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Abstract—State space models have been extensively applied
to model and control dynamical systems in disciplines including
neuroscience, target tracking, and audio processing. A common
modeling assumption is that both the state and data noise are
Gaussian because it simplifies the estimation of the system’s state
and model parameters. However, in many real-world scenarios
where the noise is heavy-tailed or includes outliers, this assump-
tion does not hold, and the performance of the model degrades.
In this paper, we present a new approximate inference algorithm
for state space models with Laplace-distributed multivariate data
that is robust to a wide range of non-Gaussian noise. Locally
exact inference is combined with an expectation propagation
algorithm, leading to filtering and smoothing that outperforms
existing approximate inference methods for Laplace-distributed
data, while retaining a fast speed similar to the Kalman filter.
Further, we present a maximum posterior expectation maximiza-
tion (EM) algorithm that learns the parameters of the model in
an unsupervised way, automatically avoids over-fitting the data,
and provides better model estimation than existing methods for
the Gaussian model. The quality of the inference and learning
algorithms are exemplified through a diverse set of experiments
and an application to non-linear tracking of audio frequency.

Index Terms—Bayesian inference, time series, heavy-tailed
noise, EM algorithm, machine learning, expectation propagation

I. INTRODUCTION

STATE space models are probabilistic representations for
sequential data that have proven beneficial in a wide range

of disciplines such as control systems, audio processing, and
neuroscience. In state space models, a sequence of observable
data is assumed to have been generated from a latent variable
sequence that evolves over time according to a first-order
Markov chain. These latent variable models can represent a
great diversity of dynamical behavior, and are customizable
with respect to whether the dynamics are linear or non-linear
and the choice of transition probability distribution and output
emission noise. The Kalman filter and smoother are efficient
and numerically accurate algorithms for exactly inferring the
latent state’s posterior statistics and marginal likelihood for a
model with Gaussian state and observation noise [1]. However,
time-series data often exhibit non-Gaussian noise, consisting
of outliers, glint noise [2], sensor failure, and extended periods
of drastically increased noise levels [3]. The Kalman filter’s
performance severely degrades in all of these cases because
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its mean squared error objective is suitable for short-tailed,
compactly distributed data.

Models that assume non-Gaussian, heavy-tailed observation
noise are better at representing outlier data [4] and have proven
beneficial in many real world applications. Such applications
include target tracking, analyzing biological signals, and me-
chanical vibration analysis. Non-Gaussian models, such as
those that assume heavy-tailed data, do not admit closed-form
recursive filtering or smoothing equations, making exact infer-
ence intractable. Sequential Monte Carlo (SMC) methods like
particle filtering can estimate posterior statistics for arbitrary
state space models [5], however, there is no limit to the number
of samples needed to attain a certain degree of estimation
quality, they are subject to the curse of dimensionality, and it
is hard to evaluate the reliability of their estimates.

Recently, there has been much interest in fast and reliable
deterministic estimators for state space models with heavy-
tailed observation noise. Deterministic methods typically ex-
ploit a recursive structure akin to the Kalman filter for speed.
Such methods may use an alternative cost function to the
Kalman filter such as the maximum correntropy filter [6],
heuristics and optimization algorithms minimax-based filters
[4], [7], or variational inference, a principled approach to
deterministic approximate inference that turns inference into
an optimization problem [8]–[11].

In particular, the Laplace distribution is a heavy-tailed
distribution that has proven applicable to tasks such as outlier
filtering, sparse regression, modeling glint noise and speech
spectra [12], and differential privacy [13] [14]. State space
models with Laplace-distributed observation noise have proven
robust to extreme outliers and a variety of other heavy-tailed-
distributed noises. Existing methods for inference of state
space models with Laplace distributed noise rely on iterative
optimization algorithms to approximate the posterior, includ-
ing convex optimization [15], majorization-minimization [16],
[17], Huber cubature filtering [18], and variational inference
with Gaussian scale mixtures [9].

In this paper, we formulate comprehensive inference and
learning algorithms for state space models with Laplace-
distributed data. For inference, we propose a recursive filtering
and smoothing algorithm based on expectation propagation
(EP) that is shown to be superior in quality to existing methods
like variational inference and SMC, while being of comparable
speed to the Kalman filter and smoother. Its high quality is
attributed, in part, to the availability of an analytic solution
to the exact posterior for a univariate observation. We extend
the analytic solution from [19] to multivariate data through
expectation propagation. The automatic learning of model
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parameters is addressed using an expectation maximization
(EM) algorithm. We provide all the equations necessary to
update the model parameters to maximize the expected log
likelihood of the data and log prior probabilities, i.e. maximize
the a posteriori probability. These equations include new
closed-form analytic update equations for the output noise
and a Newton step for the observation matrix. The inference
and learning is robust to a wide range of noise and, due
to the Laplace distribution, naturally regulates the estimated
precision of the output noise to avoid over-fitting the data.

This paper is organized as follows. The state space model
with Laplace observation noise is defined in Section II. Section
III reviews approximate inference methods for non-Gaussian
state space models. Section IV presents and validates the new
Bayesian filtering algorithm for the Laplace model, then Sec-
tion V presents the smoothing algorithm. Section VI extends
the filter to non-linear dynamical models. Section VII covers
the automatic learning of the Laplace model’s parameters
using an EM algorithm. Extensive results that validate the
methods presented in the paper are reported and discussed
in Section VIII. Section IX concludes the paper and proposes
avenues of future work.

Notation

This following notation is used throughout the paper:

• bold lowercase denotes a vector and bold uppercase
denotes a matrix,

• xT: transpose of x,
• x1:n denotes the set (x1, . . . ,xn), and X is the full set

x1:N ,
• xi,n: the ith element of xn,
• C(i): the ith row of C,
• C(i,j): the (i, j)th entry of C,
• 〈x〉: expected value of x,
• cov[x,y] = 〈xyT〉 − 〈x〉〈y〉T: covariance of x and y,
•
∫
f(x)dx: short for

∫ +∞
−∞ . . .

∫ +∞
−∞ f(x)dx1 . . . dxD,

• I: identity matrix,
• diag(a): diagonal matrix formed from the elements of a,
• |.|: absolute value of a scalar,
• det(.): determinant of a matrix,
• q\i: cavity distribution for likelihood term i,
• q(x; y): probability of x with respect to y,
• N (x|µ,Σ): multivariate Gaussian density with mean µ

and covariance matrix Σ,
• Lap(x|a, b): Laplace density with mean a and scale b

[13],
• Gam(x|a, b): Gamma density with shape a and rate b

[13].

II. PROBABILISTIC MODEL

State space models assume that a sequence of observable
M -dimensional data Y = (y1, . . . ,yN ) are generated from
a latent variable sequence of D-dimensional states X =
(x1, . . . ,xN ) whose probabilistic dynamics are governed by
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Fig. 1. Probability density functions for the Gaussian and Laplace distribu-
tions. The Gaussian’s variance and Laplace’s scale are set to one.

a first-order Markov chain. The joint probability of all the
observed data and latent states is

p(Y,X) = p(y1|x1)p(x1)

N∏
n=2

p(yn|xn)p(xn|xn−1) , (1)

where p(yn|xn) is the emission probability, p(xn|xn−1) is
the transition probability, and p(x1) is the initial state’s prior
probability.

Linear time-invariant state space models can be described
by the following state and observation equations,

xn = Axn−1 + εxn , (2)
yn = Cxn + εyn , (3)

where the states are transformed over adjacent times by D×D
system dynamics matrix A, and output to the observable space
after being transformed through M ×D output matrix C. A
common assumption is that both the state noise εxn and the
observation noise εyn are drawn from Gaussian distributions
because it enables exact inference.

The Laplace state space model (LSSM) assumes that the
latent state xn is corrupted by additive noise drawn from a
Gaussian distribution with D×D covariance matrix Q, while
the observation yn is corrupted by additive noise drawn from
the Laplace distribution [13]. Diagonalizing the observation
noise covariance through a linear operation, the emission
distribution is expressed as a product of M univariate Laplace
distributions, corresponding to the M dimensions of yn,

p(xn|xn−1) = N (xn|Axn−1,Q) , (4)

p(yn|xn) =

M∏
i=1

Lap(yi,n|C(i)xn, Ri) (5)

=

M∏
i=1

1

2Ri
exp

(
−
|yi,n −C(i)xn|

2Ri

)
. (6)

Initial state x1 has a Gaussian distribution with D × 1 mean
m0 and D ×D covariance P0,

p(x1) = N (x1|m0,P0) . (7)

Figure 1 shows that, in contrast to the Gaussian probability
density function (PDF), the Laplace PDF has a heavy tail and
sharp peak.
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III. APPROXIMATE INFERENCE

State estimation and model learning of state space models
both rely on applying Bayes’ theorem to infer the statistics
of the posterior marginals p(xn|Y) and pairwise posterior
marginals p(xn,xn+1|Y). Exact inference is carried out by
Bayes’ theorem,

p(X|Y) =
p(Y|X)p(X)

p(Y)
. (8)

For the linear Gaussian state space model (GSSM), exact infer-
ence of the posterior and pairwise posterior marginals is made
tractable by the forward-backward algorithm, specifically the
Kalman filter [1] and Rauch-Tung-Striebel (RTS) smoother
[20]. Exact inference is intractable for any state space model
that assumes non-Gaussian state and/or observation noise.

Approximate inference is required for the LSSM because
the noise is non-Gaussian, and thus non-conjugate to the
Gaussian transition probability. We denote the approximation
to the posterior distribution as q,

q(X; Y) ≈ p(X|Y) , (9)

where semi-colon notation makes explicit the dependence on
the data but distinguishes q from a true conditional density.

A. Approximate inference in state space models

Filtering algorithms compute the (approximate) posterior
marginal of xn given all the data up to that time, q(xn; y1:n),
while smoothing algorithms incorporate future observations to
provide q(xn; Y) and q(xn,xn+1; Y).

Approximate inference in filtering and smoothing algo-
rithms are carried out by either stochastic sampling methods,
like particle filters, or deterministic methods, like variational
Bayesian inference (VB). Deterministic methods are desir-
able because they are generally much faster and easier to
interpret than sampling algorithms. One particularly popular
method used for deterministic approximate inference in filters
with non-Gaussian data is assumed density filtering (ADF)
[21]. ADF approximates the marginal posterior at each time
p(xn|y1:n) with a Gaussian, enabling a fast recursive structure
analogous to the Kalman filter.

B. Expectation Propagation

Expectation propagation (EP) [22] is an approximate infer-
ence algorithm for minimizing the forward Kullback-Leibler
(KL) divergence from the posterior p(x|y) to an approximate
distribution q(x; y),

KL(p‖q) = −
∫
p(x|y) ln

q(x; y)

p(x|y)
dx. (10)

In contrast, variational Bayesian inference (VB) minimizes the
reverse KL divergence from q(x; y) to p(x|y), KL(q‖p) [23]
[24] [25]. EP can provide better quality approximations than
VB because minimizing the forward KL divergence is mean-
seeking and inclusive, finding the tightest fit around the full
distribution p, while minimizing the reverse KL divergence is
mode-seeking and exclusive, finding a fit around a mode of p
[26].

When q(x; y) is in the exponential family (e.g. Gaussian)
[27], the forward KL divergence from p(x|y) to q(x; y) is
minimized when the moments of q(x; y) match those of
p(x|y). Calculating the moments of the posterior requires the
marginal probability p(y), which involves integrating out x
from the joint distribution and is not analytically possible for
all but the simplest models. But joint distributions are com-
monly products of factors, including conditional distributions
and a prior:

p(x|y) =
p(x)

∏M
i=1 pi(y|x)

p(y)
(11)

For example, when the observations are independent, the
joint distribution is a product of likelihood terms over each
dimension of the observation, so pi(y|x) = p(yi|x).

Expectation propagation circumvents the intractable integral
involved in calculating p(y) by approximating the posterior
also as a product of approximate factors. These factors include
the prior q0(x; y) = p(x), and likelihood terms qi(x; y), ∀i ∈
[1..M ]. The posterior is approximated as

q(x; y) =

∏M
i=0 qi(x; y)∫ ∏M
i=0 qi(x; y)dx

(12)

where the approximate posterior and factors qi(x; y) are
exponential family distributions (e.g. Gaussian).

The main difficulty in EP is computing the moments of
the approximate posterior distribution q(x; y). Although the
factorization over likelihood terms simplifies the problem,
for some models this computation will still be intractable.
However, certain models admit analytic expressions for the
posterior moments after factorizing the likelihood terms. In
practice, VB is fast and applicable to arbitrary models because
it does not require the analytic expression for the evidence
p(y). EP can be implemented efficiently depending on the
model and has been proven to offer a closer approximation to
the true posterior when compared to VB.

Expectation propagation provides a means of approximate
inference for LSSMs because the likelihood function is a
product of univariate distributions over each data dimension
and the posterior moments can be computed analytically for
a univariate Laplace likelihood with a Gaussian prior.

IV. FILTERING

In this section, we derive the recursive filtering algorithm for
the Laplace state space model. Filtering in state space models
refers to inferring the marginal posterior probability of state
xn given every observation up to time n, p(xn|y1:n). Filtering
propagates forward in time, at each time computing the
predictive distribution (13), assessing the marginal likelihood
(14), and updating the marginal posterior (15).

p(xn|y1:n−1) =

∫
p(xn|xn−1)p(xn−1|y1:n−1)dxn−1 (13)

p(yn|y1:n−1) =

∫
p(yn|xn)p(xn|y1:n−1)dxn (14)

p(xn|y1:n) =
p(yn|xn)p(xn|y1:n−1)

p(yn|y1:n−1)
(15)
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For linear GSSMs this is an exact inference algorithm,
called the Kalman filter [1], [21], [28]. However, for any model
with non-Gaussian noise, exact inference over all times is
not analytically tractable and thus requires approximations. In
[19], we derived the exact marginal posterior for a univariate
data LSSM at time n per Equation (15) given that the posterior
from time n− 1 is approximated by a Gaussian q with mean
µn−1 and covariance Vn−1. After describing the prediction
step, we present the expectation propagation update step that
embeds exact univariate inference.

A. Prediction
First, given the previous time approximate posterior, the

predictive distribution is

q(xn; y1:n−1) =

∫
p(xn|xn−1)q(xn−1; y1:n−1)dxn−1

= N (xn|mn−1,Pn−1) , (16)

where the predictive mean and covariance are

mn−1 = Aµn−1 , (17)

Pn−1 = AVn−1A
T + Q . (18)

Initially the mean and covariance are m0 and P0. This
is equivalent to the Kalman filter’s prediction step because
the transition probability is Gaussian and the previous time
posterior was approximated by a Gaussian.

B. Approximate inference from multivariate data
An expectation propagation (EP) algorithm can be applied

elegantly to update the filter from multivariate Laplace dis-
tributed time series data because it factors multivariate infer-
ence into a collection of univariate inferences that can be com-
puted exactly through analytic expressions. After performing
the prediction step at time n, EP iterates over each likelihood
term pi to find an approximation to the marginal posterior
q(xn|y1:n). Considering the LSSM, likelihood term pi is
defined as a univariate Laplace distribution over dimension i
of the data,

pi(yn|xn) , Lap(yi,n|C(i)xn, Ri) (19)

In practice, it is convenient to use natural parameters for
combining and marginalizing the Gaussian likelihood terms
in EP1. Natural parameters of the Gaussian include D × 1
location parameter ` and D ×D precision matrix Λ [27].

First, the natural parameters of each likelihoood term are
initialized: the location is `i = 0 and the precision is Λi = I,
∀i ∈ [1..M ]. The prior predictive location is `0 = P−1n−1mn−1
and the precision is Λ0 = P−1n−1. The global location is ̂̀ =∑M

i=0 `i and the precision is Λ̂ =
∑M

i=0 Λi.
Next, a cavity distribution q\i(xn; y1:n) is created by re-

moving qi(x; y1:n) from the global q(x; y1:n) and normaliz-
ing,

q\i(xn; y1:n) ∝
∏
j 6=i

qj(xn; y1:n) =
q(xn; y1:n)

qi(xn; y1:n)
. (20)

1For more information about natural parameters of the exponential family
as it relates to this paper, see the supplementary material [29].

In terms of natural parameters, this step is completed by
subtraction:

`\i = ̂̀− `i , (21)

Λ\i = Λ̂−Λi , (22)

where `\i and Λ\i denote the natural parameters of
q\i(xn; y1:n), and are converted into mean m\i = Λ−1\i `\i and
covariance P\i = Λ−1\i . Parameters of the cavity distribution
encode information from all the likelihood terms (including
the prior) other than term pi.

Likelihood term pi(yn|xn) is combined with the cavity
distribution to form a hybrid joint distribution,

p(yn,xn) = Lap(yi,n|C(i)xn, Ri)N (xn|m\i,P\i) . (23)

Therefore, this hybrid joint distribution now encodes informa-
tion about all the terms and the prior. Using Bayes’ theorem
to express the hybrid posterior distribution gives

p(xn|yn) =
p(yn,xn)

p(yn)
=

p(yn,xn)∫
p(yn,xn)dxn

. (24)

Global approximate posterior q(xn; y1:n) is
found by minimizing the forward KL divergence
KL (p(xn|yn)‖q(xn; y1:n)). For any approximating
distribution q(xn; y1:n) in the exponential family, the
forward KL divergence is minimized when the moments of
q(xn; y1:n) match those of p(xn|yn). Therefore, we compute
the moments µn and Vn of the posterior p(xn|yn) and
match the moments of q(xn; y1:n) to them. Section IV-C
details the analytic solutions to the exact posterior moments.

Finally, the approximate posterior corresponding to likeli-
hood term i conditioned on the prior p0 is updated as

qi(xn; y1:n) = Zi
q(xn; y1:n)

q\i(xn; y1:n)
, (25)

where Zi normalizes qi(xn; y1:n) such that∫ +∞
−∞ qi(xn; y1:n)dxn = 1. In practice, Equation (25)

is computed by converting the moments back to natural
parameters, ̂̀ = V−1n µn , (26)

Λ̂ = V−1n , (27)

then updating the parameters of approximate term qi,

`i = ̂̀− `\i , (28)

Λi = Λ̂−Λ\i . (29)

This completes one update to the approximate posterior term qi
and the global approximate posterior q. One complete iteration
involves repeating this for each approximate term qi. EP scales
linearly with the number of likelihood terms, O(M), and is
non-iterative for M = 1.

Optionally, the marginal model evidence quantifies the
model’s fit to the given data and may be approximated by2

p(yn|y1:n−1) ≈
∫ M∏

i=0

qi(xn; y1:n)dxn . (30)

2Equations for computing the filter’s approximate model evidence are
provided in the supplementary material [29].



IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. XX, NO. XX, XXXX 2020 5

Although EP is not guaranteed to converge if the initializa-
tion is too far away from the algorithm’s fixed point [22],
for our well-defined problem EP tends to converge within
M iterations over each term.

C. Exact inference for a univariate Laplace likelihood

In this section, we derive locally exact Bayesian inference
for a univariate Laplace likelihood conditioned on a Gaus-
sian prior. This procedure is embedded into the expectation
propagation to infer the latent state statistics from multivariate
observations, as required by Equations (23) and (24).

The hybrid marginal likelihood is found by integrating out
xn from the numerator of Bayes’ theorem3.

p(yi,n) =

∫
p(yi,n|xn)q\i(xn; y1:n)dxn

=

∫
Lap(yi,n|C(i)xn, Ri)N (xn|m\i,P\i)dxn

=
Φ

(−)
i,n + Φ

(+)
i,n

4Ri
exp

(
−
ỹ2i,n

2Si,n

)
(31)

where we have defined

ŷi,n = C(i)m\i , (32)
ỹi,n = yi,n − ŷi,n , (33)

Si,n = C(i)P\iC
T
(i) , (34)

Φ
(±)
i,n = erfcx

(√
Si,n√
2R2

i

± ỹi,n√
2Si,n

)
. (35)

The scaled complementary error function erfcx(x) ,
ex

2

erfc(x) is available in many programming languages. It
avoids underflow and overflow errors associated with directly
computing the product of ex

2

and the complementary error
function erfc(x) as defined in [30].

Observation yn has the following mean and covariance with
respect to the marginal likelihood p(yi,n):

〈yi,n〉 = ŷi,n , (36)

cov[yi,n, yi,n] = Si,n + 2R2
i . (37)

Finally, state xn has the following mean and covariance with
respect to the locally exact marginal posterior p(xn|y1:n):

〈xn〉 = m\i + knδi,n , (38)

cov[xn,xn] = P\i + knkT
n∆i,n , (39)

where we have defined the D × 1 gain kn, scalar δi,n, and
scalar ∆i,n as

kn = P\iC
T
(i)R

−1
i , (40)

δi,n =
Φ

(−)
i,n − Φ

(+)
i,n

Φ
(−)
i,n + Φ

(+)
i,n

, (41)

∆i,n =
1

Φ
(−)
i,n + Φ

(+)
i,n

(
4Φ

(−)
i,n Φ

(+)
i,n

Φ
(−)
i,n + Φ

(+)
i,n

−

√
8R2

i

πSi,n

)
. (42)

3Properties of Gaussian integrals related to this derivation are detailed in
the supplementary material [29].
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Fig. 2. Plots of δi,n and ∆i,nR
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to the ratios P\iR
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i = 1

2
, 2, and 4, respectively, and C(i) = 1. Here, the

prior is univariate Gaussian so P\i and C(i) are scalar.

To gain intuition into the mechanisms that render the LSSM
robust to outliers and heavy-tailed noise, it is beneficial to
investigate the behavior δi,n and ∆i,n. Figure 2 shows the
values of δi,n and ∆i,n as functions of the residual ỹi,n in
Equation (33), and for different ratios of latent noise variance
P\i to observed noise scale Ri. Given that ∆i,n is proportional
to scale Ri, the normalized value ∆i,nR

−1
i is plotted.

Both functions are symmetric about ỹi,n = 0, and non-
linear. The shape of δi,n and ∆i,n depends on C(i), P\i,
and Ri, and generally controls the model’s sensitivity to
outliers. The function δi,n is a sigmoid, or “S”-shaped, as it
is approximately linear near ỹi,n = 0 and approaches negative
or positive one as the residual tends to positive or negative
infinity. The function ∆i,n is bell-shaped when the variance
is large (a loose model), and is approximately a box function
when the variances are close to zero (a tight model).

Taking the limit of these functions as the residual ap-
proaches negative or positive infinity yields

lim
ỹi,n→±∞

δi,n = ±1 , lim
ỹi,n→±∞

∆i,n = 0 . (43)

Considering Equations (38), (39) and (43), when the difference
between the data and the prediction (the residual) tends to
infinity, the expected latent state covariance remains as the
prior value P\i, while the mean is updated to m\i+kn (when
ỹi,n = +∞) or m\i − kn (when ỹi,n = −∞).

For the Kalman filter, δi,n is simply equal to the residual
ỹi,n. Therefore, its state update equation describes a line with a
slope altered by the Kalman gain. Since outliers tend to create
large residual values, they severely affect the Kalman filter
because they pull the expected value of the state far from the
prediction. With the Laplace state space model, there is a limit
to an observation’s influence on the state update, m\i ± kn.

D. Moment matching
The mean and covariance of the approximating Gaussian

posterior q(xn; y1:n) are set equal to the mean and covariance
of the locally exact posterior p(xn|yn) from Equations (38)
and (39):

µn = 〈xn〉 , (44)
Vn = cov[xn,xn] . (45)
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This completes the update of the approximate global posterior
q. Per Section IV-B, locally exact inference is followed by
updating the likelihood term qi, then proceeding to iterate over
the other likelihood terms in the same manner with expectation
propagation.

In accordance with the Kalman filtering paradigm, at each
time n the filter completes a prediction step followed by an
update step. At time n + 1, the filter begins again at the
prediction step with Equations (17) and (18).

Pseudo-code for the complete multivariate data filtering
algorithm is presented in Table I.

E. Validation

For the LSSM, the proposed EP-based method provides
higher quality approximations to the posterior than variational
Bayesian inference (VB)4. Figure 3 demonstrates this quality
for both a univariate and multivariate observation for a snap-
shot at time n. Given a univariate observation yn, the VB
approximation centers closely to the mode of the posterior
as expected, and severely underestimates the true variance.
For a multivariate observation yn, VB has a large bias and
variance when the data has outliers. Our EP algorithm, on
the other hand, provides the tightest fit possible around the
true posterior, regardless of the dimensionality of observation.
For univariate observations, the mean and variance are exactly
matched to the posterior’s. For multivariate observations, EP
provides a close fit to the true mean and variance. When em-
bedded into a Bayesian filter and smoother, the proposed EP-
based approximation significantly outperforms existing meth-
ods when given higher dimensional data. This is particularly
important for sensor fusion, one of the primary applications
of the Kalman filter.

V. SMOOTHING

Now we turn to estimating the state posterior given all the
data, which is completed by a smoother. Smoothing refers to
inferring the pairwise posterior 46 and marginal posterior 47.

p(xn,xn+1|Y) =
p(xn|y1:n)p(xn+1|xn)p(xn+1|Y)

p(xn+1|y1:n)
, (46)

p(xn|Y) = p(xn|y1:n)

∫
p(xn+1|xn)p(xn+1|Y)

p(xn+1|y1:n)
dxn+1 .

(47)

Smoothing is required for model learning because the parame-
ter update equations depend on the statistics of these posterior
distributions.

Smoothing propagates backwards in time, computing an
approximation to the marginal posterior given the entire data
sequence,

p(xn|Y) ≈ q(xn; Y) = N (xn|µ̂n, V̂n) . (48)

All the probabilities involved in smoothing are now Gaussian
because the filter assumed a Gaussian density. Moreover, the

4A description of the variational Bayesian inference algorithm for the LSSM
is provided in Appendix A.
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Fig. 3. The true posterior distribution p(xn|yn) and approximating Gaussian
posteriors provided by variational inference and the proposed expectation
propagation (moment matching) given multivariate data (top) and univari-
ate data (bottom). Note that the quality of the variational approximation
is degraded by outliers, centering more closely to the sample mean and
under-estimating the variance. Moment matching provides a superior quality
Gaussian approximation to the true posterior.

marginal distribution of a Gaussian conditional and prior is
another Gaussian. As a result, the smoothing step is equivalent
to the Kalman smoother. Initially µ̂N = µN and V̂N = VN .
Then, from n = N − 1 back to n = 1,

Jn = VnATP−1n , (49)

µ̂n = µn + J
(
µ̂n+1 −mn

)
, (50)

V̂n = Vn + J
(
V̂n+1 −Pn

)
JT . (51)

Since the filtering involved an approximation, the smoothed
pairwise and marginal posteriors are also approximate. How-
ever, the smoothing algorithm itself is exact.

VI. EXTENSION TO NON-LINEAR MODELS

While linear dynamics are able to model much real word
data, it is also with great interest to be able to apply Bayesian
filters to applications that involve non-linear dynamics, such
as tracking the position, velocity, and acceleration of moving
targets.

The proposed expectation propagation filter elegantly ex-
tends to non-linear models. We call this the extended expecta-
tion propagation (EEP) filtering algorithm. In this case, a state
is transformed by a non-linear function h(xn−1) then output to
the observable space by a non-linear function g(xn). Adopting
a local linearization approach akin to the extended Kalman
filter (EKF) [21], we linearize h(.) around the previous state
estimate µn−1 and g(.) around the predicted mean mn−1.

Considering Section IV, the predicted state, predicted ob-
servation, system dynamics matrix, and output matrix are
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TABLE I
IMPLEMENTATION PSEUDO-CODE FOR THE PROPOSED FILTERING

ALGORITHM FOR ONE TIME STEP

1: procedure UPDATE
2: Initialize:

`i = 0, Λi = I, ∀i ∈ [1..M ]
`0 = P−1

n−1mn−1, Λ0 = P−1
n−1

̂̀=
∑M
i=0 `i, Λ̂ =

∑M
i=0 Λi

3: while not converged do
4: for i = 1 . . .M do
5: `\i = ̂̀− `i
6: Λ\i = Λ̂−Λi

7: m\i = Λ−1
\i `\i

8: P\i = Λ−1
\i

9: ỹi,n ← yi,n −C(i)m\i
10: Si,n ← C(i)P\iC

T
(i)

11: Φ
(±)
i,n ← erfcx

(√
Si,n√
2R2

i

± ỹi,n√
2Si,n

)

12: kn ← P\iC
T
(i)R

−1
i

13: δi,n ←
Φ

(−)
i,n −Φ

(+)
i,n

Φ
(−)
i,n +Φ

(+)
i,n

14: ∆i,n ← 1

Φ
(−)
i,n +Φ

(+)
i,n

(
4Φ

(−)
i,n Φ

(+)
i,n

Φ
(−)
i,n +Φ

(+)
i,n

−
√

8R2
i

πSi,n

)

15: µn ←m\i + knδi,n
16: Vn ← P\i + knkT

n∆i,n

17: ̂̀= V−1
n µn

18: Λ̂ = V−1
n

19: `i = ̂̀− `\i
20: Λi = Λ̂−Λ\i
21: end for
22: end while
23: end procedure
24: procedure PREDICT
25: mn ← Aµn
26: Pn ← AVnAT + Q
27: end procedure

approximated by, respectively,

mn−1 = h(µn−1) , ŷi,n = gi(mn−1) , (52)

An =
dh

dxn−1

∣∣∣
µn−1

, C(i),n =
dgi
dxn

∣∣∣
mn−1

, (53)

where An and C(i),n are Jacobian matrices. While this is the
simplest extension, one could instead employ an unscented
transform for non-linear estimation [31]. In contrast, varia-
tional inference-based approaches are violated by this kind of
local linearization and require the monitoring of convergence
or iterative optimization of the variational lower bound [32].

VII. LEARNING

Thus far we have considered the approximate inference
problem for the Laplace state space model (LSSM), assuming
that the model parameters θ = {A,Q,C,R,m0,P0} are
known. Next, we consider the automatic learning of these
parameters using maximum a posteriori probability (MAP)
estimation. Since the model has latent variables, learning
can be addressed using the expectation maximization (EM)
algorithm [33] [34]. The expectation (E) step consists of
filtering and smoothing, using the current estimates of the
parameters θ̂. The maximization (M) step maximizes the
expected log-likelihood function under the latent variable’s

distribution with respect to the model parameters, plus the
log-prior probabilities of the parameters.

θnew = arg max
θ

{
〈ln p(Y,X|θ)〉q(X|θold) + ln p(θ)

}
(54)

Prior probabilities regulate maximum likelihood estimates.
Consider the complete data log-likelihood given by

ln p(Y,X|θ) = ln p(Y|X,θ) + ln p(X|θ) . (55)

The log probability of the latent state sequence is

ln p(X|A,Q) = −N − 1

2
ln det(2πQ)

− 1

2

N∑
n=2

(xn −Axn−1)
T

Q−1 (xn −Axn−1)

− 1

2
ln det(2πP0)− 1

2
(x1 −m0)TP−10 (x1 −m0) , (56)

and the log likelihood of the data sequence is

ln p(Y|X,C,R) =
N∑

n=1

M∑
i=1

{
− ln 2Ri −

∣∣yi,n −C(i)xn

∣∣
Ri

}
.

(57)

We now take the expectation of the complete-data log like-
lihood with respect to the Gaussian approximate posterior
distribution q(X; Y) from the E step, which defines the
function

Q(θ|θold) = 〈ln p(Y,X|θ)〉q(X|θold) . (58)

In the M step, this function and the log priors are maximized
with respect to the components of θ.

We define zero-mean Gaussian priors over the columns of
C:

p(C|R) =
∏M

i=1N (C(i)|0, diag(τ )−1Ri) , (59)

where D×1 vector τ are hyperparameters. The dependence of
the precision of C on the noise variance (scale) R is motivated
by conjugacy and links the scale (amplitude) of the signal to
the noise [24]. The use of maximum likelihood estimation
of the hyperparameters has the effect of penalizing complex
models and gives rise to a sparse model parameterization.

For the noise variances, we define inverse Gamma priors
over the Laplace scales.

p(R) =
∏M

i=1Gam(R−1i |a0, b0) (60)

Defining these priors over the noise parameters helps to
prevent negative estimates when there is a small number of
observations. Also, the estimates from the EM algorithm can
be guided through the choice of these hyperparameters, as they
indicate prior beliefs about the noise. For example, setting a0
and b0 such that the expected value of the distribution is very
large promotes smaller variances. This is useful to fit the latent
space tightly to a dynamical model, and thus enforce more
interpretable results. Alternatively, an uninformative prior has
hyperparameters that are approximately zero.

We choose to make maximum likelihood estimates of the
latent state parameters to simplify their update equations and
retain focus on the estimation of the Laplace PDF parameters.
Placing similar priors over the state parameters is straightfor-
ward and has been well-studied [24] [35].
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A. Laplace output probability parameters

Consider first the parameters C and R of the Laplace
output probability function. Taking the expectation of the log
likelihood in Equation (57) with respect to q(X) and absorbing
terms that do not depend on C or R into a constant yields

Q(θ|θold)
c
=

M∑
i=1

N∑
n=1

{
− ln 2Ri −

2ρi,nSi,n

Ri
− ỹi,nerf (li,n)

Ri

}
(61)

where we have defined

ỹi,n = yi,n −C(i)µ̂n , (62)

Si,n = C(i)V̂nCT
(i) , (63)

li,n =
ỹi,n√
2Si,n

, (64)

ρi,n =
exp(−l2i,n)√

2πSi,n

= N (ỹi,n|0, Si,n) . (65)

Maximization of this objective function and the log prior with
respect to C and R is addressed with gradient root-finding
[36].

1) Output matrix: Given that Q involves a sum over M ,
each row of C is independent of the other. Thus, we describe
the process for estimating a single row C(i), which generalizes
to all i. Since the function is not differentiable at all points,
we describe the objective subgradients as prescribed in [36].
When

∑
j |C(i,j)| 6= 0, the 1×D subgradient is

∇Q(C(i)) = − 1

Ri

N∑
n=1

{
2ρi,nC(i)V̂n − erf (li,n) µ̂T

n

}
.

(66)

When
∑

j |C(i,j)| = 0, the subgradient is undefined. However,
it should be a rare case that every element in C(i) is zero, as
it would mean that the observation yi,n has no discernible
underlying dynamics. Still, we can find the value of the
gradient as all of the elements in C(i) approach zero,

lim
C(i)→0

(
∇Q(C(i))

)
= − 1

Ri

N∑
n=1

sign(yi,n)µ̂T
n . (67)

Thus, the gradient may be set to any value between zero and
the one defined in Equation (67). Alternatively, the maximum
may indeed be located at C(i) = 0. This can be verified by
searching for larger values of Q in the vicinity of C(i) = 0 .

Because an analytic solution to ∇Q(C(i)) = 0 is not avail-
able, we use an iterative root-finding algorithm. Specifically,
as we are dealing with an unconstrained convex optimization
problem and can derive the first and second derivatives of the
objective function, we elect to use Newton’s method [36].

The D ×D Hessian matrix is given by

HQ(C(i)) =
2

Ri

N∑
n=1

{
ρi,n
Si,n

V̂nCT
(i)C(i)V̂n

− ρi,n(ξTnξn + V̂n)

}
, (68)
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Fig. 4. Objective to maximize with respect to C(i,j) for different values of
V(j,j). The values of the data and expected state were y = 1 and µ = −1,
while the scale was set to Ri = .05. When the expected state variance is
small, the maximum of the objective is at C(i,j) = −1, which minimizes the
residual ỹi = yi − C(i,j)µj . For less certain expected state values, where
V(j,j) is large, the estimate of C(i,j) is closer to zero.

where we have defined the 1×D vector

ξn = µ̂T
n +

ỹi,n
Si,n

C(i)V̂n . (69)

For a MAP estimate, the gradient and Hessian with respect
to the log prior probability are

∇p(C(i)) = −C(i)diag(τ )R−1i , (70)

Hp(C(i)) = −diag(τ )R−1i . (71)

Hyperparameter τ scales the variance of the normal distribu-
tion. Updating the hyperparameter can create sparse solutions
by guiding the estimate of C towards zero.

Finally, the Newton method update is

∇(C(i)) = ∇Q(C(i)) + ∇p(C(i)) , (72)
H(C(i)) = HQ(C(i)) + Hp(C(i)) , (73)

C(i) = C(i) −∇(C(i))H(C(i))
−1 . (74)

Convergence of the algorithm can be monitored with the
Newton decrement

εi =
(
∇(C(i))H(C(i))

−1∇(C(i))
T
)1/2

. (75)

The algorithm is terminated after εi falls below a pre-defined
threshold. Figure 4 shows the objective function with respect
to C(i,j) for a variety of (scalar) state covariance estimates V .

Maximizing the log prior probability with respect to τ , we
get the analytic estimate

τj =
M∑M

i=1 C
2
(i,j)R

−1
i

. (76)

As C(i,j) or R−1i approach zero, τj extends to infinity. In turn,
the prior over C(i,j) tends towards a delta function centered
at zero. Considering the update to C, large values of τj drive
the values of column vector C(j) towards the prior mean of
zero. To illustrate this, Figure 5 shows the objective function
with respect to C(i,j) for a variety of τj values.
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as τj goes to infinity.
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2) Output noise variance (Laplace scale): The Laplace
scale parameter Ri that maximizes Q(θ|θold) and the log prior
probability is given by

Ri =
b̂i + b0/2

âi + a0/2
, (77)

where

b̂i =

N∑
n=1

{2ρi,nSi,n + ỹi,nerf (li,n)}+
1

2

D∑
j=1

τjC
2
(i,j) , (78)

âi = N +D/2 . (79)

The newly estimated value of C is used to compute ỹi,n, li,n,
Si,n, and ρi,n, per Equations (62) to (65).

Figure 6 shows the estimated value of Ri as a function of
the residual ỹi,n and for a range of output variances Si,n. This
figure illustrates how the estimation of Ri reflects the model’s
robustness to outliers and ability to avoid over-fitting data.
Specifically, the lower bound of the scale estimate is linear
with respect to ỹi,n. In contrast, Gaussian noise covariance
estimates have a quadratic lower bound and thus promote
values closer to zero than Laplace noise estimates. As a
result, GSSMs have a tendency to over-fit the data. Data over-
fitting is automatically avoided by assuming Laplace noise and
estimating its scale with the proposed method.

B. State parameters

Now consider the parameters A and Q. Taking the expec-
tation of Equation (56) with respect to q(X) and absorbing
terms that do not depend on A or Q into a constant, we get

Q(θ|θold)
c
= −N − 1

2
ln det(Q)− 1

2
Tr

(
Q−1

N∑
n=2

{
Xn

+ AXn−1A
T −

(
AXn−1,n + XT

n−1,nAT
)})

, (80)

where we have defined the following latent state statistics,

Xn , 〈xnxT
n〉q(X) = µ̂nµ̂

T
n + V̂n , (81)

Xn−1,n , 〈xn−1x
T
n〉q(X) = µ̂n−1µ̂

T
n + Jn−1V̂n . (82)

Since the transition probability is Gaussian and the approxi-
mating marginal posterior is Gaussian, the estimation of these
parameters is equivalent to the ones used in the EM algorithm
for linear GSSMs, as in [28], [34].

1) System dynamics matrix: The value of A that maximizes
Q(θ|θold) is

A =

(
N∑

n=2

ynµ̂
T
n

)(
N∑

n=2

Xn−1

)−1
. (83)

2) Latent noise covariance matrix: The value of Q that
maximizes Q(θ|θold) is

Q =
1

N − 1

N∑
n=2

{
Xn −AXT

n−1,n

}
, (84)

where A is newly estimated from Equation (83).
3) Initial state mean and covariance: Maximizing the

expected log probability in Equation (56) with respect to the
initial mean and covariance we get the estimates m0 = µ̂1

and P0 = V̂1.

VIII. EXPERIMENTS AND RESULTS

In order to evaluate the proposed method, we tested its
performance along with existing approaches by a series of
inference and learning experiments. For the inference ex-
periments, the proposed expectation propagation-based filter
(EP) was compared with a Kalman filter (KF), a bootstrap
particle filter (PF) [37] with systematic resampling, and a
variational Bayesian (VB) inference-based filter that uses an
auxiliary latent variable to model the Laplace distribution as a
scale mixture of Gaussians (see Appendix A for details), PF
used 200 samples and was approximately 200 times slower
than the other methods. While more samples would improve
estimation quality, it would further increase computation time.
Performance was evaluated according to the root mean square
error (RMSE), given by

RMSEn =
1

J

J∑
j=1

√√√√ D∑
i=1

(
〈x(j)i,n〉 − x

(j)
i,n

)2
, (85)

where x
(j)
n was the true state and 〈x(j)

n 〉 was the state estimate
of the jth Monte Carlo run. Inference experiments consisted
of J = 1000 Monte Carlo runs.
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A. Inference results for linear dynamics
Data was generated according to first-order linear state

space dynamics. The true latent state xn was two-dimensional
(D = 2) and oscillated according to system dynamics matrix

A =

[
cos(2πfT ) − sin(2πfT )
sin(2πfT ) cos(2πfT )

]
, (86)

where the frequency was randomly set in the range f ∈ [0, Fs
10 ]

Hz, the sampling rate was Fs = 44.1 kHz, and the sampling
period was T = 1/Fs seconds. Each row of the output
matrix was sampled from a zero-mean, unit-variance Gaussian
distribution, C(i) ∼ N (0, I), and normalized, |

∑
j C(i,j)| = 1,

for i ∈ [1. .M ]. The latent noise covariance matrix was
diagonal Q = Iσ2 where σ2 = 10−4.

The first experiment was designed to test the efficacy of
each method in estimating the hidden state sequence for a
LSSM, given all the correct model parameters and a one-
dimensional observation. The initial state prior was set to zero-
mean with a relatively large variance of P0 = I to test each
filter’s response. Figure 7a shows the RMSE over time for
each method. EP quickly settled to the lowest RMSE.

Next, an experiment was designed to test how each filter
reacts to an abrupt change in noise variance and mean for an
extended period of time. The observed signal was corrupted
by Gaussian noise with variance that was abruptly increased
from .01 to 1 at time n = 60, which lasted for 60 samples
before reducing back to .01. During this time period, the mean
of the Gaussian output probability was set to zero instead of
Cxn. Each filter was given the correct system dynamics, with
observed noise variance equal to .1, i.e. the average of the two
noise levels. Resulting RMSE plots for each filter are shown
in Figure 7b. The RSME for KF was smallest until n = 60,
as it is the optimal estimator for Gaussian models, but grew
rapidly at n = 60 because as KF did not adapt to changes in
noise variance. The three filters that assumed Laplace noise
were only lightly affected by the period of increased noise.
VB was less affected than EP because the auxiliary variable
of the Gaussian scale mixture distribution acted as a time-
varying weight on R. PF’s lagged response attributed to its
low RMSE during the increased noise, but was larger than
PF and VB afterwards. The RMSE for EP was smaller than
VB and PF except during the interval 60 ≤ n ≤ 120. More
generally, the RMSE for the Laplace-based filters increased
linearly while the RMSE for KF increased along an inverted
exponential curve. This behavior follows from Section IV-C
on the proposed filter’s update equations.

The third experiment used observations sampled from the
same model as the first experiment, except the filters were
provided with an incorrect system matrix A = I. Filtering
with incorrect model parameters is common in real-world
applications where the true underlying dynamics are not
available and must be inferred. State covariance Q was set
to larger values than the previous experiment to reflect the
incorrect dynamics matrix. Figure 8 shows the results for this
experiment, which was completed for M = 1 and again for
M = 4 data dimensions.

Compared to the other methods, EP consistently had the
lowest RMSE. Drastic improvements over existing methods
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Fig. 7. Inference results for a signal with: (a) Laplace-distributed observation
noise, given true model parameters and vague initial conditions; (b) Gaussian
noise with a variance of 1 for 60 ≤ n ≤ 120, and .01 otherwise.
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Fig. 8. Inference results for test with incorrect system dynamics matrix A.

are clear in the 4-dimensional data results. EP provided a
superior approximation to the marginal posterior and remained
a tight fit even in high dimensions. In contrast, the variational
approach performed poorly in higher dimensions, seeking
some mode that was far from the mean of the posterior. Being
able to approximate the posterior well given multidimensional
data is crucial for sensor fusion, a primary application of
Bayesian filters.

The fourth experiment involved a signal with severe outliers.
The outliers were sampled randomly from a Gaussian distri-
bution with a variance of 1, spaced in time at an average rate
of 1 in 10 samples. Otherwise, the signal had light Gaussian
noise, with a variance of 10−3. Figure 9 shows the results for
a test involving a one-dimensional signal and a 4-dimensional
signal. Both EP and VB filtered the outliers successfully
and outperformed PF and KF. As expected, KF was severely
affected by the data outliers.

We tested how each filter responded to data generated from
the same dynamical system as in Experiment 4, but instead
corrupted by noise drawn from the Cauchy distribution [13].
Using a scale of .01 for the Cauchy distribution created data
that had moderate noise and occasional extreme outliers. In
this experiment, PF assumed Cauchy noise with the same
parameters as generative model. Figure 10 shows that even
though EP and VB assumed Laplace noise, they still performed
excellently. Moreover, EP settled to the lowest RMSE after
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Fig. 9. Inference results for data corrupted by Gaussian outliers occurring at
an average rate of 1 in 10 samples.
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Fig. 10. Inference results for Cauchy noise-corrupted data. For this experi-
ment, the particle filter (PF) assumed Cauchy noise.

about 50 samples. KF’s performance was poor due to the
significant outliers in the data.

B. Inference results for non-linear dynamics

A non-linear Bayesian filtering experiment was conducted
to test the ability of each method to track abrupt changes in
the data that correspond to adaptations in the latent state’s
instantaneous variables. A test signal was synthesized by
adding Gaussian-noise to a sinusoid whose frequency started at
200 Hz and doubled every 2000 samples, concluding at 1600
Hz. Figure 11 shows that the proposed extended EP (EEP)
filter quickly adapted to the discrete change in frequency, even
for the largest difference of 800 Hz. In contrast, VB responded
slower and did not resolve the fourth frequency step. PF
was able to track the first two frequency steps because the
state transition probability’s large variance enabled a sufficient
sampling of the latent space. Still, PF did not track the
larger frequency changes of the third and fourth steps. EKF’s
frequency and amplitude estimates undesirably modulated at
the sample rate to account for the difference in frequency
between the second and third step. Enhancing the non-linear
filtering algorithms, for example by implementing changepoint
detection to reset the latent noise covariance over time, could
help in this scenario. Even without such modifications, the
proposed EEP was successful.
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Fig. 11. Instantaneous frequency estimation of a noisy sinusoid’s frequency as
it doubles every 2000 samples. The proposed EEP filtering algorithm quickly
adapts to the abruptly altered frequency while the other filters do not.

C. Model learning experiments

To evaluate the inference and learning EM algorithm for
the Laplace state space model (LSSM), we first applied it to
the task of learning an oscillatory sequence with a period of
increased noise levels. For comparison, we also evaluated the
Gaussian state space model (GSSM) EM algorithm [34]. The
true latent state was two-dimensional and oscillated according
to a system rotation matrix A as in Equation (86). The true la-
tent noise covariance matrix Q was diagonal with the diagonal
elements equal to 1e−3. Rows of the output matrix were inde-
pendently sampled from a zero-mean unit-variance Gaussian
distribution and normalized: C(i) ∼ N (0, I), |

∑
j C(i,j)| = 1,

for i ∈ [1. .M ]. Output Cxn was corrupted by Gaussian noise
with variance of 1 for 30 ≤ n ≤ 50 and 1e−2 otherwise. Both
LSSM and GSSM models to be learned were initialized with
D = 10 latent dimensions and an identity dynamics matrix
A = I.

Figure 12 shows that LSSM was robust to the period of
drastically increased noise and successfully learned the latent
space dynamics. Moreover, it correctly pruned the unnecessary
dimensions of the output matrix C, leaving only one signifi-
cant value as in the true generative model. GSSM over-fit the
data through the increased noise and provided a less accurate
estimation of the latent dynamics. This quality can be seen
from the samples drawn from each of the learned models,
as displayed in Figure 13. The proposed LSSM EM algorithm
learned the latent dynamics matrix A and provided an accurate
estimate of the small values in covariance matrix Q. GSSM
estimated large values for the latent noise covariance matrix,
which resulted in very noisy latent samples and indiscernible
system dynamics.

For a second experiment, a sequence was generated from
the same latent oscillatory dynamics model (with random
oscillation frequency) except with data randomly set to zero at
a rate of 1 in every 10 samples. Such data is not representative
of any particular distribution, but rather a challenging case of
repeated sensor failures. The data sequence and the learned
filtered sequences are shown in Figure 14. As before, LSSM
learned parameters that match the oscillatory behavior and
avoided over-fiting the data. GSSM over-fit the sequence as
it tried to capture the zero-valued data.
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Fig. 12. Learning a state space model from data. The data had moderate
Gaussian noise except for a drastic increase for 30 ≤ n ≤ 50. The LSSM
learned a better latent representation and did not over-fit the noise like the
GSSM model.

20 40 60 80 100 120 140 160 180 200
−2
−1
0

1

Time (n)

(a) GSSM.

20 40 60 80 100 120 140 160 180 200

−1
0

1

Time (n)

(b) LSSM.

Fig. 13. Sequences generated from the learned models before adding noise
(solid lines) and after adding noise (blue dots). The LSSM learned a better
representation of the latent space dynamics because it was robust to outlier
data and avoided model over-fitting.
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Fig. 14. Learning a state space model from data. The data had low noise
except for zero values occurring randomly at a rate of 1 in every 10 samples.
The LSSM successfully avoided the zero values and learned a better latent
representation than the GSSM.

IX. CONCLUSION

In this paper, we introduced an approximate inference
and learning algorithm for state space models with Laplace-
distributed noise that is robust to heavy-tailed and outlier-
ridden time series data. Locally exact inference of the Laplace
state space model was developed and embedded in an ex-
pectation propagation algorithm for multivariate data. After

developing the filtering and smoothing algorithms and demon-
strating their advantages over existing approximate inference
methods like variational Bayes and particle filtering, we pro-
posed an expectation maximization (EM) algorithm for the
automatic learning of model parameters. Through a series of
experiments, the robustness of the Laplace state space model to
outliers and other non-Gaussian noises was validated against
existing Gaussian linear dynamical system approaches. The
update equations that emerge naturally from the model offer
an automatic avoidance to over-fitting data that is generally
desirable for time series inference and learning applications.
Given that sensor noise in a variety of real-world data is well-
represented by the Laplace distribution, and that the Laplace
noise model improves state space model learning, there is
much potential to apply the methods presented in this paper to
sophisticated time series estimation and unsupervised learning
problems.

APPENDIX A
VARIATIONAL INFERENCE OF THE GAUSSIAN SCALE

MIXTURE LAPLACE DISTRIBUTION

This section provides the variational inference routine for
the Laplace distribution as represented by a Gaussian scale
mixture (GSM). A GSM distribution involves an auxiliary
latent variable zn ∈ [0,∞].

p(yn|xn, zn) =
∏M

i=1N (yi,n|C(i)xn, 2R
2
i zn) (87)

p(xn) = N (xn|mn−1,Pn−1) (88)
p(zn) = exp(−zn) (89)

In marginalizing out zn, we get the Laplace distribution

p(yn|xn) =
∫∞
0
p(yn|xn, zn)p(zn)dzn (90)

=
∏M

i=1Lap(yi,n|C(i)xn, Ri). (91)

To make approximate inference tractable, we make a mean-
field approximation that induces a factorization between the
two latent variables.

p(xn, zn|yn) ≈ q(xn, zn) = qx(xn)qz(zn) (92)

The optimal distributions that maximize the lower bound

L(q) = 〈ln p(yn,xn, zn)〉q − 〈ln q(xn, zn)〉q (93)

are given by the calculus of variations:

ln qx(xn) = 〈ln p(yn,xn, zn)〉qz + const. (94)
ln qz(zn) = 〈ln p(yn,xn, zn)〉qx + const. (95)

Solving for these optimal distributions gives the following
iterative algorithm:

ỹn = yn −Cµn (96)

ξn = ỹT
nR−1ỹn + Tr(R−1(CVnCT)) (97)

〈z−1n 〉 =

√
2

ξn

KM/2

(√
2ξn
)

KM/2−1
(√

2ξn
) (98)

Sn = CPn−1C
T + R〈z−1n 〉−1 (99)

Kn = Pn−1C
TS−1n (100)

µn = mn−1 + Kn(yn −Cmn−1) (101)
Vn = (I−KnC)Pn−1 (102)
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where Km(x) is the modified Bessel function of the second
kind [38]. Note that 〈z−1n 〉 6= 〈zn〉−1. A logical way to
initialize the algorithm is with µn = mn−1 and Vn = Pn−1.

The variational lower bound is useful for monitoring the
algorithm’s convergence and is given by

L(q) =
M

4
ln

1

2π2ξn
+

1

2
ln 2ξn + lnKM

2 −1
(
√

2ξn)

− 1

2
(µn −mn−1)TP−1n−1(µn −mn−1)− 1

2
Tr(P−1n−1Vn)

− 1

2
(D + ln det(R) + ln det(Pn−1)− ln det(Vn)) . (103)

Due to numerical round-off errors, estimated covariance ma-
trices Pn−1 and Vn may not be positive semi-definite and,
therefore, may not have positive determinants. In practice, a
simple approach to retain the necessary positive semi-definite
condition is to enforce symmetry, e.g. Vn ← 1

2 (Vn + VT
n).
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