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benoit.dufumier@cea.fr
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Abstract. Traditional supervised learning with deep neural networks
requires a tremendous amount of labelled data to converge to a good
solution. For 3D medical images, it is often impractical to build a large
homogeneous annotated dataset for a specific pathology. Self-supervised
methods offer a new way to learn a representation of the images in an
unsupervised manner with a neural network. In particular, contrastive
learning has shown great promises by (almost) matching the performance
of fully-supervised CNN on vision tasks. Nonetheless, this method does
not take advantage of available meta-data, such as participant’s age,
viewed as prior knowledge. Here, we propose to leverage continuous
proxy metadata, in the contrastive learning framework, by introducing
a new loss called y-Aware InfoNCE loss. Specifically, we improve the
positive sampling during pre-training by adding more positive exam-
ples with similar proxy meta-data with the anchor, assuming they share
similar discriminative semantic features.With our method, a 3D CNN
model pre-trained on 104 multi-site healthy brain MRI scans can extract
relevant features for three classification tasks: schizophrenia, bipolar di-
agnosis and Alzheimer’s detection. When fine-tuned, it also outperforms
3D CNN trained from scratch on these tasks, as well as state-of-the-art
self-supervised methods. Our code is made publicly available here.

1 Introduction

Recently, self-supervised representation learning methods have shown great promises,
surpassing traditional transfer learning from ImageNet to 3D medical images
[29]. These models can be trained without costly annotations and they offer a
great initialization point for a wide set of downstream tasks, avoiding the domain
gap between natural and medical images. They mainly rely on a pretext task that
is informative about the prior we have on the data. This proxy task essentially
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consists in corrupting the data with non-linear transformations that preserve the
semantic information about the images and learn the reverse mapping with a
Convolutional Neural Network (CNN). Numerous tasks have been proposed both
in the computer vision field (inpainting [21], localization of a patch [9], predic-
tion of the angle of rotation [10], jigsaw [18], etc.) and also specifically designed
for 3D medical images (context restoration [4], solving the rubik’s cube [30],
sub-volumes deformation [29]). They have been successfully applied to 3D MR
images for both segmentation and classification [24,26,29,30], outperforming the
classical 2D approach with ImageNet pre-training. Concurrently, there has been
a tremendous interest in contrastive learning [13] over the last year. Notably, this
unsupervised approach almost matches the performance over fully-supervised vi-
sion tasks and it outperforms supervised pre-training [1,5,14]. A single encoder
is trained to map semantically similar “positive” samples close together in the
latent space while pushing away dissimilar “negative” examples. In practice,
all samples in a batch are transformed twice through random transformations
t ∼ T from a set of parametric transformations T . For a given reference point
(anchor) x, the positive samples are the ones derived from x while the other
samples are considered as negatives. Most of the recent works focus in finding
the best transformations T that degrade the initial image x while preserving
the semantic information [5, 27] and very recent studies intend to improve the
negative sampling [6,22]. However, two different samples are not necessarily se-
mantically different, as emphasized in [6, 28], and they may even belong to the
same semantic class. Additionally, two samples are not always equally seman-
tically different from a given anchor and so they should not be equally distant
in the latent space from this anchor. In this work, we assume to have access to
continuous proxy meta-data containing relevant information about the images
at hand (e.g the participant’s age). We want to leverage these meta-data during
the contrastive learning process in order to build a more universal representation
of our data. To do so, we propose a new y-Aware InfoNCE loss inspired from
the Noise Contrastive Estimation loss [12] that aims at improving the positive
sampling according to the similarity between two proxy meta-data. Differently
from [17], i) we perform contrastive learning with continuous meta-data (not
only categorical) and ii) our first purpose is to train a generic encoder that can
be easily transferred to various 3D MRI target datasets for classification or re-
gression problems in the very small data regime (N ≤ 103). It is also one of
the first studies to apply contrastive learning to 3D anatomical brain images [2].
Our main contributions are:
- we propose a novel formulation for contrastive learning that leverages contin-
uous meta-data and derive a new loss, namely the y-Aware InfoNCE loss
- we empirically show that our unsupervised model pre-trained on a large-scale
multi-site 3D brain MRI dataset comprising N = 104 healthy scans reaches or
outperforms the performance of CNN model fully-supervised on 3 classification
tasks under the linear protocol evaluation
- we also demonstrate that our approach gives better results when fine-tuning
on 3 target tasks than training from scratch
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- we finally performed an ablation study showing that leveraging the meta-data
improves the performance for all the downstream tasks and different set of trans-
formations T compared to SimCLR [5]

2 Method

Fig. 1: Differently from SimCLR [5], our new loss can handle meta-data y ∈ R
by redefining the notion of similarity between two images in the latent space Z.
For an image xi, transformed twice through two augmentations t1, t

′
1 ∼ T , the

resulting views (t1(xi), t2(xi)) are expected to be close in the latent space through
the learnt mapping fθ, as in SimCLR. However, we also expect a different input
xk 6=i to be close to xi in Z if the two proxy meta-data yi and yk are similar. We
define a similarity function wσ(yi, yk) that quantifies this notion of similarity.

Problem Formalization. In contrastive learning [5, 17, 27], one wants to
learn a parametric function fθ : X 7→ Sd−1 = Z between the input image
space X and the unit hypersphere, without meta-data. The goal of fθ is to
map samples to a representation space where semantically similar samples are
“closer” than semantically different samples. To do that, each training sample
xi ∈ X is transformed twice through ti1, t

i
2 ∼ T to produce two augmented views

of the same image (vi1, v
i
2) := (ti1(xi), t

i
2(xi)), where T is a set of predefined

transformations. Then, for each sample i, the model fθ is trained to discriminate
between the “positive” pair (vi1, v

i
2), assumed to be drawn from the empirical

joint distribution p(v1, v2), and all the other “negative” pairs (vi1, v
j
2)j 6=i, assumed

to be drawn from the marginal distributions p(v1)p(v2). With these assumptions,
fθ is an estimator of the mutual information I between v1 and v2 and it usually
estimated by maximizing a lower bound of I(v1, v2) called the InfoNCE loss [19]:
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where n is the batch size, fθ(v1, v2) := 1
τ fθ(v1)T fθ(v2) and τ > 0 is a hyperpa-

rameter. fθ is usually defined as the composition of an encoder network eθ1(x)
and a projection head zθ2(e.g. multi-layer perceptron) which is discarded after
training (here θ = {θ1, θ2}). Outputs lie on the unit hypersphere so that inner
products can be used to measure cosine similarities in the representation space.
In Eq. 1, every sample vj2|j 6=i is considered equally different from the anchor vi1.
However, this is hardly true with medical images since we know, for instance,
that two young healthy subjects should be considered more similar than a young
and an old healthy subject. If we suppose to have access to continuous proxy
metadata yi ∈ R (e.g participant’s age or clinical score), then two views vi1,
vj2 with similar metadata yi, yj should be also close in the representation space
Sd−1. Inspired by vicinal risk minimization (VRM) [3], we propose to re-define
p(v1, v2) by integrating the proxy metadata y, modeled as a random variable,
such that a small change in y results in a negligible change in p(v1, v2|y). Simi-
larly to [8], we define the empirical joint distribution as:

pvicemp(v1, v2|y) =
1

n

n∑
i=1

n∑
j=1

wσ(yi, yj)∑n
k=1 wσ(yi, yk)

δ(v1 − vi1)δ(v2 − vj2) (2)

where σ > 0 is the hyperparameter of the Radius Basis Function (RBF)
kernel wσ. Based on eq. 2, we can introduce our new y-Aware InfoNCE loss:

LyNCE = −
n∑
k=1

wσ(yk, yi)∑n
j=1 wσ(yj , yi)

log
efθ(v
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2 )
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In the limit case when σ → 0, then we retrieve exactly the original InfoNCE
loss, assuming that yi = yj ⇔ xi = xj ,∀i, j ∈ [1..n]. When σ → +∞, we assume
that all samples (xi)

n
i=1 belong to the same latent class.

Discrete case. If the proxy meta-data (yi)i∈[1..N ] are discrete, then we can
simplify the above expression by imposing wσ(yi, yk) = δ(yi− yk) retrieving the
Supervised Contrastive Loss [17]. We may see LyNCE as an extension of [17] in
the continuous case. However, our purpose here is to build a robust encoder that
can leverage meta-data to learn a more generalizable representation of the data.

Generalization. The proposed loss could be easily adapted to multiple
metadata, both continuous and categorical, by defining one kernel per meta-
data. Other choices of kernel, instead of the RBF, could also be considered.

Choice of the transformations T . In our formulation, we did not specify
particular transformations T to generate (vi1, v

i
2). While there have been recent

works [4,27] proposing transformations on natural images (color distorsion, crop-
ping, cutout [7], etc.), there is currently no consensus for medical images in the
context of contrastive learning. Here, we design three sets of transformations
that preserve the semantic information in MR images: cutout, random cropping
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and a combination of the two with also gaussian noise, gaussian blur and flip.
Importantly, while color distortion is crucial on natural images [5] to avoid the
model using a shortcut during training based on the color histogram, it is not
necessarily the case for MR images (see Supp. 4).

3 Experiments

Datasets
- Big Healthy Brains (BHB) dataset We aggregated 13 publicly available
datasets7 of 3D T1 MRI scans of healthy controls (HC) acquired on more than
70 different scanners and comprising N = 104 samples. We use this dataset only
to pre-train our model with the participant’s age as the proxy meta-data.
The learnt representation is then tested on the following four data-sets using as
final task a binary classification between HC and patients.
- SCHIZCONNECT-VIP8 It comprises N = 605 multi-site MRI scans in-
cluding 275 patients with strict schizophrenia (SCZ) and 330 HC.
- BIOBD [15, 23] This dataset includes N = 662 MRI scans acquired on 8
different sites with 356 HC and 306 patients with bipolar disorder (BD).
- BSNIP [25] It includes N = 511 MRI scans with N = 200 HC, N = 194 SCZ
and N = 117 BD. This independent dataset is used only at test time in Fig. 2b).
- Alzheimer’s Disease Neuroimaging Initiative (ADNI-GO)9 We use
N = 387 co-registered T1-weighted MRI images divided in N = 199 healthy
controls and N = 188 Alzheimer’s patients (AD). We only included one scan per
patient at the first session (baseline).
All data-sets have been pre-processed in the same way with a non-linear regis-
tration to the MNI template and a gray matter extraction step. The final spatial
resolution is 1.5mm isotropic and the images are of size 121× 145× 121.

Implementation details We implement our new loss based on the original In-
foNCE loss [5] with Pytorch [20] and we use the Adam optimizer during training.
As opposed to SimCLR [5] and in line with [2], we only use a batch size of b = 64
as it did not significantly change our results (see Supp. 4). We also follow [5]
by fixing τ = 0.1 in Eq.1 and Eq.3 and we set the learning rate to α = 10−4,
decreasing it by 0.9 every 10 epochs. The model eθ1 is based on a 3D adaptation
of DenseNet121 10 [16] and zθ2 is a vanilla multilayer perceptron as in [5].

Evaluation of the representation In Fig.2, we compare the representation
learnt using our model fθ with the ones estimated using i) the InfoNCE loss
(SimCLR) [5], ii) Model Genesis [29], a SOTA model for self-supervised learning
with medical images, iii) a standard pre-training on age using a supervised ap-
proach (i.e. l1 loss for age prediction), iv) BYOL [11] and MoCo [14] (memory

7 Demographic information as well as the public repositories can be found in Supp. 4
8 http://schizconnect.org
9 http://adni.loni.usc.edu/about/adni-go

10 Detailed implementation in our repository

https://github.com/Duplums/yAwareContrastiveLearning
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bank K = 1024) , 2 recently proposed SOTA models for representation learn-
ing, v) a multi-task approach SimCLR with age regression in the latent space
(SimCLR+Age) and a fully fine-tuned supervised DenseNet trained to predict
the final task. This can be considered as an upper bound, if the training data-
set is sufficiently big. For the pre-training of our algorithm fθ, we only use the
BHB dataset with the participant’s age as proxy meta-data. For both contrastive
learning methods and BYOL, we fix σ = 5 in Eq.3 and Eq.1 and only use random
cutout for the transformations T with a black patch covering p = 25% of the
input image. We use UNet for pre-training with Model Genesis and DenseNet121
for all other models.

(a) 5-fold CV Stratified on Site

(b) 5-fold CV Leave-Site-Out

Fig. 2: Comparison of different representations in terms of classification accuracy
(downstream task) on three different data-sets (one per column). Classification
is performed using a linear layer on top of the pre-trained frozen encoders. (a)
Data for training/validation and test come from the the same acquisition sites
(b) Data for training/validation and test come from different sites.

In order to evaluate the quality of the learnt representations, we only added
a linear layer on top of the frozen encoders pre-trained on BHB. We tune this
linear layer on 3 different binary classification tasks (see Datasets section) with
5-fold cross-validation (CV). We tested two different situations: data for train-
ing/validation and test come either from the same sites (first row) or from dif-
ferent sites (second row). We also vary the size (i.e. number of subjects, Ntarget)
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of the training/validation set. For (a), we perform a stratified nested CV (two
5-fold CV, the inner one for choosing the best hyper-parameters and the outer
one for estimating the test error). For (b), we use a 5-fold CV for estimating the
best hyper-parameters and keep an independent constant test set for all Ntarget
(see Supp. 4).

From Fig. 2, we notice that our method consistently outperforms the other
pre-trainings even in the very small data regime (N = 100) and it matches the
performance of the fully-supervised setting on 2 data-sets. Differently from age
supervision, fθ is less specialized on a particular proxy task and it can be directly
transferred on the final task at hand without fine-tuning the whole network.
Furthermore, compared to the multi-task approach SimCLR+Age, the features
extracted by our method are less sensitive to the site where the MR images
are coming from. This shows that our technique is the only one that efficiently
uses the highly multi-centric dataset BHB by making the features learnt during
pre-training less correlated to the acquisition sites.

Fig. 3: Linear classification performance on three binary classification tasks with
Npretrained = 104. All TF includes crop, cutout, gaussian noise, gaussian blur
and flip. The encoder is frozen and we only tune a linear layer on top of it. σ = 0
corresponds to SimCLR [5] with InfoNCE loss. As we increase σ, we add more
positive examples for a given anchor xi with close proxy meta-data.

Importance of σ and T in the positive sampling In Fig. 3, we study the
impact of σ in Eq. 3 on the final representation learnt for a given set of trans-
formations T . As highlighted in [5], hard transformations seem to be important
for contrastive learning (at least on natural images), therefore we have evaluated
three different sets of trasformations T1 = { Random Crop }, T2 = { Random
Cutout } and T3 = { Cutout, Crop, Gaussian Noise, Gaussian Blur, Flip }. Im-
portantly, we did not include color distorsion in T3 since i) it is not adapted to
MRI images where a voxel’s intensity encodes a gray matter density and ii) we
did not observe significant difference between the color histograms of different
scans as opposed to [5] (see Supp. 4). As before, we evaluated our representation
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under the linear evaluation protocol. We can observe that T1 and T3 give similar
performances with σ > 0, always outperforming both SimCLR (σ = 0) and age
supervision on BHB. It also even outperforms the fully-supervised baseline on
SCZ vs HC. We also find that a strong cropping or cutout strategy is detri-
mental for the final performances (see Supp. 4). Since T1 is computationally less
expensive than T3, we chose to use T = T1 and σ = 5 in our experiments.

Fine-tuning Results Finally, we fine-tuned the whole encoder fθ with different
initializations on the 3 downstream tasks (see Table 1). To be comparable with
Model Genesis [29], we also used the same UNet backbone for fθ and we still
fixed T1 = {Random Cutout} and σ = 5. First, our approach outperforms the
CNNs trained from scratch on all tasks as well as Model Genesis, even with the
same backbone. Second, when using DenseNet, our pre-training remains better
than using age supervision as pre-training for SCZ vs HC (even with the same
transformations) and it is competitive on BD vs HC and AD vs HC.

Backbone Pre-training
SCZ vs HC BD vs HC AD vs HC

Ntrain = 100 Ntrain = 500 Ntrain = 100 Ntrain = 500 Ntrain = 100 Ntrain = 300

UNet

None 72.62±0.9 76.45±2.2 63.03±2.7 69.20±3.7 88.12±3.2 94.16±3.9

Model Genesis [29] 73.00±3.4 81.8±4.7 60.96±1.8 67.04±4.4 89.44±2.6 95.16±3.3

SimCLR [4] 73.63±2.4 80.12±4.9 59.89±2.6 66.51±4.3 90.60±2.5 94.21±2.7

Age Prediction w/ D.A 75.32±2.2 85.27±2.3 64.6±1.6 70.78±2.1 91.71±1.1 95.26±1.5

Age-Aware Contrastive Learning (ours) 75.95±2.7 85.73±4.7 63.79±3.0 70.35±2.7 92.19±1.8 96.58±1.6

DenseNet

None 73.09±1.6 85.92±2.8 64.39±2.9 70.77±2.7 92.23±1.6 93.68±1.7

None w/ D.A 74.71±1.3 86.94±2.8 64.79±1.3 72.25±1.5 92.10±1.8 94.16±2.5

SimCLR [5] 70.80±1.9 86.35±2.2 60.57±1.9 67.99±3.3 91.54±1.9 94.26±2.9

Age Prediction 72.90±4.6 87.75±2.0 64.60±3.6 72.07±3.0 92.07±2.7 96.37±0.9

Age Prediction w/ D.A 74.06±3.4 86.90±1.6 65.79±2.0 73.02±4.3 94.01±1.4 96.10±3.0

Age-Aware Contrastive Learning (ours) 76.33±2.3 88.11±1.5 65.36±3.7 73.33±4.3 93.87±1.3 96.84±2.3

Table 1: Fine-tuning results using 100 or 500 (300 for AD vs HC) training sub-
jects. For each task, we report the AUC (%) of the fine-tuned models initial-
ized with different approaches with 5-fold cross-validation. For age prediction,
we employ the same transformations as in contrastive learning for the Data
Augmentation (D.A) strategy. Best results are in bold and second bests are
underlined.

4 Conclusion

Our key contribution is the introduction of a new contrastive loss, which lever-
ages continuous (and discrete) meta-data from medical images in a self-supervised
setting. We showed that our model, pre-trained with a large heterogeneous brain
MRI dataset (N = 104) of healthy subjects, outperforms the other SOTA meth-
ods on three binary classification tasks. In some cases, it even reaches the perfor-
mance of a fully-supervised network without fine-tuning. This demonstrates that
our model can learn a meaningful and relevant representation of healthy brains
which can be used to discriminate patients in small data-sets. An ablation study
showed that our method consistently improves upon SimCLR for three differ-
ent sets of transformations. We also made a step towards a debiased algorithm
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by demonstrating that our model is less sensitive to the site effect than other
SOTA fully supervised algorithms trained from scratch. We think this is still
an important issue leading to strong biases in machine learning algorithms and
it currently leads to costly harmonization protocols between hospitals during
acquisitions. Finally, as a step towards reproducible research, we made our code
public and we will release the BHB dataset to the scientific community soon.
Future work will consist in developing transformations more adapted to medical
images in the contrastive learning framework and in integrating other available
meta-data (e.g participant’s sex) and modalities (e.g genetics). Finally, we en-
vision to adapt the current framework for longitudinal studies (such as ADNI).

Acknowledgments: This work was granted access to the HPC resources of
IDRIS under the allocation 2020-AD011011854 made by GENCI.
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1. Demographic Information for BHB and UMAP visualization

Source # Subjects N Age Sex (%F) # Sites

HCP 1113 1113 29 ± 4 45 1
IXI 559 559 48 ± 16 55 3

CoRR 1371 2897 26 ± 16 50 19
NPC 65 65 26 ± 4 55 1
NAR 303 323 22 ± 5 58 1
RBP 40 40 23 ± 5 52 1

OASIS 3 597 1262 67 ± 9 62 3
GSP 1570 1639 21 ± 3 58 1

ICBM 622 977 30 ± 12 45 3
ABIDE I 567 567 17 ± 8 17 20
ABIDE II 559 580 15 ± 9 30 17
Localizer 82 82 25 ± 7 56 2

MPI-Leipzig 316 316 37 ± 19 40 2

Total 7764 10420 32 ± 19 50 74

Fig. 4: Demographic informa-
tion Fig. 5: UMAP Representation

Fig. 4: Datasets aggregated for the BHB dataset. N is the number of scans that
passed the QC. Note that there might be several sessions (scans) per subject.
Fig. 5: 2D UMAP of ADNI features encoded (left) with SimCLR pre-training;
(right) with our method. MRI from healthy participants with approximately the
same age are mapped to the same region with our model.

2. Hyperparameter selection: Batch Size and Patch Size for Cutout and Crop

Fig. 6 (resp. 7) we reported the performance of our model pre-trained with
varying batch size (resp. black patch size for cutout and crop size) and σ = 5. We
performed a 5-fold CV under the linear evaluation protocol (encoder fθ frozen)
and we set Ntarget = 500 for SCZ vs HC and BIP vs HC and Ntarget = 300
for AD vs HC. We find that a large batch size is not necessarily required when
dealing with brain MRI, in line with [2]. We also fixed p = 25% and p′ = 75%
in our study.

Batch Size
Target Task

SCZ vs HC BIP vs HC AD vs HC

64 82.94±2.7 70.36±2.6 93.03±1.8

100 84.15±2.7 70.42±1.1 93.53±1.6

Fig. 6: AUC score (%) as we
vary the batch size during pre-
training.

Transformations
Target Task

SCZ vs HC BIP vs HC AD vs HC

Cutout
p = 25% 82.94±2.7 70.36±2.6 93.03±1.8

p = 50% 84.00±2.1 68.96±2.2 89.21±2.7

Crop
p′ = 75% 84.73±0.7 69.77±4.3 94.88±2.7

p′ = 50% 81.77±3.1 68.69±1.3 91.46±3.2

Fig. 7: AUC score (%). The
black patch size p (for random
cutout) and the crop size p′ are
set during pre-training.

https://www.humanconnectome.org/study/hcp-young-adult
http://brain-development.org/ixi-dataset
https://www.nitrc.org/projects/fcon_1000/
https://openneuro.org/datasets/ds002330/versions/1.1.0
https://openneuro.org/datasets/ds002345/versions/1.0.1
https://openneuro.org/datasets/ds002247/versions/1.0.0
https://www.oasis-brains.org
https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/25833
https://ida.loni.usc.edu
http://fcon_1000.projects.nitrc.org/indi/abide
http://fcon_1000.projects.nitrc.org/indi/abide
http://brainomics.cea.fr/localizer/localizer
https://openneuro.org/datasets/ds000221/versions/00002
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3. Histogram of colors for MR images

Original Image Random Crop Random Cutout

Fig. 8: Histogram of pixel intensities for 2 different images either i) randomly
cropped or ii) partially masked with random cutout. We do not observe strong
differences between the histograms for a given transformation. As such, color
distortion may not be as critical as in [5] to learn a robust representation since
the network cannot take a shortcut based only on the color histogram.

4. Cross-Validation Strategies

Fig. 9: Cross-Validation Strategies used when evaluating our representation on
the 3 downstream tasks. We both tested (a) and (b) with varying Ntarget.
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