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Abstract—Supervised source separation requires expensive
synthetic datasets containing clean, ground truth-source signals,
while unsupervised separation requires only data mixtures.
Existing unsupervised methods still use supervision to avoid
over-separation and compete with fully supervised methods. We
present a new method of completely unsupervised single-channel
blind source separation, based on variational auto-encoding,
that automatically learns the correct number of sources in data
mixtures and quantitatively outperforms the existing methods.
A deep inference network disentangles (separates) data mixtures
into low-dimensional latent source variables. A deep generative
network individually decodes each latent source into its source
signal, such that their sum represents the given mixture. Qualita-
tive and quantitative results from separation experiments on pairs
of randomly mixed MNIST handwritten digits and mixed audio
spectrograms demonstrate that our method outperforms state-
of-the-art unsupervised and semi-supervised methods, showing
promise as a solution to this long-standing problem in computer
vision and audition.

Index Terms—blind source separation, Bayesian inference,
unmixing, latent variable model, universal sound separation

I. INTRODUCTION

Unsupervised blind source separation (BSS) has attracted
much attention over the last 30 years and, because of its
many exciting applications in computer vision and audition,
remains as a key research problem today [1]. The problem can
be stated as follows: estimate the underlying sources from a
given single-channel (monophonic) mixture without knowing
the true number of sources and without ever having access
to clean target source signals for model training. An example
unsupervised system for sounds would be able to learn from
the vast collection of existing recorded sounds including music
and films and generalize to separate unheard sounds with ideal
accuracy. This goal is motivated, in part, by human ability; we
are able to effortlessly disentangle an acoustic scene, focus on
a single speaker in a busy room (the cocktail party effect) and
perceive multiple objects superimposed on a single image [2].

Unsupervised methods that learn BSS solely from mixed
data are valuable because datasets that include both the
target mixture and the clean sources are rare and expensive
to create. Supervised methods that take advantage of these
tailored datasets have matured to the point of being deployable
for practical applications [3], [4]. Despite growing research
interest, there are currently much fewer works on unsupervised
BSS. In contrast to supervised separation, this highly under-

determined problem requires strong prior information about
the sources to enable separation, limiting its application.
Previous work has suggested a variety of models and prior
information, as detailed in Section II.

A variational auto-encoder (VAE) [5] is a powerful genera-
tive model that leverages fast, amortized inference to encode
high-dimensional data in a structured, low-dimensional latent
space. VAEs have proven successful in interesting image and
audio applications, including audio synthesis [6], interpolation,
de-noising, and disentangling a musical note’s timbre from
pitch [7].

This paper presents a VAE for unsupervised blind source
separation of high-dimensional data. Given a mixture signal,
our VAE infers separated latent source encodings, then indi-
vidually generates source signals from them with a decoder.
Further, the VAE inherits Bayesian automatic relevancy deter-
mination [8] to infer the correct number of mixed sources in a
totally unsupervised way, contrasting existing techniques that
tend to over-separate mixtures when the number of assumed
sources are more than in reality. To this point, we show that
a regular auto-encoder is not suitable for source separation.
Our memory-efficient VAE involves a single encoding and
decoding neural network and assumes a Laplace likelihood
to improve the quality of separated sources. Qualitative and
quantitative results on handwritten digit and audio spectrogram
data exemplify our method’s high quality in comparison to the
state-of-the-art and ideal masks.

II. OVERVIEW OF PREVIOUS WORK

The BSS problem has attracted signal processing research
for several decades [1]. Classic BSS algorithms include in-
dependent component analysis (ICA) [9] and robust principal
component analysis (RPCA) [10]. Non-negative matrix factor-
ization (NMF) is a powerful BSS framework that assumes non-
negative data and decomposes it into activations and templates,
which for spectrograms correspond to spectral templates and
temporal activations [11], [12].

Machine learning methods learn prior information about
sources by fitting (training) a model to example data. Deep
neural networks have been successful at supervised source sep-
aration due to their capacity for pattern recognition. Supervised
separation is now mature enough to be used for some real-
world musical source separation applications [1], [3]. Recent



methods combine supervised deep learning and auditory scene
analysis [13].

Latent variable models, like VAEs, have been applied to
supervised [14] and semi-supervised source separation. A
supervised VAE-NMF hybrid method was designed for multi-
channel signal separation [15]. Semi-supervised training with
source class labels in [16] performed decently compared to
supervised training on source signals. Existing VAE methods
use separate decoder or encoders for each source and require
some supervision during training. Deep clustering [17] uses su-
pervised learning with ideal binary masks to cluster (separate)
latent variables that correspond to different source signals.

Unsupervised BSS has garnered significant interest in the
last several years. In [18], a generative adversarial network
(GAN) separated two images including particular combina-
tions of handwritten digits, yet it was not successful at sepa-
rating audio spectrograms. Mixtures of generative latent opti-
mization (GLO) [19] models were applied to semi-supervised
separation of two images and speech signals [20]. Mixture
invariant training (MixIT) [21] is capable of unsupervised
separation of speech signals in the time-domain. MixIT uses
supervision to avoid over-separation and datasets containing
1 and 2 source mixtures (i.e. semi-supervision) to perform
similarly to supervised neural network-based methods.

Unlike previous work, we present a completely unsuper-
vised single-channel BSS method that automatically estimates
the number of sources in the mixture thanks to Bayesian
automatic relevancy determination and out-performs existing
unsupervised methods at separating mixtures of images and
audio spectrograms when the dataset contains only mixtures of
multiple sources. Contrasting iterative methods like NMF, the
proposed VAE benefits from fast, deterministic inference that
can separate in real-time. The new method can handle difficult
single-channel, general unsupervised separation of handwritten
image digits from the same distribution, for example a pair of
superimposed “3”s, as well as sounds generated from the same
instrument, like two frequency modulated (vibrato) violins.

III. METHODOLOGY

This section presents a variational auto-encoder (VAE) [5]
for amortized inference of latent source encodings from mixed
data and independent generation of high-dimensional source
signals with deep neural networks.

A. Problem statement

The source separation problem involves a Dx-dimensional
vector x made from a sum of M sources sm plus noise ε,

x “
M
ÿ

m“1

sm ` ε . (1)

Given x, the goal is to infer (estimate) an assumed number K
of source estimates psk. In unsupervised BSS, we do not have
access to the true sources sm to train the model, nor do we
know the true number of underlying sources M . Indeed, for
complete separation, M ď K. Therefore, we assume that a
mixture is comprised of at most K sources. If M ă K, then
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Fig. 1. VAE for unsupervised blind source separation. An encoder separates
(disentangles) the data mixture into latent sources. Then, a decoder indepen-
dently generates a signal from each latent source. The source signals are added
together to provide an estimate of the data mixture.

sk “ 0, for M ă k ď K. Prior assumptions are required to
solve this highly under-determined problem.

Our data-driven approach learns prior information from a
training dataset of mixtures, through the joint optimization of
a deep generative model (decoder) and an inference model
(encoder), as illustrated in Figure 1.

B. Generative model

Source signal sk is generated according to a random process
involving a Dz-dimensional continuous latent source variable
zk, where Dz ! Dx. Generator function gθ is a neural network
with parameters θ that individually decodes each latent source
zk into its higher-dimensional signal psk,

psk “ gθpzkq . (2)

Data noise ε is assumed to follow a zero-mean Laplace
distribution with scale b “

?
0.5 for unit-variance [22].

Let Z “ rzks
K
k“1 be the concatenation of the latent source

variables with DZ “ DzK dimensions. Then, the likelihood
of data x given Z is

pθpx|Zq “
Dx
ź

i“1

Lap pxi|pxi, bq “
Dx
ź

i“1

1

2b
exp

ˆ

´
|xi ´ pxi|

b

˙

,

(3)

where the estimate of the mixed data is given by the sum of
source signals,

px “
K
ÿ

k“1

psk “
K
ÿ

k“1

gθpzkq . (4)

Assuming a Gaussian likelihood (`2 loss) is common for
VAEs but permits small deviations around the mean and
leads to blurry reconstructions. Instead, the sharp peak of
the Laplace likelihood (`1 loss) [23], [24] evenly penalizes
deviations around the mean and affords precise reconstruc-
tions. To the best of our knowledge, this simple remedy to
the established blurry VAE problem was absent from existing
literature.

Isotropic Gaussian priors are defined over each source’s
latent variable,

ppZq “
K
ź

k“1

ppzkq “
K
ź

k“1

N pzk|0, Iq . (5)

This prior assumes that each element varies independently and
helps to separate factors of variation in the data.



C. Inference model

Inferring Z from data x provides estimates of latent sources
zk, @k, from which we can generate source signals psk, @k,
with (2) and thus achieve source separation.

We use variational inference to approximate the posterior
distribution over the latent variables given the data [25].
Approximate posterior qφ is mean-field factorized such that
the elements of Z are independent and Gaussian distributed,

qφpZ|xq “ N
`

Z|µφpxq, σ
2
φpxqI

˘

. (6)

An encoding neural network with parameters φ outputs the
mean µ “ µφpxq and variance σ2 “ σ2

φpxq.

D. Variational lower bound

Variational inference turns approximate inference into an
optimization problem [26], maximizing the variational lower
bound on model evidence given by

Lpθ,φ;Xq “
N
ÿ

n“1

Lpθ,φ;xpnqq , (7)

Lpθ,φ;xpnqq “ xln pθpxpnq|ZqyqφpZ|xpnqq

´DKL

´

qφpZ|x
pnqq}ppZq

¯

. (8)

where dataset X “ txpnquNn“1 consists of N i.i.d. samples.
The first term is the expected log-likelihood under the

approximate posterior that minimizes the reconstruction error.
The second term is the negative KLD between the approximate
posterior and the prior that minimizes the difference between
the two distributions. The KLD contributes a regularization
that, along with the stochastic sampling of the latent space, is
crucial as it promotes disentanglement (separation).

Assuming a Gaussian approximate posterior is common
for variational auto-encoding as it enables simple Monte-
Carlo estimation of the expected log-likelihood with the re-
parametrization trick:

Zpnq „ qφpZ|x
pnqq, Zpnq “ µpnq ` σpnq d ε , (9)

where ε „ N p0, Iq and d denotes an element-wise product.

IV. ARCHITECTURE

A. Neural networks

The encoder and decoder each consisted of five fully
connected feed-forward neural network layers. Each linear
layer was followed by a ReLU activation function and batch-
normalization. The encoder’s hidden units progressively de-
creased after each layer, starting with the high-dimensional,
vectorized input to low-dimensional latent variable. A final
layer output the DZ-dimensional approximate posterior mean
µ and log-variance lnσ2 of Z. Table I shows the number
of hidden units in each layer. The decoder’s hidden units
increased after each layer, starting with Dz dimensions for the
sampled latent source zk and progressing in reverse order. The
last fully connected layer was followed by a sigmoid activation
function to output a Dx-dimensional source signal psk with

TABLE I
ENCODER INPUT, HIDDEN, AND OUTPUT LAYER UNITS (DIMENSIONS).

Dataset Input Hidden Layers Output
Dx L1 L2 L3 L4 L5 2 ˆ DZ

MNIST 784 700 600 500 400 300 2 ˆ 20K
MUMS 32768 2560 2048 1536 1024 512 2 ˆ 64K

non-negative values in the range 0-1. Crucially, the same
decoder individually generated each source’s latent vector
zk into its signal psk. Generating the source signals can be
done efficiently with parallel processing. Source signals were
summed to produce the expected value of the data mixture, px.

B. VAE mask (VAEM)

After training the VAE, an inferred source psk can be
converted to a mask-based source signal estimate qsk (VAEM)
that captures fine details from the data signal,

qsk “ psk d pxm pxq , (10)

where m denotes element-wise division. Unlike the VAE itself,
VAEM constrains the sum of estimated sources to exactly
match the data. We thus get the best of both worlds: automatic
determination of relevant sources and sharp source estimates.

V. EVALUATION

VAE, VAEM, baseline unsupervised BSS methods, and ideal
masks were evaluated on mixtures of M “ 2 true underlying
sources. Evaluations were completed for K “ p2, 3, 4q as-
sumed model sources to see whether source estimation quality
degrades for K ‰ M . Source code, audio examples, and
additional results are available at https://www.music.mcgill.ca/
„julian/vae-bss.

A. Datasets

Image and audio datasets were used to evaluate the proposed
method. Individual source examples were mixed together
randomly during each epoch of training. Due to this random
mixing process, the number of unique combinations, and
therefore the effective number of dataset examples, is given
by the binomial coefficient

`

N
M

˘

.
Handwritten Digits: The MNIST dataset [27] contains

60000 training and 10000 testing images of handwritten digits
0-9. Mixed image data was generated by adding M “ 2
randomly sampled images and normalizing the result to the
range 0-1. The training and testing images were never mixed
with one-another.

Spectrograms: The McGill University master samples
(MUMS) dataset [28] contains 6545 musical instrument
recordings sampled at 44.1 kHz. Audio files were transformed
into 2048-point complex-valued short-time Fourier transforms
(STFT) using a Hann window and a hop length of 512 samples.
STFTs were cropped to include only the first 256 frequency
bins (up to 5.5 kHz) and the first 128 time frames (about
1.5 seconds of audio). Data was randomly organized into a
collection of 5236 (80 %) training and 1309 (20 %) testing

https://www.music.mcgill.ca/~julian/vae-bss
https://www.music.mcgill.ca/~julian/vae-bss


datasets. After random mixing of M “ 2 source spectra, the
number of unique training examples is on the order of 107.
Training and testing sets were never mixed with one-another.
Mixed STFTs were transformed to magnitude spectrograms,
normalized to the range 0-1, and used as the model’s batched
input data. This nonlinear transformation (absolute value of a
complex number) means that the data mixture is not simply
a sum of individual sources, as phase mis-match between the
signals alters the resulting magnitude.

B. Training procedure

Models were trained on an NVIDIA V100 GPU using an
ADAM optimizer [29] and a batch size of 128, where the
learning rate was initially 1e-4 and decayed exponentially by
0.01% per epoch. To avoid posterior collapse early in training,
the β-VAE formulation was used [30], [31] where the KLD
(8) was multiplied by a factor β that increased linearly from
0 to 0.5 over the first 100 epochs. We found experimentally
that using 0.5 improved the reconstruction error and reduced
model over-pruning (again, improving quality), as it gave
slightly more weight to the reconstruction error than the KLD.
This was appropriate since we were primarily interested in
inference and reconstruction, not sampling. Completing one
epoch over the MNIST training set took 3 seconds (5e-5
seconds per example). Training was stopped once the negative
variational lower bound converged, after about 5000 epochs.

C. Baseline methods and ideal masks

Baseline unsupervised BSS methods include NMF [32]
with 8 templates per source, an auto-encoder (AE) that has
the same architecture as VAE but with a deterministic latent
variable and no KLD term, GLO [20], a semi-supervised
method that has access to one of two clean target sources
during training, and mixture invariant training (MixIT) [21], an
unsupervised discriminative separation approach. Originally,
MixIT was applied to waveform separation using a time-
domain separation architecture. Here, we used MixIT with
a separation architecture taken from the proposed method
for image and spectrogram data, with the five encoding and
decoding layers described in Sec. IV-A.

Ideal masks provide an upper-bound on performance. We
compared these methods against ideal binary masks (IBM)
and ideal ratio masks (IRM) as defined in [4].

D. Quantitative results

Image separation performance was evaluated according to
the peak signal-to-noise ratio (PSNR) and structural similar-
ity index (SSIM) [33]. For spectrogram data, source audio
waveforms were synthesized from their estimated magnitude
spectrograms using the inverse STFT and the data mixture’s
phase spectrum. Audio separation performance was quan-
tified with bss eval measures [34]: scale-invariant signal-
to-distortion ratio (SI-SDR) [35], signal-to-interference ratio
(SIR), and signal-to-artifact ratio (SAR).

Quantitative results in Tables II and III show the median
values computed over the entire testing dataset. Our method

TABLE II
BENCHMARK PSNR AND SSIM RESULTS FROM THE UNSUPERVISED BSS

TASK ON MIXED PAIRS OF MNIST HANDWRITTEN DIGITS.

NMF AE GLO MixIT VAEM

K “ 2
PSNR 17.22 15.96 24.63 25.69 26.69
SSIM 0.50 0.43 0.86 0.88 0.93

K “ 3
PSNR 18.27 16.30 n/a 25.41 27.68
SSIM 0.44 0.43 n/a 0.69 0.94

TABLE III
BENCHMARK BSS EVAL RESULTS FROM THE UNSUPERVISED BSS TASK

ON MIXED PAIRS OF MUMS AUDIO SPECTROGRAMS.

NMF MixIT VAE VAEM IBM IRM

SI-SDR 5.40 6.64 14.33 17.10 23.97 22.66
SIR 16.93 17.59 29.92 29.55 48.89 34.39
SAR 7.96 8.26 14.87 18.20 24.06 23.23

Mixture

GTVAEMMixITAENMF GLO

Fig. 2. MNIST separation. Example test data (Mixture) is composed of two
unknown ground truth (GT) handwritten digit sources.

outperformed the baseline unsupervised methods and semi-
supervised GLO. The baseline methods over-separated the
mixture when K ą M , which can be seen by MixIT’s lower
performance for K “ 3 in Table II. In contrast, VAE(M)
automatically trimmed superfluous sources from the model for
K ą M , such that two of the K source signals contributed
non-zero (relevant) values after training. Indeed, VAE(M)’s
quality was consistent for K ěM .

VAEM also outperformed existing methods at separating
mixtures of spectrograms. We notice that the SI-SDR and SAR
are improved with VAEM, while VAE has a better SIR than
VAEM and the IBM. VAEM has a slightly lower SIR than
VAE because the unit-sum condition from masking may re-
introduce some energy from another source.

E. Qualitative results

Qualitative comparisons are presented in Figures 2 and 3.
Figure 2 shows an ambiguous mixture of digits “2” and “4”,
where AE and NMF are poor, GLO and MixIT are good, and
VAEM is excellent. Figure 3 shows a particularly challenging
spectrogram example involving a low-pitched (A#1) bassoon
sound mixed with a frequency modulated (E4) violin sound.
We observe that VAE provides clean, smooth separated sources
that are sharpened with masking.

VI. CONCLUSION

Our variational auto-encoding approach offers a solution to
unsupervised blind source separation. Disentangling sources
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Fig. 3. Spectrogram separation. Example test data (Mixture) is composed of
unknown sound sources (GT): bassoon (top) and violin (bottom).

in a low-dimensional probabilistic latent space is practically
effective and aligns with intuition about how humans perceive
separate sounds in an acoustic scene [2]. Generating sources
independently using the same decoding deep neural network
means that the size, and therefore memory consumption, of
the network remains consistent regardless of the number of
model sources, which is an advantage over existing methods
that use different networks for each source. While a simplified
version of the model with a few hidden layers and Gaussian
assumptions is sufficient for baseline separation, the more
precise model we developed yields improved qualitative and
quantitative results. Extending the presented framework to
blindly separate universal audio waveforms and videos of
arbitrary durations is left to future work.
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