and any array (ρk)1≤k≤m of mappings

13



from [0, T ] × DT to R, consider the Rd-valued process X defined as the
solution of the SDE

X(t) = X(0) +
m∑

k=1

(∫ t

0

∫

R+

1{z≤ρk(s,X)} dNk(s, z)

)
ζk, t ≤ T,

where X(0) ∈ Rd is fixed, and (Nk)1≤k≤m denote m independent Poisson
measures of unit intensity ds⊗dz.

Fix n ∈ N∗ and an array α := (α1, ..., αm) ∈ (R)m. We scale the process
X by replacing for all k, the measure Nk by a Poisson measure Nαk

k of
intensity (nαk ds) ⊗dz, and normalizing in space by n. Then the process
Xn := n−1Xn is the solution of the following SDE: For any t ≥ 0,

(18) Xn(t) = Xn(0) +
1

n

(
m∑

k=1

∫ t

0

∫

R+

1{z≤ρk(s,nXn)} dNαk

k (s, z)

)
ζk.

The key assumption on our scaling is the following:

Assumption 1 (Law of large numbers scaling). For any k ∈ J1,mK,
there exists a mapping rk ∈ Lipc(R

d → R, ‖ ‖Rd) such that for all n ∈ N∗,
all x ∈ Rd and t ≤ T ,

nαk−1ρk(t, n x) = rk(t, x),

and such that

(19) sup
n≥1

E

[
sup
t≤T

∣∣rk(t,Xn(t)
∣∣
]
.k,T 1.

Observe that crucially, under Assumption 1 the rk’s do not depend on n.

We denote for any k, by Ñαk

k , the compensated Poisson measures of Nαk

k ,
that is, we let

dÑαk

k (s, z) = dNαk

k (s, z) − nαk( ds⊗ dz).

Then, for all n and all k, the Rd-valued process Mn,k,Xn
, defined for all

t ≤ T by

(20) Mn,k,Xn
(t) =

(∫ t

0

∫

R+

1{z≤n1−αk rk(s,Xn(s−))} dÑαk

k (s, z)

)
ζk

is a martingale with respect to the natural filtration of the Poisson measures.
It then follows from (18) that for all n and t,

(21) Xn(t) = Xn(0) +

m∑

k=1

(∫ t

0
rk
(
s,Xn(s)

)
ds

)
ζk +

m∑

k=1

n−1Mn,k,Xn
(t).

In view of Assumption 1 and the Cauchy-Lipschitz Theorem, there exists a
unique solution Λ in C([0, T ]; Rd) to the integral equation

(22) Λ(t) = Λ(0) +

m∑

k=1

(∫ t

0
rk(s,Λ(s)) ds

)
ζk, t ≥ 0,

for a fixed Λ(0) ∈ Rd. We have the following law of large numbers,
14



Theorem 5.1. Assume that there exists a solution Λ of (22) on [0, T ].
Suppose that Assumption 1 holds. Then, there exists c > 0 such that

sup
n≥1

E

[
sup
t≤T

‖Xn(t)‖
]
≤ ecT

and for all n ≥ 1,

(23) E

[
sup
t≤T

∥∥Xn(t)− Λ(t)
∥∥
]
.T

(
E
[∥∥Xn(0)− Λ(0)

∥∥]+ n−1/2
)
ecT .

Proof. By denoting for all k ∈ J1,mK, by λk the Lipschitz constant of the
mapping rk, we readily get that for all t ≥ 0,
∥∥Xn(t)− Λ(t)

∥∥ ≤
∥∥Xn(0)− Λ(0)

∥∥

+

(
m∑

k=1

λk‖ζk‖
)∫ t

0

∥∥Xn(s)− Λ(s)
∥∥ ds+

m∑

k=1

∥∥∥n−1Mn,k,Xn
(t)
∥∥∥ ,

and it is then a classical consequence of Gronwall Lemma that for c :=∑m
k=1 λk‖ζk‖,

E

[
sup
t≤T

∥∥Xn(t)− Λ(t)
∥∥
]

≤
(
E
[∥∥Xn(0)− Λ(0)

∥∥]+E

[
sup
t≤T

m∑

k=1

∥∥∥n−1Mn,k,Xn
(t)
∥∥∥
])

ecT .

We conclude using the Burkholder-Davis-Gundy inequality in view of (19).
�

We now turn to the so-called diffusion scaling of the process X. We study
the sequence of processes (Un, n ≥ 1) defined for all n by

Un = n1/2
(
Xn − Λ

)
, n ≥ 1.

In view of (20), we see that the integrands in the Mn,k,Xn
’s, k ∈ J1,mK, are

random processes that depend on n. In this form, we cannot directly use
Theorem 4.7. The key idea is to introduce intermediate martingales with
deterministic integrands. The error made with this additional process is
easily controlled by sample-paths estimates.

Introduce for all n, theRd-valued martingales (Mn,k,Xn
)k∈J1,mK, (Mn,k,Λ)k∈J1,mK

and Mn,Λ, respectively defined for all t ≤ T by




Mn,k,Λ(t) =

(∫ t

0

∫

R+

1{z≤n1−αk rk(s,Λ(s))} dÑαk

k (s, z)

)
ζk ;

Mn,Xn
(t) = n−1/2

m∑

k=1

Mn,k,Xn
(t) ;

Mn,Λ(t) = n−1/2
m∑

k=1

Mn,k,Λ(t) .

Observe that the crucial difference between Mn,Xn
and Mn,Λ is that the

indicator functions appearing in the latter involve deterministic processes
15



and thus Mn,Λ has independent increments. From (21) and (22), for all n,
for any t ∈ [0, T ], we have that

(24)

Un(t) = Un(0)+n
1/2

m∑

k=1

(∫ t

0

(
rk(s,Xn(s))− rk(s,Λ(s))

)
ds

)
ζk+Mn,Xn

(t).

To obtain a formal functional central limit theorem for the sequence (Un, n ≥
1), we make the following additional assumptions.

Assumption 2 (Diffusion scaling).

(i) The initial conditions are such that

(25) E [‖Un(0)− Y (0)‖] . n−1/2.

(ii) For all n, all k ∈ J1,mK and all t ∈ [0, T ],

(26) n1/2
(
rk(t,Xn(t))− rk(t,Λ(t))

)
=
(
〈Lk, Un(t)〉Rd + En,k(t)

)
,

where for all k ∈ J1,mK, Lk ∈ Rd and

E
[
‖En,k‖∞,T

]
. n−1/2.

Theorem 5.2. Assume that Assumptions 1 and 2 hold. Then (Un, n ≥ 1)
converges at the usual rates to

ΘA

(
Y (0)+

m∑

k=1

(Bk ◦ γk) ζk
)
,

where ΘA is the map associated by (10) to the matrix

(27) A = (L1, ..., Lm)⊗ (ζ1, ..., ζm),

(Bk)k∈J1,mK are independent one dimensional Brownian motions, and for
any k ∈ J1,mK, γk is defined in function of the mapping t 7→ rk(t,Λ(t))
through (8).

Proof. In view of (24) and (26), we have for all n ≥ 1,

(28) Un = ΘA

(
Un(0)+

m∑

k=1

(∫ .

0
En,k(s) ds

)
ζk +Mn,Xn

)
.

But first, according to Assumption 2 we get that

(29) E



∥∥∥∥∥

m∑

k=1

(∫ .

0
En,k(s) ds

)
ζk

∥∥∥∥∥
∞,T


. n−1/2.
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Second, from the Burkholder Davis Gundy inequality, for any k there exists
a constant ck such that

E

[∥∥∥n−1/2Mn,k,Xn
− n−1/2Mn,k,Λ

∥∥∥
∞,T

]

≤ ck n
−1/2‖ζk‖ n1/2E

[∫ T

0

∣∣rk(t,Xn(t)) − rk(t,Λ(t))
∣∣ dt

]1/2

≤ ck ‖ζk‖ E

[∫ T

0
‖Xn(t)− Λ(t)‖Rd dt

]1/2
,

so it follows from (23) together with (25), that

(30) E

[∥∥∥n−1/2Mn,k,Xn
− n−1/2Mn,k,Λ

∥∥∥
∞,T

]
. n−1/4.

On another hand, or any k ∈ J1,mK, Mn,k,Λ has the distribution of

t 7−→
(∫ t

0

∫

R+

1{z≤rk(s,Λ(s))} dÑ n(s, z)

)
ζk,

where N n is a Poisson measure of intensity n dt ⊗ dz, and it follows from
Corollary 4.7 that the process n−1/2Mn,k,Λ converges at the usual rates to
(Bk ◦ γk) ζk. The result then follows from the Lipschitz continuity of ΘA in
view of the representation (28), the fact that the constant process Xn(0)−
Λ(0) converges to zero at the usual rates in view of (25), and Theorem 3.3,
together with (29) and (30). �

As will be shown below, Theorem 5.2 can be used to show the convergence,
at the usual rates, of various classical (properly scaled) CTMC’s, towards
remarkable diffusion processes, among which, Ornstein-Uhlenbeck processes
(see Remark 3) or reflected Brownian motions, see Proposition 5.5.

5.2. The Telegraph process. Let Yi, i ∈ J1, nK be an IID family of CTMC’s
taking values in {0, 1}, with transition intensity σ0 (resp., σ1) from state 0
to state 1 (resp., from state 1 to state 0), and let Xn be the process defined
by

Xn(t) =
n∑

i=1

Yi(t), t ≥ 0.

The processes Yi, i ∈ J1, nK are often called telegraph processes, and model
various phenomena in finance, physics, networking and biology. The states
0 and 1 can be respectively interpreted as ‘Off’ and ‘On’ modes, and so Xn

counts the number of telegraph processes in ‘On’ mode at each time. (It is
often itself called, a telegraph process.) Denote by π0 and π1, the common
stationary probability of the Yi’s, i ∈ J1, nK, namely

π0 =
σ1

σ0 + σ1
and π1 =

σ0
σ0 + σ1

·

It is immediate to observe that for any n, the limiting distribution Xn(∞)
of the process Xn is binomial of parameters n, π1, and that

√
n

(
Xn(∞)

n
− π1

)
=⇒ N (0, π0π1).
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At the process level, it is shown in [22] that under suitable assumptions on
the initial conditions, for all T > 0,

Un =
√
n

(
Xn

n
− Λ

)
=⇒ Θ(Y ) in D([0, T ],R),

where

• For a fixed Λ(0) ∈ R+,

(31) Λ(t) = π1 + (Λ(0) − π1) exp(−(σ1 + σ0)t), t ≥ 0;

• For any f , Θ(f) denotes the unique solution in D([0, T ],R) of the
equation

g(t) = −(σ1 + σ0)

∫ t

0
g(s) ds+ f(t), t ≥ 0;

• The process Y is defined by

Y (t) = Y (0)+

∫ t

0

√
σ0(1− Λ(s)) dB1(s)−

∫ t

0

√
σ1Λ(s) dB2(s), t ≥ 0,

for B1 and B2, two independent standard Brownian motions.

We have the following result,

Proposition 5.3. Suppose that condition (i) of Assumption 2 is satisfied.
Then the convergence of (Un, n ≥ 1) to Θ(Y ) occurs at the usual rates.

Proof. Let for all n ≥ 1, Xn(t) = Xn(t)/n, t ≥ 0. Then by the very
definition of Xn we have the equality in distribution

Xn(t)
(d)
= Xn(0) +

∫ t

0

∫

R+

1{z≤nσ0(1−Xn(s−))} dN1(s, z)

−
∫ t

0

∫

R+

1{z≤nσ1Xn(s−)} dN2(s, z), t ≥ 0,

where N1 and N2 denote two independent Poisson random measures of
common intensity ds ⊗ dz on (R+)

2, representing the overall “up” and
“down” jumps, respectively. So Xn satisfies the SDE (18) for d = 1, m = 2,
α1 = α2 = 0, ζ1 = 1, ζ2 = −1, and for the mappings ρ1 : (t, y) 7→ σ0(n − y)
and ρ2 : (t, y) 7→ σ1y. It is then clear that Assumption 1 is satisfied for

r1 : (t, x) 7−→ σ0(1− x) and r2 : (t, x) 7−→ σ1x,

which are obviously Lipschitz continuous with respect to their second vari-
able. Plainly, Λ defined by (31) is the unique solution of (22) in the present
case. As r1 and r2 are linear in their second variable, condition (ii) in As-
sumption 2 is clearly satisfied for L1 = −σ0, L2 = σ1 and En,1 ≡ En,2 ≡ 0 for
all n, and so the corresponding operator ΘA defined by (10) for A given in
(27) is linear, continuous and therefore Lipschitz continuous. But it follows
from (9) that Θ = ΘA. We conclude using Theorem 5.2. �
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5.3. Two classical queueing systems. It is a simple matter to show that
the single-server queue M/M/1 and the infinite server queue M/M/∞, for
which the speed of convergence in the functional central limit theorem was
already addressed in [4], can be studied in the present framework. The con-
vergence rate obtained hereafter is n1/6, slightly slower than that obtained
in [4] (n1/2), where we used representation methods that are specific to each
of these models.

5.3.1. The infinite server queue. We consider an M/M/∞ queue: a poten-
tially unlimited number of servers attend customers that enter the system
following a Poisson process of intensity λ > 0, requesting service times that
are exponentially distributed of parameter µ > 0. Let for all t ≥ 0, X(t)
denote the number of customers in the system at time t. It is well known
that X is an ergodic Markov process with stationary distribution Poisson
of parameter λ/µ. Let us scale this process in space and time, by dividing
the number of customers by n, while multiplying the intensity of arrivals by
n. Namely, we denote for all t ≥ 0, Xn(t) = X(t)/n. Then, it is a classical
result (see e.g. [6], Theorem 6.14 in [36], or a measure-valued extension of
the result in [18]), that under suitable assumptions on the initial conditions,
for all T > 0,

Un =
√
n
(
Xn − Λ

)
=⇒ Θ(Y ) in D([0, T ],R),

where

• For a fixed Λ(0) ∈ R+,

(32) Λ(t) =
λ

µ
−
(
Λ(0) − λ

µ

)
exp(−µt), t ≥ 0;

• For any stochastic process f , Θ(f) denotes the unique solution in
D([0, T ],R) of the SDE

g(t) = −µ
∫ t

0
g(s) ds+ f(t), t ≥ 0;

• The process Y is defined by

Y (t) = Y (0)+
√
λB1(t)−

∫ t

0

√
µΛ(s) dB2(s), t ≥ 0,

for B1 and B2, two independent standard Brownian motions and
Y (0), a r.v. independent of everything else,

We have the following result,

Proposition 5.4. Suppose that condition (i) of Assumption 2 is satisfied.
Then the convergence of (Un, n ≥ 1) to Θ(Y ) occurs at the usual rates.

Proof. Then, for all n ≥ 1 it is easily checked that the resulting scaled
process Xn satisfies the SDE

Xn(t) = Xn(0) +
1

n

∫ t

0

∫

R+

1{z≤λ} dN 1
1 (s, z)

− 1

n

∫ t

0

∫

R+

1{z≤µXn(s−)} dN 1
2 (s, z), t ≥ 0,
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where N 1
1 and N 1

2 denote two independent random Poisson measures of
intensity n ds ⊗ dz on (R+)

2. This precisely means that the process Xn

satisfies (18) for d = 1, m = 2, α1 = α2 = 1, ζ1 = 1, ζ2 = −1, and for
the mappings ρ1 : (t, y) 7→ λ and ρ2 : (t, y) 7→ µy

n . It is then clear that
Assumption 1 is satisfied for r1 : (t, y) 7−→ λ and r2 : (t, y) 7−→ µy. Clearly,
Λ defined by (32) is the unique solution of the differential equation (22) in
the present context. Then, plainly, condition (ii) in Assumption 2 is satisfied
for L1 = 0, L2 = µ and En,1 ≡ En,2 ≡ 0 for all n, and we get that ΘA = Θ
in (10). We conclude again using Theorem 5.2. �

Remark 3. In the special case Λ(0) = λ/µ, Λ is the constant process equal

to λ/µ and in turn, Y equals Y0 +
√
2λB in distribution, for B a standard

brownian motion. Then, it is remarkable that the limiting process Θ(Y ) is
an Ornstein-Uhlenbeck process. To check this, observe that from (10) and
then integrating by parts, for all t we get that

Θ(Y )(t) = Y (t)− µ

∫ t

0
e−µ(t−r)Y (r) dr

= e−µt

{
Y (t)eµt − µ

∫ t

0
eµrY (r) dr

}

= e−µt

{
Y (0) +

∫ t

0
eµr dY (r)

}

= Y (0)e−µt +
√
2λ

∫ t

0
e−µ(t−r) dB(r).

This is precisely the Ornstein-Uhlenbeck process that solves the SDE

Z(0) = Y (0), dZ(t) = −µZ(t) dt+
√
2λ dB(t),

see also the discussion in [36], Theorem 6.14.

5.3.2. The single server queue. In this section we consider a M/M/1 queue:
a single-server attends without vacations, customers that enter following
a Poisson process of intensity λ > 0, and the service times are IID with
exponential distribution of parameter µ > 0. It is then immediate that the
process (L(t), t ≥ 0) counting the number of customers in the system at all
times, is a birth and death process, that is ergodic if and only if λ/µ < 1.
This process can be represented as follows: for all t ≥ 0,

L(t) = x+

∫ t

0

∫

R+

1{z≤λ} dN1(s, z) −
∫ t

0

∫

R+

1{z≤µ}1{L(s−)>0} dN2(s, z)

= x+

∫ t

0

∫

R+

1{z≤λ} dN1(s, z) −
∫ t

0

∫

R+

1{z≤µ} dN2(s, z)

+

∫ t

0

∫

R+

1{z≤µ}1{L(s−)=0} dN2(s, z),

where x is the number-in-system at time 0, and N1, N2 and N3 stand again
for three independent random Poisson measures of intensity ds ⊗ dz on
(R+)

2. The standard Law-of-Large-Numbers scaling of this process is per-
formed by multiplying the arrival and service intensities by a factor n, while
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increasing the number of customers in the initial state by the same multi-
plicative factor, and dividing the number of customers in the system at any
time by n: equivalently, for all t ≥ 0 we set

(33) Ln(t) = x+
1

n

∫ t

0

∫

R+

1{z≤λ} dN 1
1 (s, z)−

1

n

∫ t

0

∫

R+

1{z≤µ} dN 1
2 (s, z)

+
1

n

∫ t

0

∫

R+

1{z≤µ}1{Ln(s−)=0} dN 1
2 (s, z),

where N 1
1 and N 1

2 denote two Poisson random measures of intensity n ds⊗
dz. The following result completes the classical diffusion limit presented e.g.
in Proposition 5.16 in [36], and Theorem 1 in [4],

Proposition 5.5. Let

(34) Λ(t) = (x+ (λ− µ)t)+ , t ≥ 0,

and Z be the process defined by

Z(t) = Z(0)+
√
λ+ µB(t), t ≥ 0,

for B a standard Brownian motion and Z(0), a r.v. independent of every-
thing else. Then the following convergence holds at the usual rate,

Un =
√
n
(
Ln − Λ

)
=⇒ Sko(Z),

where the mapping Sko is defined by (11).

Proof. Define the processes Xn and Rn as follows: for all t ≥ 0,

Xn(t) = x+
1

n

∫ t

0

∫

R+

1{z≤λ} dN 1
1 (s, z)−

1

n

∫ t

0

∫

R+

1{z≤µ} dN 1
2 (s, z);

Rn(t) =
1

n

∫ t

0

∫

R+

1{z≤µ}1{Ln(s−)=0} dN 1
2 (s, z).

Then in view of (33) we easily get that for all t,




Xn(t) = Ln(t) +Rn(t),∫ t

0
Xn(s) dRn(s) = 0,

and thus we get that Ln = Sko(Xn), see (11). It is then immediate that
both Theorems 5.1 and 5.2 can be applied to the sequence of processes {Xn}
for d = 1, m = 2, α1 = α2 = 1, ζ1 = 1, ζ2 = −1 and for all (t, x), r1(t, x) = λ
and r2(t, x) = µ. We obtain (for ΘA := Id), that the convergence

Vn :=
√
n
(
Xn − Γ

)
=⇒ Z

occurs at the usual rate, where for all t ≥ 0, we define

Γ(t) = x+ (λ− µ)t,

and observe the equality in distribution

Z(t) = Z(0)+
√
λB1(t)−

√
µB2(t),

for B1 and B2, two independent standard Brownian motions. It is immediate
that Λ = Sko(Γ), so the result follows from the Lipschitz continuity of the
mapping Sko, proven in Theorem 3.4. �
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5.4. SIR epidemics. We consider a population of constant size n, in which
individuals can go through three states, susceptible, infectious ad then re-
moved. The duration of any infection follows an exponential distribution of
parameter γ and for each couple infectious/susceptible, a contagion occurs
from the former at an exponential rate λ. All the involved r.v.’s are as-
sumed independent. At any time t ≥ 0, we let Sn(t), In(t) and Rn(t) denote
respectively the number of Susceptible, Infected and Recovered individuals,

and let Xn(t) =

(
Sn(t)
In(t)

)
. The processes are scaled by defining for all t ≥ 0,

Sn(t) = Sn(t)/n , In(t) = In(t)/n and R
n
(t) = Rn(t)/n, which represent

respectively the proportions of Susceptible, Infected and Recovered individ-

uals in the whole population at time t. We also let X
n
(t) =

(
S
n
(t)

I
n
(t)

)
, t ≥ 0.

A large-graph limit and a functional central limit theorem for the process
X are given in Chapter 2 of [10], together with similar results regarding the
related SEIR, SIRS and SIS models. Observe that a hydrodynamic limit
for a SIR process propagating on a heterogeneous population (meaning that
a - non necessarily complete - graph connects susceptible to infectious in-
dividuals) is provided in [17], completing the result in [41]. The following
result makes precise the speed of convergence in the functional CLT for the
complete-graph case, given in [10]. We are confident that similar results
hold for the other related models addressed in Chapter 2 of [10], however
we only consider here the SIR case for brevity,

Proposition 5.6. Let Λ : t 7−→
(
s(t)
i(t)

)
be the unique solution of the system

of ODE’s

(35)

{
s′(t) = −λs(t)i(t)
i′(t) = λs(t)i(t) − γi(t)

, t ≥ 0.

Let Y (0) be a r.v. independent of everything else, and Θ(Y ) denote the

unique solution in CT of the following SDE of unknown g =

(
g1
g2

)
,

g(t) = λ

∫ t

0

(
i(u)g1(u) + s(u)g2(u)

)
du

(
−1
1

)

+ γ

∫ t

0
g2(u) du

(
0
−1

)
+ Y (t), t ≥ 0,

where for all t ≥ 0,

Y (t) = Y (0)+

∫ t

0

√
λs(u)i(u) dB1(u)

(
−1
1

)
+

∫ t

0

√
γi(u) dB2(u)

(
0
−1

)
,

for B1 and B2, two independent standard Brownian motions. Then, if as-
sertion (i) of Assumption 2 is satisfied, the following convergence holds at
the usual rates,

Un =
√
n
(
Xn − Λ

)
=⇒ Θ(Y ).
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Proof. By the very definition of the SIR dynamics, for any n the process X
n

admits the following representation: for all t ≥ 0,

Xn(t) = Xn(0) +
1

n

∫ t

0

∫

R+

1{z≤λnS
n
(u−)I

n
(u−)} dN1(u, z)

(
−1
1

)

+
1

n

∫ t

0

∫

R+

1{z≤γnI
n
(u−)} dN2(u, z)

(
0
−1

)
,

for N1 and N2, two Poisson random measures of unit intensity, so we fall
again into the settings of Section 5.1 for d = 2, m = 2, α1 = α2 = 0,
ζ1 =

(
−1
1

)
and ζ2 =

(
0
−1

)
. It is then clear that Assumption 1 is satisfied for

the mappings

r1 : R+ × [0, 1]2 −→ R,
(
t,

(
y1
y2

))
7−→ λy1y2;

r2 : R+ × [0, 1]2 −→ R,
(
t,

(
y1
y2

))
7−→ γy2.

Indeed, to check that r1 is Lipschitz continuous on its second variable, just

observe that for all y =
(y1
y2

)
∈ [0, 1]2, y′ =

(y′
1

y′
2

)
∈ [0, 1]2 and for all t,

∣∣r1(t, y′)− r1(t, y)
∣∣ = λ

∣∣y′2(y′1 − y1) + y1(y
′
2 − y2)

∣∣ ≤ λ
∥∥y′ − y

∥∥ ,

so Theorem 5.1 is satisfied. Now, define again for all t and n, Un(t) =

n1/2
(
Xn(t)− Λ(t)

)
. To check that assumptions 2 holds, let us also observe

that for all y, y′, t as above, we also have that

r1(t, y
′)− r1(t, y) = λ

(
y2(y

′
1 − y1) + y1(y

′
2 − y2) + (y′2 − y2)(y

′
1 − y1)

)
,

entailing that for all n and t,

n1/2
(
r1(t,Xn(t))− r1(t,Λ(t))

)
= 〈L1(t), Un(t)〉R2 + E1,n(t),

for

L1(t) = λ

(
i(t)
s(t)

)
and E1,n(t) = λ

(
S
n
(t)− s(t)

) (
I
n
(t)− i(t)

)
.

Thus, observing that both
∣∣Sn

(t)− s(t)
∣∣ and

∣∣In(t)− i(t)
∣∣ are less than one

for all t, we obtain that

E [‖ E1,n ‖T,∞] ≤ λE

[
sup

0≤t≤T

(∣∣Sn
(t)− s(t)

∣∣+
∣∣In(t)− i(t)

∣∣)
]

.λ E

[
sup

0≤t≤T
‖ Xn

(t)− Λ(t) ‖
]

. n−1/2,

from (23) together with assertion (i) of Assumption 2. Likewise, it is imme-
diate that r2 is Lipschitz continuous in its second variable, and we get for
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all n and t that

n1/2
(
r2(t,Xn(t))− r2(t,Λ(t))

)
= 〈L2(t), Un(t)〉R2 for L2(t) :=

(
0

γ

)
,

so assumptions 2 hold, and we apply again Theorem 5.2. �

5.5. The Moran model. In this section we consider a biological model
known as the Moran model : in a population of size n, each individual bears
a gene liable to take two forms : A and B. Each individual has one single
parent and its child inherits the genetic form of its parent. To each couple of
individuals is associated an exponential clock of unit rate, and each time the
clock of a given couple rings, one element of the couple, drawn uniformly at
random, dies, while the other one gives birth to another individual bearing
the same gene. In addition, every gene of type A mutes independently to
type B at rate ν1 and every gene of type B mutes independently to type A at
rate ν2. For all t ≥ 0, we let Xn(t) denote the number of individuals bearing
gene A in the population at time t. The process Xn is scaled by dividing
by n the exponential rates, together with the number of individuals, so that
Xn(t) = Xn(t)/n represents the proportion of individuals carrying the gene
of type A at time t. A functional Stein method is applied to this model in
[32]. The following result is based on an alternative representation of the
process Xn,

Proposition 5.7. Let Λ be the solution in C ([0, T ]) of the integral equation

Λ(t) = Λ(0) +

∫ t

0
(ν2 − (ν1 + ν2)Λ(s)) ds, t ≥ 0.

with Λ(0) such that (i) of assumption 2 is satisfied. Then the following
convergence holds at the usual rate,

Un =
√
n
(
Xn − Λ

)
=⇒ Θ(Y ),

where for any process f , Θ(f) is the only solution of the SDE

y(t) = (ν1 + ν2)

∫ t

0
y(s) ds+ f(t), t ≥ 0,

and where

Y (t) = Y (0)+

∫ t

0

√
2Λ(s)(1 − Λ(s)) dB(s), t ≥ 0,

for B a standard Brownian motion.

Proof. For all n, at each given time s there are Xn(s)(n − Xn(s)) couples
gathering an ‘A-individual’ and a ‘B-individual’. Thus for all t ≥ 0, Xn(t)
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can be represented as

Xn(t) = Xn(0) +

∫ t

0

∫

R

1{z≤Xn(s)(n−Xn(s))} dN1(s, z)

−
∫ t

0

∫

R

1{z≤Xn(s)(n−Xn(s))} dN2(s, z)

+

∫ t

0

∫

R

1{z≤ν2(n−Xn(s))} dN3(s, z)

−
∫ t

0

∫

R

1{z≤ν1Xn(s)} dN4(s, z),

where Ni, i ∈ J1, 4K, denote four independent Poisson random measures of
unit intensity. Consequently we get that

Xn(t) = Xn(0) +
1

n

∫ t

0

∫

R

1{z≤nXn(s)(n−nXn(s))}
dN−1

1 (s, z)

− 1

n

∫ t

0

∫

R

1{z≤nXn(s)(n−nXn(s))}
dN−1

2 (s, z)+
1

n

∫ t

0

∫

R

1{z≤ν2(n−nXn(s))}
dN−1

3 (s, z)

− 1

n

∫ t

0

∫

R

1{z≤ν1nXn(s))}
dN−1

4 (s, z),

where N−1
i , i ∈ J1, 4K, are four independent Poisson measures of intensity

n−1 ds⊗ dz. We fall back into the settings of Section 5.1 for d = 1, m = 4,
ζ1 = ζ3 = 1, ζ2 = ζ4 = −1 and α1 = ... = α4 = −1. Assumption 1 holds for

r1(t, x) = r2(t, x) = x(1− x), t ≥ 0, x ∈ [0, 1],

which are Lipschitz continuous in their second variable, as for all x, y ∈ [0, 1]
and all t ≥ 0 we get

|x(1− x)− y(1− y)| ≤ 3 |x− y| .
Assumption 1 also obviously holds for

r3(t, x) = ν2(1− x) and r4(t, x) = ν1x t ≥ 0, x ∈ [0, 1].

On another hand, an immediate computation shows that for all x, y ∈ [0, 1],

y(1− y)− x(1− x) = (y − x)(1− 2x)− (y − x)2,

so (26) holds for




L1(t) = L2(t) = (1− 2Λ(t)), t ≥ 0,

L3(t) = ν2, L4(t) = −ν1, t ≥ 0,

En,1(t) = En,2(t) =
√
n(Xn(t)− Λ(t))2, t ≥ 0,

En,3(t) = En,4(t) = 0, t ≥ 0,

and from (23) we obtain that

E [‖ Ei,n ‖T,∞] . n−1/2, i ∈ {1, 2}.
So Assumption 2 holds, and we apply again Theorem 5.2. �

25



6. Limit theorem for Hawkes processes

In this section we turn to the cases of Hawkes processes. We let ϕ :
R+ → R+ be an integrable function, such that

(36) κ :=

∫ ∞

0
ϕ(t) dt < 1 and

∫ ∞

0
t1/2ϕ(t) dt <∞.

We denote by Φ the first primitive of ϕ:

Φ(t) =

∫ t

0
ϕ(s) ds, t ≥ 0.

We also need to consider the iterated convolution products of ϕ with itself:

ϕ(1) = ϕ and ϕ(k) = ϕ ∗ ϕ(k−1).

The function

ψ =

∞∑

k=1

ϕ(k)

plays an important role in the representation of the process to be defined
hereafter. Note that ∫ ∞

0
ψ(t) dt =

∑

k≥1

κk =
κ

1− κ
·

For µ > 0, according to [27, 34], there exists a point process N (unique in
distribution) such that N admits the intensity

t 7−→ µ+

∫ t

0
ϕ(t− s) dN(s).

In [1], it is proved that

(37) E

[
sup

v∈[0,1]

∣∣∣∣
1

n
N(nv)− ρv

∣∣∣∣
2
]
.

1

n
,

where ρ = (1− κ)−1µ. Furthermore, it is shown that

√
n

(
1

n
N(nv)− ρv

)
dist. in D−−−−−−→
n→∞

B

(
ρ

(1− κ)2
v

)
.

Our goal is to assess the rate of this convergence. Note that a similar
problem, at fixed time but for more general situation, was tackled by a
different method in [39]. To that end, we use a particular construction of N
based on a Poisson measure N of intensity measure ds⊗ dz. For all t ≥ 0,
we know from [34] and references therein, that we can write

N(t) =

∫ t

0

∫

R+

1{z≤µ+
∫ s

0
ϕ(s−u) dN(u)} dN (s, z).

Denote also

W (t) =

∫ t

0

∫

R+

1{z≤µ+
∫ s

0
ϕ(s−u) dN(u)} ( dN (s, z)− ds dz) ,

the corresponding compensated integral, so that W is a local martingale
with respect to the filtration induced by N :

Ft = σ
{
N ([0, s] ×A), 0 ≤ s ≤ t, A ∈ B(R+)

}
, t ≥ 0.
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For a process Z, we denote for all n,

Z(n)(t) = Z(nt), Z
(n)

(t) =
1√
n
Z(n)(t), Z̃(n)(t) =

1

n
Z(n)(t), t ≥ 0.

From [30, Theorem 10.27], we also know that for t ≥ 0,

W (n)(t) =

∫ t

0

∫

R+

1{
z≤µ+n

∫ s

0
ϕ(ns− nu) dÑ (n)(u)

} ( dN n(s, z) − n ds dz) ,

where N n is a Poisson measure of intensity n dt⊗ dz. These considerations
result in the following lemma,

Lemma 6.1. For all n ≥ 1, we have

KC1

(
Ξn(W

(n)
),Ξn(B ◦ γ)

)
. n−1/6 log(n),

where γ(t) = ρt, t ≥ 0.

Proof. Fix n ≥ 1. According to (37), Ñ (n) is asymptotically close to ρ, hence
we consider the process

R(n)(t) =

∫ t

0

∫

R+

1{

z≤µ+n

∫ s

0
ϕ(ns− nu)ρ du

}

(
dN n(s, z)− n ds dz

)

=

∫ t

0

∫

R+

1{
z≤µ+

∫ ns

0
ϕ(v)ρ dv

} dÑ n(s, z),

where Ñ n is the compensated Poisson measure of N n. We can apply The-
orem 4.7 to

R̂(n)(t) =

∫ t

0

∫

R+

1




z≤µ+

∫ +∞

0
ϕ(v)ρ dv







dÑ n(s, z)

=

∫ t

0

∫

R+

1{z≤ρ} dÑ n(s, z),

in view of the definition of κ and ρ, implying that

(38) KC1

(
Ξn

(
1√
n
R̂(n)

)
, Ξn (B ◦ γ)

)
. n−1/6 log(n),

We then control the distance between R(n) and R̂(n). For this, observe
that the Markov inequality implies that

∫ ∞

ns
ϕ(v)dv ≤ 1√

ns

∫ ∞

0

√
v ϕ(v) dv,

and hence
∫ 1

0

∫ ∞

ns
ϕ(v)dv .

1√
n
·
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According to the Burkholder-Davis-Gundy inequality, we obtain that

E

[
sup
t∈[0,1]

|R̂(n)(t)−R(n)(t)|√
n

]2
≤ E

[
|R̂(n)(1) −R(n)(1)|2

n

]

. ρ

∫ 1

0

∫ ∞

ns
ϕ(v) dv ds

.
1√
n
·

We now want to estimate the error made by considering R
(n)

instead of

W
(n)

. Let for all t ≥ 0,

r(t) = µ+ n

∫ t

0
ϕ(nt− ns) dÑ (n)(s),

ř(t) = µ+ n

∫ t

0
ϕ(nt− ns)ρ ds.

We have

‖Ξn(R
(n)

)− Ξn(W
(n)

)‖∞,1

≤ sup
i∈J0,n−1K

∣∣∣∣(R
(n) −W

(n)
)

(
i+ 1

n

)
− (R

(n) −W
(n)

)

(
i

n

)∣∣∣∣

+ sup
i∈J0,n−1K

∣∣∣∣(R
(n) −W

(n)
)

(
i

n

)∣∣∣∣

.
1√
n

sup
i∈J0,n−1K

∣∣∣∣∣

∫ i/n

0

∫

R+

(
1{z≤r(s)} − 1{z≤ř(s)}

)
( dN n(s, z) − n ds dz)

∣∣∣∣∣ .

Apply the Doob inequality to discrete martingale

k 7−→
(∫ k/n

0

∫

R+

(
1{z≤r(s)} − 1{z≤ř(s)}

)
( dN n(s, z) − n ds dz), i ∈ J0, n− 1K

)
,

to obtain that

E
[
‖Ξn(R

(n)
)− Ξn(W

(n)
)‖∞,1

]
.

1√
n
E

[∫ 1

0
|r(s)− ř(s)|n ds

]1/2

= E

[∫ 1

0
|r(s)− ř(s)| ds

]1/2
.

With the particular expression of r and ř, we get that
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E
[
‖Ξn(R

(n)
)− Ξn(W

(n)
)‖∞,1

]

≤ 1√
n
E

[∣∣∣∣
∫ 1

0
n

∣∣∣∣
∫ s

0
ϕ(ns− nu)( dÑ (n)(u)− ρ du)

∣∣∣∣ ds
∣∣∣∣
]1/2

≤ 1√
n
E

[∫ 1

0
n

∫ s

0
ϕ(ns− nu) d

∣∣∣Ñ (n)(u)− ρ du
∣∣∣ ds

]1/2

≤ 1√
n
E

[∫ 1

0
Φ(n(1− s)) d

∣∣∣Ñ (n)(s)− ρs
∣∣∣
]1/2

where the last two integrals are understood as integrals with respect to the
total variation of the process s 7→ Ñ (n)(s)− ρs. By integration by parts, we
then obtain

1√
n
E

[∫ 1

0
Φ(n(1− s)) d

∣∣∣Ñ (n)(s)− ρs
∣∣∣
]1/2

= E

[∫ 1

0

∣∣∣Ñ (n)(s)− ρs
∣∣∣ϕ(n(1 − s)) ds

]1/2
.

Thus, we have that

E
[
‖Ξn(R

(n)
)− Ξn(W

(n)
)‖∞,1

]
.κ E

[
‖
∣∣∣Ñ (n) − ρ.

∣∣∣ ‖∞,1

]1/2 1√
n
,

where κ =
∫∞
0 ϕ(u) du. Note that since Ñ is an non decreasing process,
∥∥∥
∣∣∣Ñ (n) − ρ.

∣∣∣
∥∥∥
∞,1

≤ Ñ (n)(1) + ρ = Ñ (n)(1)− ρ+ 2ρ.

In view of (37), we get

E
[
‖Ξn(R

(n)
)− Ξn(W

(n)
)‖∞,1

]
.

1√
n
·

Thus, we can substituteW
(n)

to R̂(n)/
√
n in (38), and the result follows. �

The convergence of N
(n)

follows from the representation formula estab-
lished in [1]. Let

X(n)(t) = N (n)(t)−E
[
N (n)(t)

]
, t ≥ 0.

According to [1, Lemma 4], we have for all t ≥ 0,

(39) X
(n)

(t) =W
(n)

(t) +

∫ t

0
nψ(ns)W

(n)
(t− s) ds.

The analysis of this identity is a bit tricky because the two terms of the
integrand do depend on n, so we cannot invoke the Lipschitz continuity of
a well chosen map.

Theorem 6.2. For all n ≥ 1 we have that

KC1

(
Ξn(X

(n)
), Ξn(B ◦ ζ)

)
. n−1/6 log(n)
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where for all t ≥ 0,

ζ(t) =
1

(1− κ)2
γ(t), t ≥ 0,

for γ(t) = ρt.

Remark 4. We are here limited to the Kantorovitch-Rubinstein distance
because we are going to use the convergence of first moments induced by the
K-topology, see (12), which is not valid for the other distances investigated
above.

The proof follows closely the lines of the proof of [1].

Proof of Theorem 6.2. Fix n ≥ 1, and take for granted that

(40) In := E

[
sup
t∈[0,1]

∣∣∣∣
∫ t

0
nψ(ns)W

(n)
(t− s) ds− κ

1− κ
W

(n)
(v)

∣∣∣∣

]
. n−1/4.

Then according to (39),

K

(
Ξn

(
X

(n)
)
, Ξn (B ◦ ζ)

)
. K

(
1

1− κ
Ξn(W

(n)
), Ξn(B ◦ ζ)

)
.

The result then follows from Lemma 6.1.
We now establish (40). According to the decomposition given in [1], for

any 0 < δ < η, we have

In ≤ E
[
‖W (n)‖∞,1

] ∫ ∞

δn
ψ(t) dt+E

[
αη(W

(n)
)
] ∫ ∞

0
ψ(t) dt.

Since the K-convergence implies the convergence of first order moments,

sup
n

E
[
‖W (n)‖∞,1

]
. E [‖B ◦ γ‖∞,1] .

In view of Theorem 3.4, we also have that

sup
n

E
[
αη(W

(n)
)
]
.ǫ E [αη(B ◦ γ)] . η1/2−ǫ

for any ǫ > 0. The integrability conditions (36) on ϕ and Lemma 5 of [1]
show that (t 7→

√
tψ(t)) belongs to L1(R+) hence, the Markov inequality

entails that ∫ ∞

δn
ψ(t) dt .

1√
δn

·

If we choose η = n−1/2 and δ = η/2, we get

In . n−1/4.

The proof is thus complete. �

7. Auxiliary result

Proposition 7.1. Let (Xi, i = 1, · · · , n) be an array of Poisson random
variables of parameter ν. Then we have that

E

[
max

i=1,··· ,n
Xi

]
≤ log(ne−ν)

log
(
log(ne−ν)

νe

)
− log log

(
log(ne−ν)

νe

) ,

for all n ≥ eν(1+e2).
30



Proof. Let Zi = Xi−ν for all i = 1, · · · , n. By a straightforward calculation,
for all i and all u ∈ R,

E
[
euZi

]
= e−uν

∞∑

k=0

euke−ν ν
k

k!
= exp (ν (eu − u− 1)) .

By Jensen’s inequality, we obtain that

exp

(
uE

[
max

i=1,··· ,n
Zi

])
≤ E

[
exp

(
u max

i=1,··· ,n
Zi

)]

= E

[
max

i=1,··· ,n
exp(uZi)

]

≤ E

[
n∑

i=1

exp(uZi)

]

= nE [exp(uZ1)] = n exp(ν (eu − u− 1)).

Taking the log, for any u in (0,+∞),

uE

[
max

i=1,··· ,n
Zi

]
− ν (eu − u− 1) ≤ log n,

so that

E

[
max

i=1,··· ,n
Zi

]
≤ inf

u∈R+

(
log n+ ν (eu − u− 1)

u

)
.

By differentiation, it is easy to check that the infimum above is reached at
u∗ ∈ (0,+∞) satisfying

(41) ν(u∗ − 1)eu
∗

+ ν = log n,

implying in turn that the infimum equals

(42) νeu
∗ − ν.

Now, let W be the Lambert function, defined by the equation W (x)eW (x) =
x for all x ∈ [−1/e,∞). Then, as (41) amounts to writing that

(u∗ − 1)eu
∗−1 = log(ne−ν)/(νe),

we obtain that

u∗ − 1 =W (a),

for a = log(ne−ν)/(νe). Plugging this into (42), and by the very definition
of W (a), we obtain that the infimum equals

νe1+W (a) − ν = νeeW (a) − ν =
νea

W (a)
− ν,

which implies that

E

[
max

i=1,··· ,n
Xi

]
= E

[
max

i=1,··· ,n
Zi

]
+ ν ≤ νea

W (a)
·

We conclude by observing that W (z) = log z − log(W (z)) for all z > 0,
implying in turn that W (z) ≥ log z − log log z for all z > e. Therefore, for

all n ≥ eν(1+e2) we get that W (a) ≥ log a − log log a, which concludes the
proof. �
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malliavin-stein method for hawkes functionals, arXiv preprint arXiv:2104.01583
(2021).
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