
HAL Id: hal-03276250
https://telecom-paris.hal.science/hal-03276250v1

Submitted on 1 Jul 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

Litmus-RT plugins for global static scheduling of mixed
criticality systems

Laurent Pautet, Thomas Robert, Samuel Tardieu

To cite this version:
Laurent Pautet, Thomas Robert, Samuel Tardieu. Litmus-RT plugins for global static schedul-
ing of mixed criticality systems. Journal of Systems Architecture, 2021, 118, pp.102221.
�10.1016/j.sysarc.2021.102221�. �hal-03276250�

https://telecom-paris.hal.science/hal-03276250v1
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr

Litmus-RT plugins for Global Static Scheduling
of Mixed Criticality Systems

Laurent Pautet, Thomas Robert, Samuel Tardieu
LTCI, Télécom Paris, Institut Polytechnique de Paris, Paris, France

Abstract

Global static scheduling for Mixed Criticality (MC) systems demonstrates excellent results in terms of acceptance ratio
and number of preemptions. But, no practical implementation and empirical evaluation have been presented yet for
multi-processors systems. Moreover, the new kernel mechanisms it would require have not been studied.

In this paper, we present two contributions on the implementation of global static schedulers For MC systems: G-
RES, a global table-driven reservations LITMUSRT plugin, and G-MCRES, another LITMUSRT plugin scheduling MC tasks
with global table-driven reservations and enforcing safe criticality mode changes. These contributions aim to solve the
problems of instantaneous migrations and simultaneous mode changes in the context of global static schedulers. We based
our experiments on scheduling tables generated off-line by GMH-MC-DAG, a meta-heuristic to schedule multiprocessor
systems composed of multi-periodic Directed Acyclic Graphs of Mixed Criticality tasks with multiple criticality levels.
The performances are very good w.r.t those of LITMUSRT and consistent with our temporal complexity evaluations.

Keywords: Mixed-Criticality Systems, Real-Time and Embedded Systems, High-Integrity Systems

1. Introduction

The adoption of multicore architectures in critical real-
time systems leads to sharing more and more functional-
ities within a common execution platform. In traditional
approaches such as the one proposed by the ARINC 653
architecture [7], in order to ensure safety constraints, only
functionalities of the same criticality level share resources.
This constraint limits the deployment of functionalities on
multicore architectures to partitioned approaches, leading
to a waste of resources [26]. To overcome this problem, the
mixed criticality (MC) model proposes to execute tasks of
different criticality levels on a common platform.

When a system runs in nominal mode, tasks are exe-
cuted with an “optimistic” budget such as the worst-cast
execution time (WCET) estimated by the system designer.
When a task does not complete its execution within its
optimistic budget, the system enters a higher criticality
mode. Typically, only higher criticality tasks continue to
run and use a “pessimistic” budget, such as the WCET
determined by a certification authority.

Many contributions for scheduling such systems on multi-
processor architectures have been proposed in the liter-
ature [5]. Although, at the margin, few contributions
demonstrate their survivability characteristics during run-
time [2], most of these approaches have not demonstrated
their usability in the critical systems industry. First, most
of them partition the multicore system into multiple single-
core subsystems at the cost of wasting resources. Second,
most of them do not consider dependent tasks, although

this model corresponds to the majority of industrial sys-
tems like those based on data flow graphs (SCADE, Simulink,
. . .). Third, the proposed scheduling algorithms may re-
quire significant modifications in an already certified real-
time kernel. Finally, the approaches are often complex,
not only because they integrate the complexity of mul-
ticore schedulers but also because they must ensure safe
changes of execution mode.

As a consequence, few or no practical implementation
and empirical evaluation have been presented yet. This is
a major concern since schedulability performances also de-
pend on scheduler implementation overheads. These over-
heads have many possible sources. In multicore platforms,
preemptions and migrations are the number one source of
issues. This paper aims at designing efficient execution
platforms for global MC schedulers. To illustrate the dis-
cussion, we propose as a case study the implementation of
GMH-MC-DAG1 on top of LITMUSRT. In other words, we
use the scheduling tables generated off-line by GMH-MC-
DAG as inputs to evaluate the proposed scheduler imple-
mentation.

GMH-MC-DAG is a good candidate for our study as
it defines a meta-heuristic to schedule multicore systems
composed of multi-periodic Directed Acyclic Graphs (DAG)
of Mixed Criticality (MC) tasks. This approach produces
offline scheduling tables supporting DAGs of real-time tasks
with more than two criticality levels as often proposed in

1For Generalized Meta Heuristic for Mixed-Criticality Directed
Acyclic Graphs

Preprint submitted to Elsevier July 1, 2021

standards related to dependable system (e.g . Design As-
surance Levels (DAL) in DO-178). GMH-MC-DAG also
relies on time-triggered scheduling to improve the certifia-
bility of the MC scheduler.

This paper is organized as follows. In section 2 we
give an overview of related works. Section 3 describes the
objectives of this contribution. In section 4, we give an
overview of our case study which consists in the execution
on top LITMUSRT of scheduling tables generated off-line
by GMH-MC-DAG algorithm. Section 5 presents our con-
tribution to LITMUSRT to support a global reservation-
based scheduling through our G-RES plugin. From this
first contribution, we describe in section 6 our G-MCRES
LITMUSRT plugin to enforce safe criticality mode changes,
and we discuss the temporal complexity of the overerall
solution. In section 7, we provide empirical overhead and
latency results on the implementation of these two plugins.
We conclude and give some perspectives in section 8.

2. Related Works

Supporting a very complete MC task model and pro-
viding an effective execution platform for it is an important
topic for the real-time system community. Many theoreti-
cal works but little practical implementations have already
been studied. First, we discuss the execution kernels that
can support mixed criticality systems. Second, we present
scheduling contributions that offer a rich MC task model
at a reasonable cost in terms of kernel implementation or
extension.

2.1. MC execution platforms
We choose to focus on kernel design issues for MC sys-

tems within the LITMUSRT platform. Indeed, LITMUSRT

is an open real-time kernel well known by the real-time
community, and is representative of the scheduling services
that might be already present in an existing real-time ker-
nel. Some prototypes of MC schedulers have already been
implemented on top of LITMUSRT such as MC2 [6].

An alternative to designing a complete MC kernel would
be to take advantage of an existing one and to modify it
as little as possible in order to limit the impact w.r.t. val-
idation and certification. In particular, [3] highlights how
a time-triggered kernel can provide enough support to in-
tegrate MC extensions by preserving certification prop-
erties. LITMUSRT actually comes with the P-RES plu-
gin which provides several budget reservation services for
mono-processors and in particular a table-driven reserva-
tion one. Note that the time-triggered approach can also
apply to a full time-predictable end-system with support
for deterministic communication [15]. In addition, not
only it is possible to benefit from a certified kernel but
also from an entire environment for modeling, analysis and
generation of high-integrity automatic code [9].

In section “System Issues” of [5], several solutions are
proposed to enforce MC features, that is for instance to

limit run-time overheads [8], to guarantee isolation [25]
and to prevent interferences [12]. However, to ensure such
properties, these platforms restrict the task model at the
cost of poor scheduling performances. For instance, most
of them target strongly partitioned MC systems.

LITMUSRT already supports MCS through MC2 plu-
gin [13, 6]. Yet, the MC2 platform considers partitioned
scheduling only for the two most critical tasks, and global
scheduling for soft real-time tasks (G-EDF). Hence, MC2
targets a trade-off that prioritize task isolation over schedul-
ing performances. Indeed, it has average performances
compared to state of the art MCS schedulers, [5]. For the
same reason, virtual machine based approaches or ARINC
partitioned systems introduce rather high overheads due
to the strong memory isolation mechanisms [25].

A promising approach would be to target time-triggered
(TT) kernels. [24] shows good results through an ap-
proach that generates scheduling tables. Yet, it is designed
for mono-processor platforms and does not scale well to
multi-core platforms. The same authors proposed an on-
line mechanism to incorporate MC aspects into TT tables
in [23]. This relies on unused time slots of high criticality
level tasks assigned to low criticality level tasks.

2.2. MC task models
Our objective aims at targeting a rich MC task model

to cover the kernel requirements needed to enforce MC
features. More specifically, we want to demonstrate that
multi-periodic DAGs of MC tasks with an arbitrary num-
ber of criticality levels can be executed by a global static
scheduler thanks to the addition of simple and inexpensive
mechanisms to these execution platforms.

Contributions considering MC tasks and multiple DAGs
are [1, 16] and [19] which compute federated schedulers,
a generalization of partitioned scheduling to DAGs. In
[1], the author proposes a federated approach transform-
ing the problem of scheduling multiple DAGs on a multi-
core architecture, to schedule a single DAG on a cluster
of cores of the multi-core architecture. However, we shall
see these partitioned approaches can be outperformed in
terms of schedulability performances. In [16] and [19], the
task model is very restrictive as all tasks of the DAG have
the same criticality HI or LO. At last, none of these ap-
proaches have been generalized to an arbitrary number of
criticality levels.

In a previous work [17], we proposed GMH-MC-DAG
which shows very good theoretical results in terms of schedu-
lability performances and task model supported. It out-
performs the partitioned approaches such as [1] in terms
of acceptance ratio. Moreover, GMH-MC-DAG relies on
time-triggered (TT) scheduling to improve the certifiabil-
ity of the MC scheduler. Compared to other TT solutions
such as [23], GMH-MC-DAG computes compatible schedul-
ing tables, one per criticality mode. It has better schedula-
bility performances as it does not rely on time slots that re-
mained unused. Compared to other scheduling algorithms,

2

it supports an arbitrary number of criticality levels. Over-
all, GMH-MC-DAG is a good candidate to evaluate how to
enrich an execution platform, in particular a TT one, to
make it a MC execution platform.

2.3. Case study
While LITMUSRT is a very complete real-time kernel,

it does not support global static scheduling, that is table-
driven reservations over multiple processors. Moreover,
most of the MC plugins support partitioned scheduling.
They do not support global mode change, that is a syn-
chronized mode change over multiple processors. These
two limitations are the motivations for our contributions.
We use GMH-MC-DAG to illustrate them as it appears a
good case study that enforces a complete MC task model
without compromising the effectiveness of the execution
platform. In our evaluation, the scheduling tables per pro-
cessor and per mode generated off-line by GMH-MC-DAG
will be used as an input.

3. Problem Statement

This section highlights two major issues when it comes
to implement efficient mixed criticality schedulers.

From now, we use processor to designate the computing
unit running a task let it be a core, a core thread or a pro-
cessor in a multi-processor platform. Indeed, most global
algorithms rely at some point on a global state transition.
Such a transition often relies on scheduling event handlers
that are atomic (and thus mutually exclusive to each other
among processors). An alternative approach, the one we
favor, requires to handle these events concurrently and
thus support to some extent parallelism on scheduler state
update. Such an implementation has to show that it pre-
serves the consistency of the global scheduler state.

3.1. Overhead issues with global schedulers
[5] is the most up-to-date survey of MC models. Solu-

tions inspired from global schedulers offer the best schedu-
lability acceptance rate, i.e. the likelihood that the sched-
uler can ensure that deadlines are met for a given task set.
Indeed, using a partitioned scheduling algorithm would in-
troduce too many constraints to a system already strongly
constrained as it first requires to assign tasks on proces-
sors.

Yet, the schedulability performance is not the only con-
cern: schedulability also depends on overheads and behav-
iors at runtime of the scheduler implementation. These
overheads have many sources but on multi-processors plat-
forms, preemptions and migrations are the number one
source of issues. Migrations in multi-processor schedulers
are by nature distributed phenomena: a task is interrupted
on a processor and resumes its execution on another one.
The scheduler state has to maintain ready queues to iden-
tify which task could be ready to run if a processor is avail-
able. Conversely, each processor has to remember which

task is currently running. Hence, its state is by nature
distributed and state changes may happen concurrently,
which represents a major risk of data races if not managed
well.

Compared to partitioned schedulers, global schedulers
may be valid theoretically but difficult to implement cor-
rectly. In a global scheduler with scheduling tables such as
GMH-MC-DAG, a task may be suspended on one processor
to be resumed on another processor at the same time. An
inconsistency may arise if the second processor activates
the next time slot of the task while the previous time slot
has not been completed yet.

Research Objective RO1: As global schedulers in-
cur many scheduling events that may occur simultaneously
such as preemptions and migrations, would it be possible
to implement the required state changes without mutu-
ally exclusive operations entailing costly synchronizations
at the scale of the multi-processors system?

In particular, in the context of global table-driven sched-
ulers, would it be possible to enforce an efficient and con-
sistent migration of a task that suspends at the end of a
time slot on a given processor to resume its execution in-
stantaneously after at the start of the next time slot on
another processor?

3.2. Synchronization issues during mode change
Theoretically, a mode change occurs simultaneously on

all the processors in the MC system. In most schedulabil-
ity analyses, the mode change cost is overlooked despite
that it clearly incurs complex synchronization. First, this
mode transition may induce an asynchronous rescheduling
operation across all processors. Second, this rescheduling
operation may happen on a processor which is already in-
volved in a scheduling operation. At last, these reschedul-
ing operations have to be managed simultaneously making
it more complex to implement with non-atomic mutually
exclusive primitives.

Research Objective RO2: Compared to partitioned
MC schedulers, would it be possible to efficiently imple-
ment a mode transition that occurs simultaneously on all
processors and concurrently to other scheduling operations
without mutually exclusive operations entailing costly syn-
chronizations at the scale of the multi-processors system?

In particular, in the context of global table-driven sched-
ulers, would it be possible to enforce an efficient and consis-
tent mode transition consisting in a synchronized change of
scheduling tables? One problematic situation could occur
when two simultaneous mode change requests are triggered
by simultaneous budget overruns of two different tasks.
While the system runs at criticality mode χ`, these two
tasks can transition the system to criticality mode χ`+2

instead of χ`+1.
List of contributions
To answer the two research objectives described above,

we propose two contributions:

3

• The first kernel mechanism is related to instanta-
neous task migrations and cyclic instantaneous mi-
grations that have to be handled properly to avoid
global deadlocks. It has been implemented in LITMUSRT

as the G-RES plugin.

• The second mechanism is related to a safe but effi-
cient implementation of mode changes that can han-
dle multiple simultaneous budget overruns. It has
been implemented in LITMUSRT as the G-MCRES
plugin.

4. Background

In this section we introduce the task model we are tar-
geting, then we present previous results related to GMH-
MC-DAG scheduling on N -criticality systems. For more
details, the reader should refer to [17] for the core ap-
proach and to [18] for the extensions (N criticality levels
and optimizations of the offline part). Finally, we discuss
the issues in supporting the online part of GMH-MC-DAG
on a representative real-time kernel such as LITMUSRT.

4.1. Task Model
A Mixed-Criticality System (MCS) is defined as a tu-

ple S = (Π, CL,G). Π is a homogeneous multi-processor
architecture. |Π| = m is the number of available proces-
sors on the platform. CL = {χ1, . . . , χN} is the ordered
set of tasks criticality levels, each corresponding to a criti-
cality mode as well. The system starts its execution in the
lowest criticality mode χ1. G = (V, E) is a graph struc-
tured set of independent DAGs. A Mixed-Criticality Di-
rected Acyclic Graph (MC-DAG), Gg ∈ G, represents a
program being executed in system S. It is defined by a
tuple: Gg = (Vg, Eg, Tg, Dg) where Vg ⊆ V, Eg ⊆ E , and
∀Gg, Gg′ ∈ G, Vg ∩ Vg′ = ∅, Eg ∩ Eg′ = ∅. Vg is the set of
vertices of the MC-DAG. Each vertex is a MC task exe-
cuted by the program. Eg ⊆ (Vg × Vg) is the set of edges.
Edges represent precedence constraints between two tasks.
A task is ready to be executed as soon as all of its prede-
cessors have completed their execution. Tg is the period of
the graph, i.e. tasks without predecessors become active
again once this period has been reached. The system is
therefore periodic. Dg is the deadline (constrained or im-
plicit) of the graph, i.e. all tasks of the graph need to be
executed before this deadline.

Each vertex of the MC-DAG corresponds to a MC task,
τi ∈ V , defined as follows τi = (χi, Ci(χ1), . . . , Ci(χi)).
χi ∈ CL is the criticality level of the task. Ci(χ1), ..., Ci(χi)
is the vector of WCETs of the task. {Ci(χ`) ∈ N | ∀χ` �
χi, Ci(χ`) = 0}. We consider the discard MC model, the
task is not executed on criticality levels that are higher
than χi. We assume that Ci(χN) is monotonically increas-
ing when N increases. In a multi-periodic system a task
can have multiple activations, ji,k is the k-th job of task
τi. ri,k = k × T (resp. di,k = k × T + D) is the release
time (resp. deadline) of the k-th job of task τi.

When a job ji,k does not complete after having exe-
cuted for Ci(χ`) time units, a budget overrun is detected
and the system makes a mode transition to mode χ`+1.
All the tasks τj with χj ≤ χ` are discarded.

4.2. GMH-MC-DAG Scheduler
In this section, we give a short overview of GMH-MC-

DAG in order to detail the objectives of this contribution.
GMH-MC-DAG is decomposed in an offline computation of
scheduling tables and an online execution of these schedul-
ing tables on a Time Triggered kernel [14].

The offline scheduler requires to compute scheduling
tables respecting constraints that are described below. In-
teger linear or constraint programming [21] are some of the
techniques used for this purpose. In order to avoid scalabil-
ity issues, GMH-MC-DAG builds these tables by statically
applying the G-EDZL online global scheduling algorithm
[22]. This algorithm demonstrates a good acceptance ratio
and a reasonable number of preemptions. This last crite-
ria has a major performance impact on the memory size
required to store the tables. As said above, the scheduling
tables, one per criticality level, are built to enforce several
constraints and optimizations that we describe in the next
paragraphs.

For a criticality level χ`, each task τi of criticality level
χi ≥ χ` must be capable of executing within their Ci(χ`)
without missing its deadlines. This must also be guaran-
teed when the system performs a mode transition to crit-
icality mode χ`+1. To achieve this safe mode transition,
GMH-MC-DAG enforces a first constraint: at any time t
while a job of task τi has not been fully allocated in mode
χ`, the budget allocated to this job in mode χ` up to t
must be greater than the one allocated to it in mode χ`+1

up to t. Intuitively this guarantees that whenever a bud-
get overrun occurs, the final budget allocated to the job of
τi is at least equal to its budget in mode χ`+1.

This requirement is illustrated in figures 1 and 2. On
the scenario shown in figure 1 a criticality mode change
affecting task τi can happen either at 50ms if the task
has not completed its job (budget overrun), or at any time
before this date because of another task exhausting its own
budget. A switch from mode χ` to mode χ`+1 guarantees
that task τi will always be able to use a budget of Ci(χ`+1)
(60ms) if it is needed.

Similarly, on the scenario shown in figure 2 a criticality
mode change affecting task τi can happen at 70ms or ear-
lier. However, if the switch from mode χ` to mode χ`+1 oc-
curs between 10ms and 30ms or after 50ms, the total bud-
get available to task τi will be less than Ci(χ`+1) (60ms).
For this reason, the GMH-MC-DAG offline scheduling algo-
rithm will never produce such a configuration.

A second constraint aims at ensuring that all prece-
dence constraints are respected in any criticality mode and
mode transition. To do so, the task deadlines are refined to
ensure that data produced by the tasks of χ`-criticality (or
lower) will be available when the χ`+1-criticality succes-
sors start their execution. With such constraints, a mode

4

0ms 10ms 20ms 30ms 40ms 50ms 60ms 70ms 80ms

Ci(χ`) = 40 ms τi τi
overrun

Ci(χ`+1) = 60 ms τi τi

Period (80ms)

Budget for τi
60ms

80ms

Instant of χ` → χ`+1 mode change

Figure 1: Budget guarantee after a mode change

0ms 10ms 20ms 30ms 40ms 50ms 60ms 70ms 80ms

Ci(χ`) = 40 ms τi τi
overrun

Ci(χ`+1) = 60 ms τi τi

Period (80ms)

Budget for τi
50ms

60ms

Instant of χ` → χ`+1 mode change

Figure 2: Insufficient budget after a mode change

transition consists only in a table transition if we disregard
implementation issues, and precedence constraints are sat-
isfied by construction.

Optimizations will mainly influence the acceptance rate,
but they also have an impact on the number of preemp-
tions and migrations and must be taken into account from
an implementation point of view. For this reason, GMH-
MC-DAG statically applies G-EDZL as global scheduling
algorithm to build scheduling tables.

With this brief description of the offline building pro-
cess of GMH-MC-DAG, we can now focus on the research
objectives related to the required execution platform.

4.3. LITMUSRT Environment
LITMUSRT is a soft real-time extension of the Linux

kernel with focus on multiprocessor real-time scheduling.
It provides numerous plugins implementing a large class
of scheduling algorithms from the partitioned ones to the
global or hybrid ones. It comes with a simple interface
to design user-defined schedulers and a set of standard
real-time components such as queues, timers or spinlocks.
In particular, LITMUSRT P-RES plugin supports table-
driven reservations, which can be used to implement time-
triggered scheduling.

A vast collection of mixed criticality scheduling algo-
rithms have also been developed on top of LITMUSRT. It
is an excellent platform to evaluate scheduler implementa-
tions and overheads but also to compare them with other
alternatives. As we want to evaluate the design complexity
and the overhead factors, we chose LITMUSRT as a base

for our experimentation. We use the scheduling tables pro-
duced by GMH-MC-DAG as inputs to our contributions.

5. G-RES Plugin

As already said, we have to schedule table-driven peri-
odic tasks on multiple processors. LITMUSRT does already
support reservation based scheduling through the P-RES
plugin and proposes three policies, periodic polling, spo-
radic polling and table-driven. This implementation en-
forces only partitioned schedules of tasks on multiprocessor
architectures. Thus, it does not have to deal with issues
raised when migrating threads or sharing reservations be-
tween processors (threads embody tasks in LITMUSRT).
We enriched the concepts provided in P-RES to enable
global table-driven scheduling. This section explains how
we extended this plugin and especially how we dealt with
concurrency issues.

5.1. P-RES limitations
Table-driven schedules are usually described without

loss of information over the hyper-period of the task set it
handles (the least common multiple of task periods) as a
sequence of intervals bound to tasks and processors. For
each task, the sequence of intervals during which a task
is scheduled in the table may potentially represent several
jobs. P-RES uses the LITMUSRT task structure to which
it attaches one reservation. Basically, the task structure
defines the period at which jobs are activated. It is im-
plemented in LITMUSRT with a thread that repeatedly
executes the job body and then waits for its next activa-
tion. The task is in the suspended state meanwhile. The
purpose of a reservation attached to a task is to store the
schedule table description of the task. For example, on the
scenario shown on figure 3, the reservation for the task τ1
would contain the three intervals representing its two jobs
j1,1 and j1,2 over the hyper-period.

0ms 20ms 40ms 60ms 80ms 100ms 120ms

CPU 1 τ1/j1,1
τ1/
j1,2

τ1/j1,2

τ1 period (60ms) τ1 period (60ms)

τ3/
j3,1

τ3/
j3,2

τ3 period (60ms) τ3 period (60ms)

CPU 2 τ2/j2,1 τ2/j2,2 τ2/j2,3

τ2 period (40ms) τ2 period (40ms) τ2 period (40ms)

Hyper-period (120ms)

Figure 3: Relation between tasks (τ), jobs (j), periods and hyper-
periods in P-RES

Definition 5.1. A P-RES reservation binds a sequence of
disjoint time intervals, and a processing unit (CPU) iden-
tifier.

5

A reservation aims at scheduling a task at an instant
t when it fulfills two conditions: that of being ready (not
waiting on an event) and that of having an execution inter-
val assigned to it (a reservation interval). In LITMUSRT,
ready queues are the main structures used to elect the
tasks to be executed on a CPU. In P-RES, the election
process is decomposed in two steps. Each CPU determines
locally which reservation is active. Reservations bound
to the same CPU are assumed to have mutually exclusive
intervals. Hence, only one reservation is active at most.
Once found, the reservation ready queue is used to deter-
mine which task bound to the reservation is active. While
a reservation can be bound to many tasks, in order to im-
plement an actual table-driven schedule, each reservation
should initially be bound to only one task. This decompo-
sition aims at reducing the scheduling overheads and the
time spent in critical sections of the scheduler implemen-
tation. As reservations are bound to a single CPU and
at most one reservation is bound to a task, no particu-
lar verification is done to check whether a task could be
scheduled on two CPU simultaneously as it cannot happen
by construction (partitioned scheduling). However, any
global table-driven scheduling is required to prevent such
a situation that might happen during an instantaneous
migration.

Definition 5.2. An instantaneous task migration requires
that a task resumes its execution on CPU 2 instantaneously
after suspending its execution on CPU 1.

In a global table-driven schedule, such an instanta-
neous migration may occur when a reservation contains
two intervals I and J on two different CPUs with a common
upper and lower bound respectively (Sup(I) = Inf(J)).
I and J are theoretically disjoint but may be adjacent. In
this context, the actual start of the execution in interval
J should only be allowed if the task has suspended its ex-
ecution in interval I and its state is stored in memory to
be restored on the other CPU. This is for example what
happens in the scenario presented on figure 4 at the 90ms
instant: the task τ1 migrates from CPU 2 to CPU 1.

0ms 20ms 40ms 60ms 80ms 100ms 120ms

CPU1 τ1/j1,1

τ1/
j1,2

τ1/j1,2

τ1 period (60ms) τ1 period (60ms)

CPU2 τ2/j2,1

τ2/j2,2

τ2/j2,3

τ2 period (40ms) τ2 period (40ms) τ2 period (40ms)

Hyper-period (120ms)

Figure 4: Migrating tasks in G-RES

An instantaneous migration can also be triggered as
a side effect of the jitter observed when handling time-
related events on different CPUs. We can have Sup(I) <
Inf(J) but Inf(J) − Sup(I) ≤ δt where δt represents

a small mismatch in local clock states at the time the
scheduling events corresponding to the end of the I in-
terval and the beginning of the J interval are handled. In
this case, an instantaneous migration will occur as well.

These synchronization issues during instantaneous mi-
grations can have even worse consequences in the case of
cyclic instantaneous task migrations.

Definition 5.3. A set of cyclic instantaneous task migra-
tions is a set of instantaneous migrations that occur at the
same theoretical time, and that result from a permutation
of the tasks on the cores on which they were executing.

To give an example, such a situation arises when at
time t, τ1 migrates from CPU1 to CPU2 and τ2 from
CPU2 to CPU1. In LITMUSRT, before descheduling its
current task τi to execute another one τj , a CPU waits un-
til τj is ready and possibly descheduled by another proces-
sor. If instantaneous migrations are not properly handled,
cyclic instantaneous migrations would result in a dead-
lock detected but not recovered. Indeed, CPUs would be
waiting for each others to deschedule the task they want
to schedule. One may argue that such cyclic migrations
should be prevented. But in practice, not supporting such
migrations would lessen the performances of static schedul-
ing such as GMH-MC-DAG. Thus we made it possible to
support them.

P-RES does not provide any support to handle instan-
taneous migrations or cyclic instantaneous migrations, but
LITMUSRT offers reasonable primitives to handle such is-
sues for usual task migrations (those not bound to reserva-
tions). This led us to develop a new plugin, called G-RES,
implementing a global reservation-based scheduling. We
first extend the definition of reservation.

Definition 5.4. A G-RES reservation is a sequence of or-
dered pairs of intervals and CPUs (Ii, CPUi)i∈{1,...,k}, the
intervals being disjoint from each other.

In order to schedule such reservations, we need to ex-
plain how we support instantaneous migrations and cyclic
instantaneous migrations and what the main latency sources
are.

5.2. Main latency sources
On real hardware with CPU cores operating autono-

mously from each other and communicating through asyn-
chronous inter-processor interrupts, several latency sources
make the migration non-instantaneous as illustrated in fig-
ure 5. In this scenario, a task τ1 should migrate from
CPU 1 to CPU 2 at instant T . The first source of latency
is the delay th between the date at which the Linux kernel
high-resolution timer has been set and the date at which
the timer handler H1 for task τ1 is executed. The handler,
which runs on an unspecified CPU ξ, realizes that τ1 must
migrate from CPU 1 to CPU 2. It asynchronously sends
a rescheduling request to CPU 1 which is handled after a
delay td as well as a rescheduling request to CPU 2 which

6

is handled after a delay ts. CPU 2 must wait an extra time
tw until it is able to observe that CPU 1 has descheduled
the task τ1, as a task can never be running on two cores
at the same time.

CPU ξ H1

CPU 1 τ1

CPU 2 τ1

th

te

tL

td

ts tw

T

Figure 5: Main sources of latency during a CPU migration

After the migration process is complete, task τ1 has
run on CPU 1 until date T + te and runs on CPU 2 since
date T+tL. Hence, tL−te is the overhead of our scheduler
for task τ1.

Section 7 contains experimental measurements of those
latencies in our testing environment.

5.3. Support for cyclic instantaneous migrations
When using LITMUSRT with any of its plugins as a

kernel scheduler, the scheduling decision on a processor is
made in 3 steps:

1. The Linux kernel informs the LITMUSRT scheduler
that a local scheduling decision must be made. The
LITMUSRT scheduler informs its currently active plu-
gin, in our case G-RES, that a local scheduling deci-
sion must be made. The plugin selects the next task
to run on the current processor, or none if no tasks
are ready to execute, and informs the LITMUSRT

scheduler.
2. The LITMUSRT scheduler checks if the requested task

is already being scheduled on another processor. If it
is the case, LITMUSRT calls the plugin to let it decide
whether it gives up its choice, i.e. schedule nothing
right now, and requests a rescheduling event as soon
as the current one is completed (i.e., up to step 3).
If it does not give it up, it waits for the requested
task to be relinquished.

3. Once the requested task is available for scheduling,
or if there is no task to schedule, the LITMUSRT

scheduler informs the Linux kernel of this decision.
The Linux kernel deschedules the task currently run-
ning on the processor and schedules the requested
task if one has been chosen, or a non-real-time task
such as the "do-nothing" idle task otherwise.

When a processor tries to schedule a task that is still
running on another processor, to enforce an instantaneous

migration, at step 2, the G-RES plugin indicates that the
processor wishes to temporarily give up on its current re-
quest and requests a new scheduling phase to be started
as soon as possible. It then proceeds to step 3 with no
task to schedule. When the request for the rescheduling
event issued at step 2 is processed, the plugin asks for the
exact same task that in step 1. This time, it will not give
it up in step 2 as it cannot be responsible for the deadlock
anymore: the task the plugin was previously executing has
already been descheduled.

In the next section we show how the G-RES plugin is
used as the foundation for the G-MCRES plugin to support
a MC global static scheduler and especially mode transi-
tions.

6. G-MCRES Plugin

This section describes the core features required to en-
force mixed criticality global static scheduling. It explains
why a budget overrun is easier to detect in the case of
table-driven schedulers, and how we implement system-
wide criticality mode changes in both directions in our
G-MCRES plugin for LITMUSRT.

We also show how our approach guarantees the correct-
ness of a mode change even in the presence of simultaneous
or near-simultaneous scheduling events. Then we evaluate
the temporal complexity of the worst-case mode change.

6.1. Per-mode scheduling tables and budget overrun detec-
tion

In our implementation, each task τi is described by a
table containing the task reservations for each criticality
mode {χ1, χ2, . . . , χi} it can be scheduled in. Each reser-
vation is bound to a task and a criticality mode. It de-
scribes the task behavior over the hyper-period of the task
set computed by GMH-MC-DAG in the mode it is bound
to (see section 5). When the task set is initialized, the
scheduler goes through the list of tasks and registers the
reservations bound to the lower criticality mode χ1.

In section 4.1 we explained that a MC task τi has to
be scheduled in all modes up to its criticality level χi. At
any time t, a running task τi triggers a budget overrun de-
tection in the current execution mode χc when its current
job execution time reaches Ci(χc) before the job has been
signaled as completed. Job completion states are closely
monitored by LITMUSRT, and we only have to check them
when budget overruns might occur.

Detecting a budget overrun when using a preemptive
priority-based scheduler is costly as it requires to precisely
keep track of the amount of processing power a task has
used so far and permanently readjust the estimation of
when the next budget overrun would happen. On the con-
trary, in table-driven approaches such as GMH-MC-DAG
budget overruns can only occur at the end of the last in-
terval allocated to each job of a task over its hyper-period.
In figure 4, the overruns of task τ1 may occur at instants

7

45ms (end of job j1,1) and 120ms (end of job j1,2) but not
at instant 90ms (job j1,2 still has 30ms of budget left).

In G-MCRES we identify and tag those intervals in a
task reservation when the task first enters the system. G-
RES triggers a timer event at the boundaries of every in-
terval. While handling an end-of-interval event, we only
have to check the status of the job. If the job is still active
and the current interval is tagged as the last one available
to a job, we have identified a budget overrun, and it might
require a system criticality mode increase. However, care
must be taken to account for the possibility of simultane-
ous (or near-simultaneous) budget overruns detections on
different processors.

6.2. System criticality modes and mode changes
A shared variable scm (shared current mode) is used

to store the value of the current mode of execution2. It
is used to synchronize the update of the set of reservation
tables that are active in the G-MCRES plugin. As scm
tracks the current mode χc of the system, it is monotoni-
cally increasing during an hyper-period. In addition, each
processor k has a processor-local variable lcm[k] (local
current mode) that indicates the criticality mode in which
the processor is currently working. Also, a shared integer
variable ac (access counter) initialized at 0 represents the
number of processors concurrently trying to increase the
shared criticality mode in response to a budget overrun.

We update the local and shared variables when budget
overruns occur. The purpose of adding a processor-local
variable is to be able, for each processor that would detect
an overrun, to associate this overrun with the criticality
mode it occurred in.

As explained before, a budget overrun is always de-
tected in a timer handler corresponding to an end-of-interval
event. This timer handler, which is called from an inter-
rupt service routine on processor k (which might or might
not be the processor on which the job is currently execut-
ing), runs the code described in algorithm 1. This algo-
rithm uses two kind of atomic operations to ensure syn-
chronization between processors in case of multiple con-
current executions:

• CAS(a, b, c): the compare-and-set operation checks
that a is equal to b, and if this is the case it sets a to c
and returns true; otherwise it lets a untouched and
returns false. This sequence of operations happen
atomically with regard to multiprocessing.

• INC(j)/DEC(j): atomically increment/decrement an
integer shared variable with regard to multiprocess-
ing. If two processors execute any of those two op-
erations simultaneously, they are automatically seri-
alized.

This algorithm guarantees the following properties:

2We will see in section 6.3 this is a partial view of the real content
of the scm variable. The extra piece of information stored within scm
is not relevant to the algorithm presented here.

Algorithm 1: Mode change function in response
to a budget overrun
1 INC (ac)
2 if CAS (scm, lcm[k], lcm[k] +1) then
3 deactivate reservation tables of mode lcm[k]
4 activate reservation tables for mode scm
5 request rescheduling of every processor
6 DEC (ac)
7 else
8 DEC (ac)
9 request local rescheduling

• If two processors j and k with lcm[j]=lcm[k]=scm
call this function, only one of them will see a suc-
cessful execution of the CAS operation at line 2 and
will be in charge of implementing the mode change
by updating the reservation tables. In other words,
even multiple budget overruns occurring simultane-
ously or near-simultaneously at criticality mode Ck

will cause only one increase of the criticality mode
to Ck + 1.

• If any processor j with lcm[j]<scm calls this func-
tion, the CAS operation at line 2 will fail, and it will
not change the reservation tables. In other words,
if a processor is not yet aware of a recent critical-
ity mode increase, it might trigger a budget overrun
related to an obsolete reservation description. Yet,
it will not modify the current mode as this mode
change has already been accounted for.

The G-MCRES scheduling algorithm used to select the
task to run on a processor k apart from mode changes may
run concurrently to a mode change occurring at the initia-
tive of another processor. This algorithm is described in
algorithm 2 and is called by LITMUSRT after having tem-
porarily masked all interrupts on processor k. This means
that a timing event occurring locally will not interrupt this
algorithm and will be handled as soon as interrupts are en-
abled again and before executing any non-kernel code.

Algorithm 2: Scheduling function for processor
k
output: The elected reservation to run if any

1 lcm[k] ← scm
2 if ac 6= 0 then
3 restart at line 1

4 selected ← gres_select_task ()
5 if lcm[k] 6= scm or else ac 6= 0 then
6 restart at line 1

7 return selected

This scheduling function starts by updating its local
criticality mode to use the same value as the shared one

8

and waits for it to stabilize in case a mode change is in
progress (checking the ac variable). At line 4, it uses the
G-RES function that returns the next task to schedule on
the current processor according to the active reservation
tables. A side effect of function gres_select_task is to
take care of setting up the timers used to detect the end
of the current interval for the elected task. Remind those
timers are also used to detect a budget overrun if the task
does not complete before the last interval of its current
job. No need to lock the access to scheduling table in this
function because we check at the end that the timer con-
figuration enforced is up to date. Indeed, before returning
the selected task, we check that a mode change has not
taken place or has not been started while using the G-RES
selection algorithm. If such an event occurred, we restart
the selection process to ensure that we have not worked
with reservation tables in an inconsistent state.

The algorithms presented in this section do not deal
with the possibility of lowering the system criticality mode.
Indeed, we will show in the next section that restoring the
regular behavior of the system is a much simpler operation
that does not require any explicit synchronization between
the processors.

6.3. Criticality mode reset
Once the criticality mode has been raised after the de-

tection of one of several budget overruns, it needs to be
reset to its lowest χ1 value in order to return the system
to its nominal behavior. In work conserving schedulers in
which processor cores will be idle only if no task is ready
to run, the transition to χ1 usually happens when all cores
are idle [20].

However, in table-driven schedulers this property does
not necessary hold, as tasks are executed in their predeter-
mined time windows rather than as fast as possible. The
most appropriate time to reset the criticality mode to χ1

is at the end of the current hyper-period, as the scheduling
algorithm guarantees that all tasks whose criticality level
is greater or equal than the current criticality mode have
received their full execution budget.

In order to avoid a costly synchronization amongst all
processors to reset the scm shared variable at the end of
the current hyper-period, we have extended it with gen-
erational information: scm and the various lcm[k] con-
tain in their most significant bits the hyper-period num-
ber (counting from 0 when the system starts) at which the
latest change has been made, as shown in figure 6.

63

Hyper-period
generation

10 9

System
criticality
mode

0Bit

Figure 6: Encoding of the hyper-period generation

The current hyper-period generation can be easily com-
puted at any time by dividing the system clock by the value

of the hyper-period. By comparing the current hyper-
period generation with the one encoded in scm, a processor
can locally determine whether the system criticality mode
is χ1 or if the lowest bits of scm must be used. The value of
lcm[k] is checked against the current hyper-period when
entering the scheduling function on core k. If the stored
lcm[k] corresponds to an earlier hyper-period, it gets re-
set to the value corresponding to the current hyper-period
generation and criticality mode χ1. This operation re-
quires no synchronization with the other cores.

Algorithms 2 and 1 can be used as-is as the usual un-
signed integer comparison function can be used to compare
two extended values: a greater value either corresponds to
a later hyper-period, or it corresponds to the same hyper-
period with higher criticality mode. Since in a given hyper-
period the system criticality mode can only be increasing,
the greatest of two extended values represents the latest
explicit criticality mode change in the system.

The choice of using 10 bits for the system criticality
mode and 54 bits for the hyper-period when running on
a 64 bit system is arbitrary, and it can be tuned at com-
pile time. This particular setting allows using up to 1024
criticality modes for more than 5,000 years with an hyper-
period duration is as short as 10µs. Should our plugin be
run on a 32 bit system with no 64 bit atomic access, us-
ing 4 criticality modes and 100ms hyper-period would still
allow the system to run for more than 3 years. If longer
time spans, shorter hyper-periods or a greater number of
criticality modes were necessary, the comparison opera-
tions could easily be enhanced to handle the wrap-around
of the unsigned integer representing the hyper-period gen-
eration.

The reservations mentioned in section 6.2 are also struc-
tured in a way that the latest hyper-period interval in a
task reservation at any criticality mode branches to the
first interval at criticality mode χ1. It ensures that un-
less another budget overrun increases the system criticality
mode every task will be back to the lowest criticality mode
after the end of the current hyper-period. Also, the timer
associated with a task whose criticality level is lower than
the current criticality mode will be configured to trigger at
the time of the beginning of the first interval at criticality
mode χ1 in the next hyper-period.

After having shown that resetting the criticality mode
to χ1 after a criticality mode increase does not require
any synchronization operation between the different pro-
cessors at the end of the hyper-period, we will now present
a breakdown of the latency of a criticality mode increase.

6.4. Temporal complexity of criticality mode changes
Our approach introduces overheads during the calls to

the scheduling and mode change functions that are exe-
cuted at the end of each interval of task reservations. Yet,
these events can occur simultaneously and represent global
changes to the scheduler state. We make a distinction be-
tween the latency of these transitions and their overhead.

9

On the one hand, the overhead is a meaningful parame-
ter when assessing the system performances in the absence
of mode changes. On the other hand, the latency, which
represents the total delay between the start of the mode
change and its completion on all the processors, has a sig-
nificant impact because it delays the time at which all
cores are running the tasks corresponding to the new criti-
cality mode. During this delay, all the other processors are
potentially wasting their time and energy, either by still
executing prior tasks that may be discarded in the next
mode, or by actively waiting for the reservation tables to
be updated.

Criticality mode changes interact with the scheduling
functions as in the worst case they can trigger the reschedul-
ing of all the cores. We will first discuss more in detail the
latency of migrations without mode changes. The worst
case situation is caused by a cyclic instantaneous migra-
tion of all tasks. In these conditions, the latency is the
maximum latency for all the tasks involved in the migra-
tion. In order to capture the total latency, we need to
account for:

• The scheduling of all the timer handlers: in the worst
case, each core is executing a task, and those tasks
all simultaneously reach the end of their time inter-
val, triggering the execution of a timer handler. In
the worst case, all these timer handlers would all
be scheduled on the same core as a single event. It
means that this core would incur an overhead pro-
portional to the number of cores (times the overhead
of a single timer handler) but also that the last han-
dler sees its execution delayed by this overhead.

• The re-execution of gres_select_task(): this func-
tion is in charge of telling the Linux kernel which
task should run now on the current core so that the
kernel can perform a context switch if needed. But
this function is also in charge of preventing deadlocks
that may occur during cyclic instantaneous migra-
tions as explained in section 5.3. Roughly speak-
ing, handling a migration in the worst case scenario
requires executing the three steps described before-
hand twice. We denote Ra the first execution of
those three steps, andRb the second one. Ra only en-
forces the descheduling of the previous task and runs
in constant time in the absence of a mode change.
Rb corresponds to the case where our plugin requests
the scheduling of a task which is still scheduled by
the Linux kernel on another core, in which case it is
necessary to wait until the task is no longer sched-
uled somewhere else. This extra delay is capped by
the end of the execution of Ra on the other cores,
since at this stage all tasks have been descheduled
from the processor they were running on before the
migration.

In figure 5 we have shown that the total latency for a
single task can be roughly decomposed into th + ts + tw.

However, those parameters are not constant and vary with
the global state of the scheduler: th depends on the number
of tasks involved in the migration, and tw depends on the
order in which the handlers of those task timer handlers
are executed.

The different value taken by those parameters for a
three tasks cyclic instantaneous migration are shown in
figure 7. Using tix to denote the delay tx specific to task
τi, the total latency is the maximum of {t1L, t2L, t3L}. In this
example, all task timers have been started on CPU1 and
their handlers execute there sequentially from the timer
interrupt service routine in the order H1, H2, and H3.
A time dependency chain can be identified between H1,
H2 then H3 running on CPU1, Ra for task τ3 running
on CPU3, followed by Rb for task τ3 running on CPU1.
We introduce worst case execution times, waiting time ex-
cluded, for the migration process elementary steps, noted
γx . Hence, each handler is executed in at worst γh. Ra

is executed in at worst γa, and Rb takes no longer that
γb. ts being the worst case delay to start a scheduling
request on a remote core. Given those parameters, the
worst case latency is bounded by the following expression
(m · γh) + (ts + γa) + γb, where m is the number of cores.
In this context, we can safely conclude that there are no
real concerns for scalability as long as γh remains low.

CPU 1

CPU 2

CPU 3

τ1 τ3

τ2 τ1

τ3 τ2

tm tm

τ1 H1H2H3 Ra Rb τ3

τ2 Ra Rb τ1

τ3 Ra Rb τ2

t3L

t3h

t1h

γa γb

t3s

Theoretical schedule Detailed execution

γa

Figure 7: Total latency decomposition for migrations

A similar reasoning can be followed to study criticality
mode changes. The first concern would be the interaction
of algorithm 1 with itself. Each core detecting a budget
overrun will execute this algorithm from its own timer han-
dler, but only one core will be able to execute lines 3 to 5
and be responsible for a significant part of the worst case
latency.

Indeed, algorithm 1 has two distinct behaviors depend-
ing on the value of scm compared to |lcm[k]| for processor
k. Either it goes through a short path and simply requests
a local rescheduling, or it executes the actual update of the
scheduling tables. The execution time associated with the
tables update is proportional to the number of tasks (m)

10

and the number of time intervals per reservation. With
at most W intervals per reservation, the time needed to
execute lines 3 to 5 is at most proportional to m ·W , as
the algorithm has to select the next interval of interest for
every task and update task-specific timers.

Once the reservation tables update has been done, the
mode change is complete as soon as the rescheduling re-
quested on line 5 of algorithm 1 has been performed by all
the cores. We can reuse the previous analysis to estimate
the complexity of this global rescheduling. In the worst
case, even if other cores require their rescheduling before,
we can show that the actual rescheduling is delayed to wait
for the completion of algorithm1 on the core updating the
reservation tables. Algorithm 2 uses the value of ac to
guarantee the correctness of our approach. We re-execute
the scheduling functions as long as the ac counter is not
equal to 0. It means that in the worst case the execu-
tion time of algorithm 1 is simply added to the worst case
latency due to migrations.

The next section presents empirical assessments of some
of those latencies. In particular, it shows that the worst
case latency (t3L in the exemple of figure 7) stays within
reasonable bounds even if a large number of tasks are parts
of a cyclic instantaneous migration.

7. Experiments

Unless specified otherwise, the tests have been per-
formed on a Hewlett-Packard EliteBook 840 G2 laptop
running LITMUSRT with our G-MCRES plugin. The pro-
cessor is an Intel Core i7-5600U CPU running at 2.6GHz
with 2 physical cores and 4 threads. In this section, we
will use the term “core” to designate an autonomous exe-
cution unit, which can be either a physical core or a thread
within a physical core.

7.1. Decomposition of a criticality mode change
The first experiment shown in figure 8 confirms that

the delay between a budget overrun causing a criticality
mode change and the end of the system reconfiguration
in the upper mode depends only on the number of tasks.
4, 8 or 12 tasks are running on up to 4 cores, and one of
the tasks triggers a criticality mode change. As expected,
we note that the time to perform the complete criticality
mode change grows linearly with the number of tasks, and
that it does not depend on the number of cores. As ex-
plained in section 6.2, updating the scheduling tables may
trigger a rescheduling operation on arbitrary cores. Those
operations are asynchronous and start in parallel with each
other and progress once the table update is over.

The whole mode change can be further decomposed
into successive steps. Figures are given for the 8 tasks and
4 cores case (43.6µs):

• The delay th (see figure 5) between the theoretical
budget overrun detection and the beginning of the
execution of the timer handler. This delay is around

1 2 3 4

30

40

50

60

28.5 28.4 28.3 27.9

44.7 44.2 44.2 43.6

61.1

57.8

62

59.7

Number of cores

T
im

e
(µ
s)

4 tasks
8 tasks
12 tasks

Figure 8: Measured mode change times

330 ns in our case and accounts for less than 1% of
the total mode change time.

• The time necessary to update the scheduling tables
(32.5 µs, or 74.5% of our mode change time).

• The delay until all concerned cores have been resched-
uled make up for the rest of the time. This process
(21.7 µs) starts during the scheduling tables update
and overlaps with the end of the tables update itself.

7.2. Inter-processor interrupts latency
The Linux kernel uses inter-processor interrupts to com-

municate between cores, e.g . to request that another core
reschedules a new task. In this test, we make a single task
continuously migrate from one core to the next and mea-
sure the delay between the rescheduling request sent by the
timer handler when the task must start executing and the
effective rescheduling. The time windows are chosen small
enough as to allow a dead time before a migration; those
are not instantaneous migrations as defined in section 5.3.

A Linux high-resolution timer is created for every task
when the task is first loaded into the system. This timer is
used throughout the task lifetime, and is rearmed to trig-
ger at this task next interval boundary. As a consequence,
successive timer handler calls will always take place on
the same logical core. In our test, the timer triggering the
scheduling requests is created and runs on logical core 0.

Our computer contains two physical cores, each con-
taining two threads, for a total of four logical cores. In
figure 9, we can distinguish distinct latencies for the vari-
ous logical cores:

• Logical core 0 is rescheduled by pending a local inter-
rupt, which will execute as soon as interrupts are lo-
cally enabled again, as the currently executing timer
handler already executes in an interrupt context.

11

• Logical core 1 is rescheduled using an inter-processor
interrupt sent by logical core 0. However, as both
logical cores are located in the same physical core,
the latency is smaller than when addressing another
physical core.

• Logical cores 2 and 3 are rescheduled using an inter-
processor interrupt which is routed to the physical
core they both share. As a result, the latency is
three times higher than it is to contact logical core
1.

0 1 2 3
0

10

20

30

40

13.6
15.3

43
42

Logical core (thread) index

T
im

e
(µ
s)

Figure 9: Rescheduling delays (timer handler runs on core 0)

7.3. Worst-case scenario
In this scenario, we run N tasks on N cores. Every

10ms, each task requests a migration to the next core in
a cyclic way. This is a worst-case scenario, because:

• Task-specific timers trigger at the same time for all
the tasks.

• Each core is busy with a task at any time.

• Each task migrates to the next CPU at every 10ms
time window, forming a cyclic instantaneous migra-
tion set as described in section 5.3 and illustrated on
figure 7.

In order to be able to study the results for a greater
number of cores, we have used a Dell Precision Tower 5810
computer running Arch Linux on an Intel Xeon E5-1660
CPU running at 3.5GHz with 8 physical cores and 16
threads. The LITMUSRT kernel running our plugins was in-
stalled on a Ubuntu 18.04 system running inside a QEMU
virtual machine [4]. The virtual machine uses hardware
virtualization to gain direct access to the processor core
and execute computationally intensive tasks natively. The

processor cores were configured at full speed to prevent
frequency scaling that could skew the measures.

Figure 10 shows two sets of data. The first set is the
delay between the data at which a task decides to migrate
and at which it is scheduled on the destination CPU (ts+tw
in figure 5). The second set is the total delay between the
first migration request at a given time window and the
last successfully scheduled task for this time window. If
we look at the graph, it looks like the migration time, be it
individual or total, grows roughly linearly with the number
of tasks and cores.

2 3 4 5 6 7 8 9 10 11 12
0

20

40

60

80

Number of cores

T
im

e
(µ
s)

Individual migration (ts + tw)
Total migration

Figure 10: Measured individual and total core migration times (mean
and standard deviation)

We can further decompose the individual migration
time in two parts, as shown in figure 11. It is interesting
to note that the main component of the migration time
in our scenario is what is labeled “Busy waiting” on the
graph. This delay corresponds to the busy loop performed
by LITMUSRT to wait until the requested task has been
descheduled from the core it was previously executing on.
In our worst-case scenario, every task is always executing
somewhere. Another smaller factor increasing with the
number of cores involved in the migration time is the time
needed to transfer every task context at the same time
from one core to another using the processor internal bus.

In real-world applications whose time windows are com-
puted offline, cyclic instantaneous migrations are less likely
to happen. However, as we noted in section 5.1, some
particular configurations with very constrained resources
might be schedulable if we allow those cyclic instantaneous
migrations to take place, notably at the time of a criticality
mode change. Even though we forged the worst possible
scenario for the purpose of the experiments, we are satis-
fied with the overall performances.

12

2 3 4 5 6 7 8 9 10 11 12
0

20

40

60

80

10.9 10.8

18.4
21.9 24.6

25.8
31.8

35
39.7

45.8
49.6

4.7 5.4 6.5 7.5 6.7 9.1 10.2 12.2 13.2 14.8 15.8

Number of cores

T
im

e
(µ
s)

Effective migration (ts)
Busy waiting (tw)

Figure 11: Decomposition of individual core migration time

8. Conclusion

This paper presents the design of run-time mechanisms
that enable the deployment of global table driven schedules
to support the GMH-MC-DAG task model and scheduling
approach. We pointed out that this model is leveraging
important limitations of MC task models as it allows ex-
pressing precedence constraints and several criticality lev-
els. In addition to this, we selected this scheduling ap-
proach because it targets time triggered architectures that
are particularly easy to verify and certify. We decomposed
this implementation in two LITMUSRT plugins to separate
concerns: global table driven reservations, and criticality
mode change support.

The main problems tackled by this contribution are
concurrency issues in the deployment on multi-core or pro-
cessor of such global schedulers. For these architectures,
the scheduler is a distributed algorithm with a mix of event
and time triggered behaviors. The first concurrency issue
is related to instantaneous task migrations and cyclic in-
stantaneous migrations that have to be handled properly
to avoid global deadlocks. The second issue is related to
a safe but efficient implementation of mode changes that
can handle multiple simultaneous budget overruns. The
design has been integrated to LITMUSRT to check it has
no side effect and can be integrated into regular services
of real-time kernels.

The unified code for the G-RES and G-MCRES plu-
gins has been publicly released3 and will be submitted
for inclusion into LITMUSRT. We also aim at integrat-
ing the mechanisms implemented in our plugins in a more
time predictable platform like an ARINC-653 compliant
one such as the POK kernel [10, 11].

3The source code for the plugins is available from https://aces.
wp.imt.fr/g-mcres/ under the terms of the GNU General Public
License version 2.

Acknowledgments: the authors would like to thanks
Louise Flick for having implemented the first draft of G-
RES plugin.

References

[1] Sanjoy Baruah. The federated scheduling of systems of mixed-
criticality sporadic DAG tasks. In Real-Time Systems Sympo-
sium (RTSS), 2016 IEEE, pages 227–236. IEEE, 2016. 2.2

[2] Sanjoy Baruah and Alan Burns. Expressing survivability con-
siderations in mixed-criticality scheduling theory. Journal of
Systems Architecture, 109:101755, 2020. 1

[3] Sanjoy Baruah and Gerhard Fohler. Certification-cognizant
time-triggered scheduling of mixed-criticality systems. In Proc.
IEEE Real-Time Syst. Symp., pages 3–12, 2011. 2.1

[4] Fabrice Bellard. QEMU, a fast and portable dynamic transla-
tor. In USENIX annual technical conference, FREENIX Track,
pages 41–46, Anaheim, California, USA, 2005. 7.3

[5] Alan Burns and Robert Davis. Mixed criticality systems-a re-
view. Department of Computer Science, University of York,
Tech. Rep, pages 1–81, 2019. 1, 2.1, 3.1

[6] Micaiah Chisholm, Namhoon Kim, Bryan C Ward, Nathan Ot-
terness, James H Anderson, and F Donelson Smith. Reconcil-
ing the tension between hardware isolation and data sharing in
mixed-criticality, multicore systems. In 2016 IEEE Real-Time
Systems Symposium (RTSS), pages 57–68, 2016. 2.1

[7] Airlines Electronic Engineering Committee et al. ARINC 653
— avionics application software standard interface. 2003. 1

[8] Robert I Davis, Sebastian Altmeyer, and Alan Burns. Mixed
criticality systems with varying context switch costs. In 2018
IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS), pages 140–151, 2018. 2.1

[9] Julien Delange, Jérôme Hugues, Laurent Pautet, and Bechir
Zalila. Code Generation Strategies from AADL Architectural
Descriptions Targeting the High Integrity Domain. In Embed-
ded Real Time Software and Systems (ERTS2008), toulouse,
France, January 2008. 2.1

[10] Julien Delange and Laurent Lec. POK, an ARINC 653-
compliant operating system released under the bsd license. In
13th Real-Time Linux Workshop, volume 10, 2011. 8

[11] Julien Delange, Laurent Pautet, Alain Plantec, Mickael Ker-
boeuf, Frank Singhoff, and Fabrice Kordon. Validate, simulate,
and implement arinc653 systems using the aadl. Ada Letters,
29(3):31–44, November 2009. 8

[12] Xavier Jean, David Faura, Marc Gatti, Laurent Pautet, and
Thomas Robert. Ensuring robust partitioning in multicore plat-
forms for ima systems. In 2012 IEEE/AIAA 31st Digital Avion-
ics Systems Conference (DASC), pages 7A4–1–7A4–9, 2012. 2.1

[13] Namhoon Kim, Jeremy Erickson, and James H Anderson.
Mixed-criticality on multicore (MC2): A status report. In Pro-
ceedings of the 10th Annual Workshop on Operating Systems
Platforms for Embedded Real-Time Applications, pages 45–50,
2014. 2.1

[14] Hermann Kopetz. The time-triggered model of computation. In
Real-Time Systems Symposium, 1998. 4.2

[15] Eleftherios Kyriakakis, Maja Lund, Luca Pezzarossa, Jens
SparsÃ ,̧ and Martin Schoeberl. A time-predictable open-
source ttethernet end-system. Journal of Systems Architecture,
108:101744, 2020. 2.1

[16] Jing Li, David Ferry, Shaurya Ahuja, Kunal Agrawal, Christo-
pher Gill, and Chenyang Lu. Mixed-criticality federated
scheduling for parallel real-time tasks. Real-Time Systems,
53(5), 2017. 2.2

[17] Roberto Medina, Etienne Borde, and Laurent Pautet. Schedul-
ing multi-periodic mixed-criticality DAGs on multi-core archi-
tectures. In Proc. IEEE Real-Time Syst. Symp., pages 254–264,
2018. 2.2, 4

[18] Roberto Medina, Etienne Borde, and Laurent Pautet. Gener-
alized mixed-criticality static scheduling for periodic directed

13

https://aces.wp.imt.fr/g-mcres/
https://aces.wp.imt.fr/g-mcres/

acyclic graphs on multi-core processors. IEEE Transactions on
Computers, pages 1–1, 2020. 4

[19] Risat Mahmud Pathan. Improving the schedulability and
quality of service for federated scheduling of parallel mixed-
criticality tasks on multiprocessors. In LIPIcs-Leibniz In-
ternational Proceedings in Informatics, volume 106. Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018. 2.2

[20] François Santy, Laurent George, Philippe Thierry, and Joël
Goossens. Relaxing mixed-criticality scheduling strictness for
task sets scheduled with fp. In 2012 24th Euromicro Confer-
ence on Real-Time Systems, pages 155–165, 2012. 6.3

[21] Klaus Schild and Jörg Würtz. Scheduling of time-triggered
real-time systems. Operating Systems of the 90s and Beyond,
5(4):335–357, 2000. 4.2

[22] Suk Kyoon Lee. On-line multiprocessor scheduling algorithms
for real-time tasks. In Proceedings of TENCON’94 - 1994 IEEE
Region 10’s 9th Annual International Conference on: ’Fron-
tiers of Computer Technology’, pages 607–611 vol.2, 1994. 4.2

[23] Jens Theis and Gerhard Fohler. Mixed criticality scheduling in
time-triggered legacy systems. Proc. WMC, RTSS, pages 73–78,
2013. 2.1, 2.2

[24] Jens Theis, Gerhard Fohler, and Sanjoy Baruah. Schedule table
generation for time-triggered mixed criticality systems. Proc.
WMC, RTSS, pages 79–84, 2013. 2.1

[25] Salvador Trujillo, Alfons Crespo, and Alejandro Alonso. Multi-
PARTES: Multicore virtualization for mixed-criticality systems.
In 2013 Euromicro Conference on Digital System Design, pages
260–265, 2013. 2.1

[26] Yuanbin Zhou, Soheil Samii, Petru Eles, and Zebo Peng.
Scheduling optimization with partitioning for mixed-criticality
systems. Journal of Systems Architecture, 98:191–200, 2019. 1

Laurent Pautet is a Professor at
Telecom Paris. His research ac-
tivities focus on design and val-
idation of critical embedded sys-
tems (non-functional properties ver-
ification, real-time scheduling, real-
time kernels). He contributes techni-
cally and scientifically to several in-
ternational free software projects such
as GNAT/GCC. He is also a member

of standard committees such as AADL’s one. He is the au-
thor or co-author of more than 25 papers in international
journals, more than 100 papers in international confer-
ences. He is an editor and a contributor to several books
in the area of distributed real-time embedded systems.

Thomas Robert received his Ph.D.
degree from Institut Polytechnique de
Toulouse. This work tackled run-time
mechanisms to monitor real-time sys-
tem behavior. Since 2009, he is an As-
sociate Professor at Telecom Paris, a
member of the Institut Polytechnique
de Paris. He is doing his research in
the LTCI lab. His research is orga-
nized on two axes: models to design

and monitor scheduling algorithms of real-time embedded

systems, and quantitative security risk analysis for indus-
trial networked systems.

Samuel Tardieu is an Associate
Professor at Telecom Paris, and a
member of the LTCI lab and Insti-
tut Polytechnique de Paris. His re-
search areas encompass real-time em-
bedded operating systems operating
under safety critical constraints. Also
a free software movement activist for
25 years, he developed or contributed
to many free software projects includ-

ing the first implementation of Ada distributed system an-
nex for the GNAT compiler.

14

	Introduction
	Related Works
	MC execution platforms
	MC task models
	Case study

	Problem Statement
	Overhead issues with global schedulers
	Synchronization issues during mode change

	Background
	Task Model
	GMH-MC-DAG Scheduler
	LITMUSRT Environment

	G-RES Plugin
	P-RES limitations
	Main latency sources
	Support for cyclic instantaneous migrations

	G-MCRES Plugin
	Per-mode scheduling tables and budget overrun detection
	System criticality modes and mode changes
	Criticality mode reset
	Temporal complexity of criticality mode changes

	Experiments
	Decomposition of a criticality mode change
	Inter-processor interrupts latency
	Worst-case scenario

	Conclusion

