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ABSTRACT

Estimating mixtures of damped chirp sinusoids in noise is a
problem that affects audio analysis, coding, and synthesis appli-
cations. Phase-based non-stationary parameter estimators assume
that sinusoids can be resolved in the Fourier transform domain,
whereas high-resolution methods estimate superimposed compo-
nents with accuracy close to the theoretical limits, but only for
sinusoids with constant frequencies. We present a new method
for estimating the parameters of superimposed damped chirps that
has an accuracy competitive with existing non-stationary estima-
tors but also has a high-resolution like subspace techniques. Af-
ter providing the analytical expression for a Gaussian-windowed
damped chirp signal’s Fourier transform, we propose an efficient
variational EM algorithm for nonlinear Bayesian regression that
jointly estimates the amplitudes, phases, frequencies, chirp rates,
and decay rates of multiple non-stationary components that may be
obfuscated under the same local maximum in the frequency spec-
trum. Quantitative results show that the new method not only has
an estimation accuracy that is close to the Cramér-Rao bound, but
also a high resolution that outperforms the state-of-the-art.

1. INTRODUCTION

Sinusoidal modeling is a primary topic in audio signal processing
with many applications for audio analysis, coding, transformation,
and re-synthesis. Rooted in additive synthesis and Fourier theory,
sinusoidal modeling assumes that a signal is composed of a sum
of sinusoidal oscillations and noise. Stationary models assume that
the sinusoids have constant frequencies and amplitudes within the
finite temporal window of analysis. But musical audio typically
exhibits time-varying features, for example from the vibrato of a
singing voice or attack of a plucked string. Estimating the pa-
rameters of non-stationary sinusoids can improve the quality and
efficiency of the signal representation, enabling precise transfor-
mation and re-synthesis even when there are modulations within
the short temporal analysis window. Indeed, non-stationary anal-
ysis has received much attention over the last several decades, as
summarized in Section 1.1.

However, estimating mixtures of non-stationary sinusoids is
still a difficult problem, especially in polyphonic music where su-
perimposed non-stationary sinusoids with strong modulations cross
in the time-frequency plane. Typically, non-stationary estimators
assume that sinusoids do not overlap in the frequency domain and
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detect them by picking peaks one-by-one. After detection, a few
spectral values around the peak are used to estimate first the non-
constant parameters, and second the constant parameters. They
do not usually consider the covariance between the sinusoids nor
the contribution of negative frequencies to the Fourier transform
that can bias their estimations. While subspace methods can de-
tect overlapping components with high-resolution thanks to their
measure of temporal covariance from an auto-correlation function,
their performance is highly sensitive to the model order and they
cannot estimate frequency modulations.

This paper addresses the gap between non-stationary and high-
resolution estimators with a new method that jointly resolves and
estimates mixtures of damped chirp sinusoids in noise. We present
a variational algorithm for nonlinear Bayesian regression that fits
the entire frequency spectrum to a weighted sum of spectral ba-
sis functions: the weights encode the amplitudes and phases, and
the basis functions encode the frequencies, chirp rates, and de-
cay rates of the damped chirps. As opposed to existing meth-
ods, this offers a high resolution because it infers a distribution
that encodes the spectral covariance between the chirps and a high
accuracy because it integrates information from the entire spec-
trum. The new method can be used with any analysis window:
the spectrum of a windowed damped chirp is computed analyti-
cally when using a Gaussian window or numerically when using a
non-Gaussian window. Accuracy and resolution experiments show
the new method’s high quality compared to the state-of-the-art and
theoretical bounds.

1.1. Overview of Previous Work

Parameter estimation of a noisy chirp was proposed by Djuric
et. al. [1]. Zhou et. al. [2] generalized the estimation problem to
polynomial phase signals, which includes the damped chirp. The
quadratically interpolated fast Fourier transform (QIFFT) [3] as-
sumes that a Gaussian analysis window is used and estimates non-
stationary parameters after fitting a parabola to the log-magnitude
spectrum and the unwrapped phase spectrum. The reassignment
method was initially proposed by Kodera et. al. [4, 5], general-
ized to time-frequency analysis by Auger and Flandrin [6], and
to estimate a non-stationary sinusoid with the generalized reas-
signment method (GRM) by Röbel [7] and Hainsworth [8]. Marc-
hand and Depalle [9] developed a generalized derivative method
(GDM) that uses a signal’s first and second derivatives to estimate
a non-stationary sinusoid’s parameters. Betser [10] proposed a
distribution derivative method that estimates the parameters of a
general polynomial signal model by solving a set of linear equa-
tions formed from the signal and its derivatives. A comparison of
these non-stationary parameter estimation methods was presented
in [11]. Estimation of signal parameters via rotational invariance
techniques (ESPRIT) is a high-resolution method for damped, sta-
tionary frequency sinusoids proposed by Roy and Kailath [12] and
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adapted to audio analysis by Badeau et. al. [13], that has an esti-
mation accuracy close to the theoretical bound.

1.2. Notation

• xT: transpose of vector x,
• z̄: complex conjugate of vector z,
• zH: conjugate (Hermitian) transpose of vector z,
• ℜ{z}: real part of vector z,
• ⟨z⟩p(z): expected value of z with respect to (w.r.t.) the

probability distribution p(z),
• IM : identity matrix of size M ×M ,
• Diag(z): diagonal matrix formed from the elements of z,
• diag(Z): vector formed from the diagonal entries of Z,
• NF(x|µ,Σ): real (if F = R) or circular complex (if
F = C) multivariate normal distribution over x with mean
µ and covariance matrix Σ.

2. A DAMPED CHIRP AND ITS FOURIER TRANSFORM

A damped chirp is a sinusoidal oscillation with linear frequency
modulation (FM) and exponential amplitude modulation (AM),

s(t) = ρe−αt cos

(
θ + ω0t+

1

2
ψt2
)
. (1)

Its parameters include the amplitude ρ, the phase θ in radians, the
decay rate α in log-amplitude per second, the angular frequency
ω0 in radians per second, and the chirp rate ψ in radians per sec-
ond squared. The decay rate can be positive or negative to make
an exponential decrease (damped) or increase (undamped), respec-
tively.

A Gaussian window with scale β > 0 is defined as

w(t) = exp

(
− t

2

2β

)
. (2)

The Fourier transform x(ω) ∈ C of a damped chirp signal
has a closed-form solution when it is multiplied by the Gaussian
window in equation (2):

x(ω) =

∫ +∞

−∞
w(t)s(t)e−iωtdt = fϕ(ω)v + f̄ϕ(−ω)v̄ , (3)

where a coefficient v ∈ C encodes the amplitude and phase,

v = ρeiθ , (4)

and a spectral basis function fϕ(ω) ∈ C that has the parameter set
ϕ = [α, ω0, ψ] is defined as

fϕ(ω) =
√
πgψ exp

(
gψh

2
α,ω0

(ω)
)
, (5)

gψ =
β

2

(
1 + iβψ

1 + β2ψ2

)
, (6)

hα,ω0(ω) = α+ i(ω − ω0) . (7)

Since the damped chirp in equation (1) is real, it consists of an
equal contribution of positive and negative frequency components,
fϕ(ω)v and f̄ϕ(−ω)v̄, respectively.

In theory, a Gaussian window and a damped chirp both have
infinite time support and are non-causal. Practically, since we pro-
cess causal digital signals that have finite temporal support, we

assume the onset of the exponential in equation (1) occurs out-
side of the analysis window. This assumption is common to si-
nusoidal model estimators, which succumb to distortions in the
frequency spectrum and possible estimation biases when the onset
of a damped exponential occurs within the analysis window.

This model is temporally local in two ways. First, we use a
window of finite duration T that localizes the estimation around
its center. Scale β may be set such that w(±T/2) = ν, where
0 < ν ≪ 1 is an acceptably small threshold, using the equation

β = − T 2

8 ln(ν)
. (8)

Second, since real-world signals have evolving features, we are in-
terested in using a local analysis window that slides through time,
estimating parameters from a short snapshot of the signal. Perfect
reconstruction is possible when the time between analysis win-
dows, the hop length L, satisfies the following condition,

L ≤
√
πβ√
2
. (9)

3. BAYESIAN REGRESSION MODEL

Now we turn to estimating the parameters of damped chirps given
an audio signal, which we address as a nonlinear Bayesian regres-
sion problem. In nonlinear regression, the goal is to estimate the
parameters of nonlinear functions, called basis functions, and re-
gression coefficients (weights), such that the weighted sum of basis
functions matches the data [14].

Data is assumed to be generated from a sum of M real-valued
damped chirps plus zero-mean, normally-distributed noise. In the
frequency domain, the noisy damped chirps model for complex
Hermitian spectral data x(ω) ∈ C is

x(ω) = η(ω) +

M∑
m=1

{
fϕ(m)(ω)vm + f̄ϕ(m)(−ω)v̄m

}
, (10)

η(ω) ∼ NC(0, σ
2
x) , (11)

where σ2
x is the variance of the Hermitian noise η(ω) ∈ C, vm

is the regression coefficient and ϕ(m) = [αm, ω0,m, ψm] is the
parameter set of the mth damped chirp.

A real signal’s negative and positive frequencies cause esti-
mation bias and detection errors for existing estimators. Energy
accumulation is prominent not only in lower frequencies where a
component’s bandwidth is likely greater than its center frequency,
but also along the entire frequency range when a signal has sig-
nificant chirp or decay rates. Previously, the Hilbert transform has
been used to approximately remove the negative frequencies, and
windows with low side-lobes were designed to reduce overlap. In-
stead, we enhance the estimator by explicitly modeling the contri-
bution of both the positive and negative frequency components.

3.1. Discretization

In order to apply the concept of nonlinear Bayesian regression, we
consider discretized data, basis functions, and regression coeffi-
cients, and express them in matrix form. Further, the parameters
and coefficients are considered to be stochastic, random variables
whose properties are described through their statistical distribu-
tions. In the following, the variables are normalized to make them
independent of the sampling rate, e.g.ω is in radians per sample.

DAFx.2



Proceedings of the 23rd International Conference on Digital Audio Effects (DAFx2020), Vienna, Austria, September 2020-21

Data vector x ∈ CN×1 contains N observations of a spec-
trum obtained by taking a zero-phased discrete Fourier transform
(DFT)1 of a truncated windowed signal with a duration of N sam-
ples, evaluated at frequencies ωn = 2π(n− 1)/N ,

x =

x(ω1)
...

x(ωN )

 . (12)

Matrix
−→
F ∈ CN×M contains values of the basis function

fϕ(m)(ωn) for each of theM damped chirps evaluated at the same
N discrete frequencies of x,

−→
F =

 fϕ(1)(ω1) . . . fϕ(M)(ω1)
...

. . .
...

fϕ(1)(ωN ) . . . fϕ(M)(ωN )

 . (13)

Likewise,
←−
F ∈ CN×M contains values of f̄ϕ(m)(−ωn),

←−
F =

 f̄ϕ(1)(−ω1) . . . f̄ϕ(M)(−ω1)
...

. . .
...

f̄ϕ(1)(−ωN ) . . . f̄ϕ(M)(−ωN )

 . (14)

Basis function parameters are concatenated in a 1×3M vector
ϕ = [ω0,ψ,α]. The 1 × 3 subvector ϕ(m) = [αm, ω0,m, ψm]
contains the mth component’s parameter set.

Vector v ∈ CM×1 containsM complex-valued regression co-
efficients,

v =

 v1...
vM

 =

 a1 + ib1
...

aM + ibM

 = a+ ib . (15)

To simplify estimation and notation, we introduce the real-valued
vector of variables z ∈ R2M×1 that is formed from the vertical
concatenation of v’s real and imaginary parts,

z =

[
a
b

]
. (16)

We define a M × 2M complex-valued matrix

C =
[
IM iIM

]
, (17)

so v and z are related through a linear transformation,

v = Cz . (18)

Lastly, we define the composite matrixQ ∈ CN×2M as

Q =
−→
F C +

←−
F C̄ . (19)

3.2. Data likelihood

Following from equation (10), the likelihood of the data x given z
and the entire parameter set ϕ is

p(x|z,ϕ) = NC(x|Qz, σ2
xIN ) . (20)

1A zero-phased DFT x is one where the center of the analysis is at
time zero and is obtained by multiplying the linear DFT y by the factor
exp(iπn): x(ωn) = y(ωn) exp(iπn) for n = 0, . . . , N − 1. We center
the transform at time zero to be consistent with equation (3).

3.3. Priors

The vector of regression coefficients z is given a zero-mean nor-
mal prior with diagonal 2M × 2M precision (inverse covariance)
matrix Λ = Diag(λ) that is scaled by the data noise’s level σ2

x,

p(z) =

2M∏
j=1

NR(zj
∣∣0, λ−1

j σ2
x) . (21)

Estimation of λ is key to relevance vector regression [15], a
method of finding sparse solutions to Bayesian regression prob-
lems that represents the data with only a few relevant components.
An irrelevant component is trimmed from the model as its coef-
ficient magnitude |zj | is pushed towards the prior mean of zero.
Relevant components correspond to the underlying damped chirps,
while irrelevant components correspond to spurious peaks from
the noise-power spectral density estimate, secondary lobes of the
window, and distortion.

The mth component’s frequency ω0,m > 0 has a normal prior
with variance τω0 = M−1 and mean uniformly spaced in the
range (0, π/2),

p(ω0) =

M∏
m=1

NR(ω0,m|ω̃0,m, τω0) , (22)

ω̃0,m =
π(m− 1)

2M
. (23)

Assuming a normal prior distribution (even for positive-valued vari-
ables) simplifies estimation because it is a conjugate distribution to
the normal likelihood. The prior variance encourages the mth es-
timate to be close to ω̃0,m. Further, our inclusion of both positive
and negative components in the model enables accurate estimation
around frequency zero.

The mth component’s chirp rate ψm ∈ R has a normal prior
with mean ψ̃m = 0 and variance τψm ,

p(ψ) =

M∏
m=1

NR(ψm|ψ̃m, τψm) , (24)

τψm =
1

N

(π
2
−
∣∣∣π
2
− ω̃0,m

∣∣∣) . (25)

This prior encourages the chirp rate to be within ±ω̃0,m/N be-
cause the instantaneous frequency, ω0,m ± 1

2
ψmn, should be

greater than zero and less than the Nyquist frequency at n±N/2.
For example, if ω̃0,m is 0 or π, then τψm = 0, and the estimate
of ψm will be ≈ 0. If ω̃0,m = π

2
, then the chirp rate is likely in

the range − π
2N

< ψm < π
2N

. This parametrization is opposed
to directly relating the chirp rate to the frequency through a factor,
which would complicate the estimation of both variables.

Lastly, the mth component’s decay rate αm ∈ R has a normal
prior with mean α̃m = 0 and variance τα = N−1,

p(α) =
M∏
m=1

NR(αm|α̃m, τα) . (26)

3.4. Joint Distribution

The joint distribution is the product of the likelihood and priors,

p(x,z,ϕ) = p(x|z,ϕ)p(z,ϕ) (27)
= p(x|α,ω0,ψ,z)p(α)p(ω0)p(ψ)p(z) . (28)
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4. ESTIMATION

Applying Bayes’ theorem gives the posterior distribution over the
latent variables, ϕ and z, given the data,

p(z,ϕ|x) = p(x|z,ϕ)p(z,ϕ)
p(x)

, (29)

p(x) =

∫ ∫
p(x|z,ϕ)p(z,ϕ)dzdϕ . (30)

As with most non-trivial models, it is not possible to solve the
integral for the model evidence p(x) analytically.

Since exact inference is intractable for this model, we develop
a variational inference algorithm for approximate inference of the
posterior over the regression coefficients and the parameters.

p(z,ϕ|x) ≈ q(z,ϕ) . (31)

Variational inference circumvents the intractable integral in-
volved in minimizing the Kullback-Leibler (KL) [16] divergence
from q to p by instead maximizing the lower bound on model evi-
dence [17, 18],

L(q) = ⟨ln p(x|z,ϕ)⟩q(z,ϕ) −DKL (q(z,ϕ)∥p(z,ϕ)) (32)

Approximate posterior q is factorized between the regression
coefficients and basis function parameters,

q(z,ϕ) = qz(z)qϕ(ϕ) . (33)

The optimal log distributions that maximize the lower bound
are given by the calculus of variations,

ln q⋆z(z) = ⟨ln p(x,z,ϕ)⟩qϕ(ϕ) + constant , (34)

ln q⋆ϕ(ϕ) = ⟨ln p(x,z,ϕ)⟩qz(z) + constant . (35)

Each distribution is updated in turn to maximize L(q).

4.1. Regression coefficients (amplitudes and phases)

The optimal approximate posterior q⋆z(z) introduced in (34) is nor-
mal and has a closed-form solution,

q⋆z(z) = NR(z|µz, σ2
xΣz) , (36)

where the meanµz and covariance matrix Σz are derived using the
properties [19] of marginal and conditional normal distributions,

µz = ΣzQ
Hx , (37)

Σz =
(
Λ+QHQ

)−1

. (38)

Indeed, Λ regularizes the ill-posed problem when QHQ is ill-
conditioned, which may happen when |αm| is very large.

Amplitude and phase estimates are given by the absolute value
and argument (angle) ofCµz , respectively,

ρ̂ = |Cµz| , (39)

θ̂ = Arg(Cµz) . (40)

Maximizing the expected log-prior ⟨ln p(z)⟩qz w.r.t.λ gives

λ̂ = diag
(

1

σ2
x

µzµ
T
z +Σz

)−1

. (41)

Algorithm 1 Damped Chirps Estimator
input: x. initialize: ϕ, Λ.

repeat
Q← GETBASISFUNCTIONS(ϕ)
Σz ← (Λ+QHQ)−1

µz ← ΣzQHx

Λ← Diag
(

diag( 1
σ2
x
µzµT

z +Σz)−1
)

∇ϕ⟨ln p(x,ϕ,z)⟩q⋆z ← GETGRADIENT(µz , Σz ,ϕ)
ϕ← ϕ+ γ∇ϕ⟨ln p(x,ϕ,z)⟩q⋆z

until
∑
j |∆ϕj

| < threshold
output: ϕ, µz , Σz .

As an element of µz and its variance go towards zero, its corre-
sponding precision will go to infinity. In turn, a large element in
Λ = Diag(λ̂) causes the corresponding element in the estimate
µz to go to zero. Therefore, this variational estimation of the re-
gression coefficient and precision leads to sparse solutions, since
irrelevant components (ones with small magnitudes and small vari-
ances) are driven to zero, while relevant components with signifi-
cant magnitudes are not altered. This is referred to as a relevance
vector machine [15], or more generally, automatic relevancy deter-
mination [20].

4.2. Basis function parameters (frequencies, chirp rates, de-
cay rates)

The optimal approximate posterior q⋆ϕ(ϕ) introduced in equation
(35) does not have a closed-form solution. However, with a Laplace
approximation [21], qϕ(ϕ) = NR(ϕ|ϕ̂, σ2

ϕI3M ) for σ2
ϕ ≈ 0, we

can estimate the variational mode ϕ̂ by maximizing the right hand
side of equation (35) w.r.t.ϕ.

Estimation ofϕ is an unconstrained optimization problem [22]
that can be addressed with gradient root finding. Gradient ascent
performs well in this application because it is less sensitive to dif-
ferent initializations when compared to Newton’s method but still
converges quickly. The algorithm updates ϕ as follows,

ϕ = ϕ+ γ∇ϕ
(
⟨ln p(x,z,ϕ)⟩q⋆z

)
, (42)

where ∇ϕ denotes the gradient w.r.t.ϕ and γ is the learning rate.
Section 8.1 provides closed-form equations for the gradient of the
expected log-joint, which is decomposed as

∇ϕ⟨ln p(x,z,ϕ)⟩q⋆z = ∇ϕ
(
⟨ln p(x|z,ϕ)⟩q⋆z + ln p(ϕ)

)
.

(43)

Pseudo-code for estimating damped chirps is presented in Al-
gorithm 1. Its computational complexity is mainly from the 2M ×
2M matrix inverse in equation (38) to update µz , and the inner
product in equation (50), Section 8.1, to update the gradient.

4.3. Expected marginal likelihood

After inference, an interesting statistic that is directly available us-
ing the sum rule of probability is the expected likelihood of the
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data w.r.t. the inferred posterior over z,

⟨p(x|z,ϕ)⟩q⋆z(z) =

∫
p(x|z,ϕ)q⋆z(z)dz , (44)

= NC(x|µx,Σx) , (45)
µx = Qµz , (46)

Σx = σ2
x

(
QΣzQ

H + IN
)
. (47)

The mean is a smoothed (de-noised) representation of the data, and
the covariance measures uncertainty about the data.

4.4. Generalization to non-Gaussian windows

The proposed method can be used with any analysis window. While
the Fourier transform of a damped chirp with a non-Gaussian win-
dow does not admit a closed-form solution, we can use the damped
chirp’s time domain basis function and derivatives given in Section
8.1, multiply them with a non-Gaussian window, then numerically
compute the DFTs. This provides us with the spectral basis func-
tions and its derivatives w.r.t. the parameters for any analysis win-
dow. For example, the Hann window is often used for spectral
analysis due to its compact main lobe and attenuated side-lobes
[23].

5. PRACTICAL EXPERIMENTS AND RESULTS

5.1. Accuracy experiments (single component)

Nonlinear Bayesian regression (NLR) was tasked with estimating
the parameters of damped chirps across a range of noise levels. It
was compared to the Cramér-Rao bound (CRB) defined in Section
8.2, and existing state-of-the-art non-stationary sinusoidal model
estimators discussed in Section 1.1: GRM [6, 7], GDM [9], QIFFT
[3], and ESPRIT [13].

For NLR, the spectral data was either obtained using a Gaus-
sian window (NLR-G) or a Hann window (NLR-H). For NLR-G,
the closed-form expressions for the spectrum and derivatives were
used. The Gaussian window’s scale was set using equation (8)
with ν < 10−3. For NLR-H, the spectral basis function and its
derivatives were computed numerically by taking DFTs of a Hann-
windowed complex-valued damped chirp and its derivatives.

The duration of each test signal was N = 512 samples. The
signal-to-noise ratio (SNR) in dB was

SNR = 10 log10

(∑N−1
n=0 s

2
n∑N−1

n=0 ζ
2
n

)
. (48)

and went from 0dB to +120dB by steps of 20dB, where sn is the
signal and ζn is the zero-mean white noise of the nth time-domain
sample. Since NLR does not have access to the true noise variance,
we set σ2

x = .1N constant for all tests.
For each SNR and each analysis method, the variance of error

was evaluated from R = 1000 Monte Carlo runs. The variance of
error was approximated by the equation

var(error) =
1

R

R∑
r=1

(
ξ(r) − ξ̂(r)

)2
, (49)

where ξ(r) was a target value and ξ̂(r) was an estimate from the
rth Monte Carlo run. Monte Carlo run r involved randomly sam-
pling from uniform distributions the phase θ(r) ∈ (0, 2π), and

frequency in the range ω(r)
0 ∈ (4π/N, π/4), as GRM, GDM,

and QIFFT had problems with ω
(r)
0 < 4π/N . The chirp rate

was either ψ(r) = 0 (no FM) or randomly sampled in the range
ψ(r) ∈ (−2ω0/N, 2ω0/N) (FM), so the instantaneous frequency
could span 2ω0 in N samples. Similarly, the decay rate was either
α(r) = 0 (no AM) or randomly sampled α ∈ (−2/N, 2/N)
(AM).

Figures 1 and 2 show the variance of error given stationary
signals (no FM or AM), and non-stationary, damped chirp signals
(FM and AM), respectively. ESPRIT is closest to the CRB for
stationary signals, but does not estimate chirp rate and its quality
degrades for damped chirp signals because it assumes that signals
have stationary frequencies (no FM). NLR has similar accuracy to
GRM, GDM, and QIFFT below 60dB and more accuracy above
60dB, remaining close to the CRB for all parameters. Compared
to a Gaussian window spectrum, a Hann window’s spectrum has a
small main lobe and low side-lobes enabling better frequency res-
olution. Indeed, NLR-H was better than NLR-G across all SNRs.
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Figure 1: Algorithm performance evaluation for a constant fre-
quency and amplitude signal (no AM or FM).

5.2. Resolution experiments (multiple components)

Joint estimation of multiple frequency components in a noisy sig-
nal is a difficult problem. First, Figure 3 shows the result of using
NLR-G to estimate many stationary components from a noisy sig-
nal of duration N = 256 that are close in frequency and where
some share the same spectral peak. The proposed method demon-
strates its high resolution, detecting obfuscated components and
estimating their parameters. The number of components was set
to M > N/8, which allowed each component to be properly de-
tected. Irrelevant components were automatically driven to zero
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Figure 2: Algorithm performance evaluation for a damped chirp
signal (AM and FM).

amplitudes thanks to the sparsity inducing prior over the regres-
sion coefficients and the estimation of λ. ESPRIT with order 24
(12 components) had a similar resolution but was sensitive to the
order, did not trim irrelevant components, and did not consider fre-
quency modulation.

Figure 4 shows the results of estimating several damped chirp
components from a noisy signal of duration N = 256. Fast chirps
and decays created wide spectral lobes that caused significant phase
cancellation artifacts in the magnitude spectrum, most noticeably
at 4.3 kHz where a component’s center frequency is above a valley.
The proposed method resolved this difficult situation, estimating
each component’s chirp rate and decay rate, as shown in the bot-
tom panels of Figure 4. GRM and GDM would not resolve these
components, as they detect components by picking spectral peaks.

5.3. Short-term analysis with a sliding window

To analyze longer duration evolving sounds, we used a sliding
Gaussian window of N = 256 duration with an L = 256
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Figure 3: NLR resolved close frequency components, even though
they were obfuscated under the same local maximum (peak) in the
magnitude spectrum.
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Figure 4: NLR detected multiple damped chirps from a noisy sig-
nal, even though they had fast chirp and decay rates (middle and
bottom panels) and were obfuscated under the same peak in the
magnitude spectrum (top panel, line slopes represent chirp rates).
It automatically trimmed irrelevant components from the model.

hop length. Since the analysis frames do not overlap in time, we
can clearly show how the parameters evolve between them. Chir-
pograms in Figures 5a and 5b show the short-term estimation of
noisy (20dB SNR) signals with fast chirp rates, and two cosine
FM components that cross in the time-frequency plane. When the
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components cross at time 0.12 seconds, their chirp rates have the
same magnitude but are of opposite signs. NLR resolves the two
components and shows their crossing even though they are under
the same spectral peak at 4kHz. This quality is relevant for subse-
quent partial tracking [24] and additive synthesis, where incorrect
detection can lead to distortions in the re-synthesized sounds.
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(a) Fast chirp rate estimation from a noisy cosine FM sound.
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(b) NLR accurately resolves and estimates the two cosine FM
sounds from a noisy signal, even at 0.12 seconds where they share
the same 4kHz spectral peak.

Figure 5: Chirpograms: a line’s position, slope, and color, cor-
respond to an estimated frequency, chirp rate, and amplitude, re-
spectively. Chirp rate and window scale affect the sizes of the
spectrogram lobes (dark parts of background image).

6. CONCLUSIONS

This paper presented a method for resolving and estimating the pa-
rameters of superimposed damped chirp sinusoids in noise. Non-
linear Bayesian regression in the frequency domain was addressed
using an analytic expression for a Gaussian-windowed damped
chirp’s Fourier transform, and generalized to any window by com-
puting DFTs of a damped chirp’s temporal basis function and its
derivatives. Explicitly modeling the additive contribution of a real-
valued signal’s negative and positive frequency components en-
ables quality estimation over the entire spectrum. Its high reso-
lution is attributed to the probabilistic modeling and inference of
the non-stationary parameters and their covariances, given all the
data available. It can resolve crossing partials with fast chirp rates
that even share the same spectral peak, and has more accuracy than

existing estimators for highly non-stationary signals. These quali-
ties are especially relevant for analyzing, coding, and synthesizing
vocal sounds and polyphonic music. Future work could accelerate
the algorithm. While our structured variational approximation pro-
vided high resolution and accuracy, a mean-field factorization of
the model’s variables may significantly reduce the computational
complexity of estimation without altering its quality. A second or-
der optimization algorithm like Newton’s method could improve
convergence speed after a careful initialization. Alternatively, a
variational auto-encoder could be used to map the data to approx-
imate posterior means and variances of the model parameters.
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8. APPENDIX

8.1. Gradients of the basis functions

The gradient of the log-likelihood w.r.t.ϕ is

∇ϕ⟨ln p(x|z,ϕ)⟩q⋆z =
2

σ2
x

ℜ
{
x̃H

(
−̇→
F ⊙ y +

←̇−
F ⊙ ȳ

)}
,

(50)

where ⊙ denotes element-wise multiplication and we defined

x̃ = x−Qµz , (51)
v̂ = C (µz + diag(Σz)) , (52)

y =
[
v̂T v̂T v̂T

]
(53)

Second, the gradient of a log-prior w.r.t.ϕ is

∇ϕ ln p(ϕ) =
(
ϕ̃− ϕ

)
Diag(τϕ)−1 , (54)

ϕ̃ =
[
ω̃0 ψ̃ α̃

]
, (55)

τϕ =
[
τω0 τψ τα

]
. (56)

Considering equation (43), σ2
x gives more or less influence to the

likelihood compared to the prior. We keep this value fixed regard-
less of the actual noise level, which we assume is unknown.

Matrix
−̇→
F ∈ CN×3M contains the partial derivatives of theM

spectral basis functions with respect to their three parameters,

−̇→
F =

[
∂
−→
F /∂ϕ1 . . . ∂

−→
F /∂ϕ3M

]
. (57)

where ∂
−→
F /∂ϕj is an N × 1 vector because only one of the basis

functions depends on ϕj , ∀j ∈ [1, 3M ].
The partial derivatives of the Gaussian’s spectral basis func-

tion w.r.t. each of the parameters are

∂fϕ(ω)/∂α = 2gψhα,ω0(ω)fϕ(ω) , (58)
∂fϕ(ω)/∂ω0 = −i2gψhα,ω0(ω)fϕ(ω) , (59)

∂fϕ(ω)/∂ψ = igψ
(
1 + 2gψh

2
α,ω0

(ω)
)
fϕ(ω) . (60)

where the index m is not subscripted to simplify the equations.
For non-Gaussian windows, the spectral basis function and its

derivatives are numerically computed with windowed DFTs of the
temporal basis function dϕ(t) and its derivatives,

dϕ(t) = exp(αt+ iω0t+ i
1

2
ψt2) , (61)

∂dϕ(t)/∂α = tdϕ(t) , (62)
∂dϕ(t)/∂ω0 = itdϕ(t) , (63)

∂dϕ(t)/∂ψ = i
1

2
t2dϕ(t) . (64)

8.2. Theoretical bounds

The Cramér-Rao bound (CRB) is defined as the best possible per-
formance of an unbiased estimator in the presence of noise for a
given dataset. For the damped chirp model in (1), the CRBs have
been derived by Zhou et al. [2]. The CRB depends on the value

ϵk =

N−1∑
n=0

(n− n0

N

)k
exp

(
2α
n− n0

N

)
, k ≥ 0 , (65)

where 0 ≤ n0 < N is the time sample at which the parameters
are estimated. Djurić and Kay [1] noted that the optimal choice in
terms of the CRB is n0 = N

2
, i.e. the center of the analysis frame.

The Fischer information matrix (FIM) and CRB for the ampli-
tude and decay rate are

Jρ,α =
2ρ2

σ2
x

[
ϵ0

1
ρ2

−ϵ1 1
ρ

−ϵ1 1
ρ

ϵ2

]
, (66)

CRB
([

ρ
α

])
= diag

(
J−1
ρ,α

)
. (67)

The FIM and CRB for the phase, frequency, and chirp rate are

Jθ,ω0,ψ =
2ρ2

σ2
x

 ϵ0 ϵ1N ϵ2N
2

ϵ1N ϵ2N
2 ϵ3N

3

ϵ2N
2 ϵ3N

3 ϵ4N
4

 , (68)

CRB

 θω0

ψ

 = diag
(
J−1
θ,ω0,ψ

)
. (69)
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