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Learnable Descriptors for Visual Search
Andrea Migliorati , Member, IEEE, Attilio Fiandrotti , Senior Member, IEEE,

Gianluca Francini , and Riccardo Leonardi , Fellow, IEEE

Abstract— This work proposes LDVS, a learnable binary
local descriptor devised for matching natural images within the
MPEG CDVS framework. LDVS descriptors are learned so that
they can be sign-quantized and compared using the Hamming
distance. The underlying convolutional architecture enjoys a
moderate parameters count for operations on mobile devices.
Our experiments show that LDVS descriptors perform favorably
over comparable learned binary descriptors at patch matching
on two different datasets. A complete pair-wise image matching
pipeline is then designed around LDVS descriptors, integrating
them in the reference CDVS evaluation framework. Experiments
show that LDVS descriptors outperform the compressed CDVS
SIFT-like descriptors at pair-wise image matching over the
challenging CDVS image dataset.

Index Terms— Pair-wise image matching, patch matching,
binary descriptors, convolutional neural networks, fully convolu-
tional neural networks.

I. INTRODUCTION

THE MPEG CDVS (Compact Descriptors for Visual
Search) standard [1] aims at low-complexity, bitrate-

efficient, large scale image matching and retrieval over mobile
devices. Preliminarily, SIFT descriptors [2], [3] are extracted
from the image and compressed as binary local descriptors.
Each image is represented as a set of compressed descriptors,
the number and size depending on the target descriptor bitrate,
i.e. the encoding mode. Then, compressed descriptors are
combined into a global descriptor. The ensemble of local
descriptors and global descriptor extracted from an image
forms the image CDVS descriptor. Images can be matched
comparing the relative CDVS descriptors in multiple ways,
such as matching pairs of local descriptors comparing Ham-
ming distances followed by a geometric consistency check.
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Recent research investigated the potential of deep convolu-
tional architectures to learn global descriptors. For example,
the approach in [4] consists of learning a global image
hash code via a convolutional neural network. In [5] it is
proposed to learn a global descriptor via a trainable neural
network functions which aggregate the local descriptors into
a global representation. In [6] the compression of a global
CDVS descriptor is formulated as a resource-constrained
optimization problem. Recently, MPEG has standardized the
CDVA (Compact Descriptors for Video Analysis) technol-
ogy, a successor to CDVS tackling image retrieval in video
sequences. In the CDVA standard [7], CDVS local and global
descriptors are complemented with a global descriptor called
Nested Invariance Pooling (NIP) learned using a convolutional
architecture [8].

Far less attention has been devoted to the challenging prob-
lem of how to learn discriminative, compact, local descriptors,
and how to possibly integrate them in the MPEG CDVS
framework. Existing research has either focused on GPU-
accelerating SIFT descriptors extraction [9] or on learn-
ing SIFT-like descriptors in a supervised framework [10].
SIFT-like learned descriptors retain desirable properties
such as invariance to rotations, illumination, and perspec-
tive changes [11]. Interesting results are reported when
pairs or triplets of patches are jointly encoded and a decision
network is trained to learn an appropriate distance metric
[12], [13]. While complete image matching pipelines based
on a deep learning framework such as [14] go beyond the
scope of the present work, it shows the potentials of image
matching architectures based on deep learning frameworks.

Therefore, it is not clear how a learned local descrip-
tor would perform when compared to an efficient standard-
ized solution such as MPEG CDVS. Namely, existing learn-
able descriptors are usually designed with few constraints.
On the contrary, the CDVS standard mandates the use of
binary descriptors that shall be compared via Hamming dis-
tance within a SIFT-tailored geometry consistency framework.
In detail, it is not clear how such approaches would perform
when a geometric consistency check framework is introduced
in the processing chain. Finally, little if no attention has been
posed to the problem of keeping the descriptor complexity
under control, as done in the CDVS standard.

This work1 proposes a pair-wise image matching archi-
tecture designed around learnable local binary descriptors

1Trained models to reproduce results are available at https://bit.ly/LDVS-
repository
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(LDVS descriptors in the following). We introduce a fully 
convolutional architecture for learning binary local descriptors 
in a supervised way. Our design specifically allows for the 
learning of real-valued descriptors that can be sign-quantized 
at deployment time, resulting in binary descriptors that lean to 
the same performance at matching as the float ones, while 
allowing for comparison via Hamming distance as required by 
the CDVS standard. Furthermore, fewer parameters make com-
puting LDVS descriptors simpler over memory-constrained 
devices as per CDVS design goals. Then, we design a com-
plete pipeline for pair-wise image matching around LDVS 
descriptors that retains the key components of the MPEG 
CDVS standard, effectively integrating the proposed learned 
descriptors in the CDVS standard. This pipeline includes a 
geometric consistency check and allows us to compare with 
CDVS on an identical descriptor matching context.

Patch matching experiments over two distinct datasets show 
favorable performance over comparable learned binary 
descriptors despite the design of the latter is not standard-
constrained as in our case. Concerning image matching, LDVS 
descriptors improve over CDVS ones according to multiple 
performance metrics mainly in reason of the fewer false 
matches. To the best of our knowledge, this work is the first to 
accurately evaluate the benefits of learned local descriptors 
when dropped inside the MPEG CDVS reference pipeline.

II. RELATED WORKS

Recently, advances in deep learning showed one can train a 
neural network to learn and compare images via local 
descriptors in an automated way without necessarily relying on 
handcrafted techniques. A considerable amount of learned 
descriptors such as LIFT [14], MatchNet [15], HardNet [16], 
and many others [11]–[13], [17]. However, these designs have 
not gained momentum in practical applications. Hence, 
handcrafted local descriptors such as SIFT and its variants are 
as relevant as in the previous years, as shown in recent 
literature such as [18]. [19], [20] report that handcrafted local 
descriptors significantly outperform learned ones in the field of 
small-scale retrieval and pair-wise image matching, and 3D 
reconstruction respectively. Further, by cross-checking a huge 
number of references, authors in [19], report several ambi-
guities and inconsistencies when comparing local descriptors’ 
performance.

Ultimately, it is not clear which approach is best between 
handcrafted and learned descriptors, especially because of the 
lack of an unequivocal, meaningful evaluation framework in 
which the two methods can be compared within the same 
matching pipeline. In this scenario, an increasing number of 
binary descriptors have been proposed. In particular, binary 
descriptors allow for fast comparison via Hamming distance, 
and deployment in limited-resources applications thanks to 
their improved rate and storage efficiency. A list of seminal 
works would include early descriptors such as BRIEF [21], 
BRISK [22], FREAK [23], and ORB [24].

Learned binary descriptors became ever more relevant 
thanks to works such as BinBoost [25], in which performance 
at patch matching is boosted by learning a set of projec-
tion matrices, and Supervised Discrete Hashing (SDH) [26],

Fig. 1. MPEG CDVS pair-wise image matching procedure. Dashed boxed
represent normative parts of the standard.

Fig. 2. Normative process for extracting local descriptors from a single
image in the MPEG CDVS standard.

in which binary codes are learned to minimize the classifica-
tion loss of a linear classifier. More recently, other deep binary
descriptor learning approaches have been devised [27]–[33],
achieving state-of-the-art performance. A relevant approach is
the one by [34], in which two asymmetric and complementary
descriptors are extracted from the convolutional domain and
fused to constitute the local descriptor for each patch, however
at the expense of a feature extraction pipeline with doubled
complexity. Other recent works also include the unsupervised
methods DeepBit [35], GraphBit [36], and BinGAN [37],
respectively introducing a set of non-linear projection func-
tions, a regularization method for Generative Adversarial Net-
works, and a directed acyclic graph. Although unsupervised
approaches generalize well over different application domains,
with this work we focus on supervised methods as they ensure
stable results when matching natural images.

III. THE MPEG CDVS STANDARD

The MPEG Compact Descriptors for Visual Search (CDVS)
standard regulates methods for efficient compression of SIFT
descriptors. As this work focuses on learning local descriptors,
we will not consider the global descriptor defined in the CDVS
standard. While we refer the reader to [38], [39] for a complete
overview of the standard, hereafter we focus on pair-wise
image matching via local descriptors only. We recall that pair-
wise matching consists of determining whether a query image
depicts the same objects or scene of a reference image as
illustrated in Fig. 1. Notice that as for other MPEG stan-
dards, only the descriptors extraction procedures are normative
(dashed boxes), whereas the matching procedures are meant
for reference.

1) Descriptors Extraction: The Descriptors Extraction
process is illustrated in Fig. 2 for query and reference images.
First, robust scale-invariant keypoints are located via the
ALP method [1]. Next, detected keypoints are ranked on a
relevance basis according to a statistical model accounting
for parameters such as scale (σ ), orientation (θ ), position
(x, y), and the number of selected interest points [40]. The
number of retained keypoints depends on the target descriptor
bitrate or CDVS encoding mode, where higher encoding modes
entail more retained keypoints.

Then, a SIFT descriptor is computed over a squared image
patch centered around each selected keypoint. Next, each
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Fig. 3. MPEG CDVS reference procedure for pair-wise image matching
using the compressed binary local descriptors.

SIFT descriptor undergoes a set of transformations based on
linear combinations of the bin values, followed by a scalar
quantization of the obtained values. The quantized values
are then compressed via variable-length coding while the
keypoint coordinates are quantized and arithmetically encoded.
In the following, we will use the term CDVS descriptor to
indicate a set of compressed SIFT descriptors, i.e. to indicate
a set of compressed binary local descriptors. According to
the encoding mode, i.e. the target CDVS descriptor bitrate,
the number and the bitrate of the compressed SIFT descriptor
in the CDVS descriptor changes accordingly.

2) Image Matching: Two images I1 and I2 (e.g., query
image and reference image) are matched comparing the rel-
ative CDVS descriptors as explained in Fig. 3. First, each
compressed local descriptor is decoded along with the relative
keypoint coordinates. Then, decoded descriptors from the
query and reference images are matched with a two-way
approach. The local descriptors are compared via the Ham-
ming distance: the ratio between the closest distance and the
next closest distance, denoted as r , is used as a criterion for
distinctiveness to determine keypoint correspondences. If r
exceeds a given threshold �C DV S (ratio test threshold [2]),
then the two keypoints are considered a matching pair. For
each matching pair, a score is computed as β � cos (π r/2) as
suggested in the informative part of the standard. Then, based
on the overlapping set of matching pairs that are detected using
a cross-referencing approach (query to reference and reference
to query), a matching score s is computed. Finally, whether
the images are a matching pair will be decided based on the
cumulative effect of matching pairs of keypoints. For matching
keypoints that are present in both directions, s is computed as

s �
(

β1→2 + β2→1

2

)
. (1)

A geometric consistency check follows to separate inlier
from outlier pairs of matching keypoints. Inliers have matched
descriptors that refer to the same physical objects. Outliers
instead correspond to matching descriptors that are not geo-
metrically consistent between the images. The higher the
number of inliers for a pair of matching images, the stronger
and stable the match. The method should also be able to
handle complex cases where the same object appears skewed,
distorted, or under different illumination conditions. Similarly,
the lower the number of outliers that survive the geomet-
ric consistency check, the more reliable is the prediction
on whether the image pair is a match or not. In detail,
MPEG CDVS adopts DISTRAT [41], a technique based on
the histogram of logarithmic distance ratios (LDR) for pairs

of matches. The inliers matching total score S between the
two images is computed accumulating each s-th score of the
local feature matches found to be inlier as:

S �
∑

inliers

s. (2)

In particular, one can apply a threshold on the S score to
determine if the query and the reference images are matching,
hence they refer to the same physical object.

IV. PROPOSED ARCHITECTURE

This section describes how to train a neural network to
generate pairs of variable length suitable to determine the cor-
respondence between image patches. The method for matching
pairs of images via binary descriptors that is our ultimate goal
will be instead described in Sec. V.

We propose a network architecture for patch matching that
relies on a Siamese topology, commonly used in problems
where a distance metric function between fixed-size repre-
sentations of equally-sized signals [42] is employed. In the
simplest case, a Siamese network is composed of two identical
feature extraction subnetworks with shared learnable parame-
ters to reduce the network complexity. Each subnetwork gen-
erates a representation of the input signal through a fixed-size
vector of features as output. Due to parameter sharing, the two
subnetworks represent the same transfer function from the
input signal to the output feature space. Typically, a (learnable)
metric function compares the two feature vectors and outputs
a distance between the vectors, representing the (dis)similarity
between the input signals. Thanks to the target (dis)similarity
metric, Siamese networks are trained end-to-end in a fully
supervised way to learn representations of the input signals
(descriptors, in the following) that maximize or minimize some
(learnable) feature distance function.

A. Network Architecture

Fig. 4 illustrates our network architecture for encoding
image patches as local descriptors. We will describe our
network in terms of convolutional subnetwork for feature
and descriptor extraction and an appropriate distance metric
function for training such a network.

1) Descriptor Extraction Architecture: The two feature
extraction subnetworks receive as input a pair of identically
sized image patches (P1, P2). Each subnetwork is composed
by M convolutional modules, where each k-th module mk

(k ∈ 1, . . . , M) consists of one convolutional layer, a hyper-
bolic tangent (TanH) as activation function, and a 2 × 2
max-pooling layer. Concerning the size of the filters, m1
is composed of 5 × 5 filters (kernels), while the following
modules mi+1 to mM include 3 × 3 filters. Convolutions are
all of the wide type with one-pixel stride and zero-padding
at the border. Let fk indicate the number of filters in the
convolutional layer of the k-th module, i.e. the number of
feature maps output by the k-th convolutional layer. The
number of filters doubles at every convolutional layer as in
fk+1 = 2 fk , so the number of feature maps produced in
output by each convolutional layer doubles at each module.



Fig. 4. Left: the proposed neural network architecture for matching pairs of image patches (P1, P2). The network is trained at generating real-valued
descriptors (d1, d2) that separate pairs of matching patches from non-matching pairs by minimizing a cosine similarity metric between the network output
y and the ground truth t . The cosine similarity is only instrumental for training. Right: descriptors (d1, d2) are sign-quantized at the time of deploying the
trained network producing the sought binary descriptors (b1, b2) that can be compared using the Hamming distance as per MPEG CDVS standard.

Let us now indicate as FOk the number of features output by
each module, computed as fk × wk × hk , where wk and hk

are the width and the height of the feature maps output by
the module. In the following, we will refer to FMR as feature
map resolution such that F M R = wk × hk .

Since the pooling layer reduces both wk and hk at each
k-th module, the number of features output at each modules
decreases by a two-factor, i.e. FOk+1 = F Ok

2 . That is, each
module projects the input patch over a smaller space of latent
features which produces a compact patch descriptor. Notice
that by controlling the total number of convolutional modules
M , different trade-offs between semantic level and spatial
detail of the feature maps are possible, as experimentally
shown later on.

Each subnetwork includes one bottleneck module which
reduces the dimensionality of the extracted features to B ele-
ments. The bottleneck module is indicated as the (M + 1)-th
convolutional module in the figure since it is implemented
as a convolutional layer with fM+1 = B filters sized 3 × 3
followed by a hyperbolic tangent activation function. Imple-
menting the bottleneck layer as a convolutional rather than a
fully connected layer reduces the network complexity. The
hyperbolic tangent activation function limits the bottleneck
module outputs between −1 and 1. This is consistent with
the choice of the distance metric function used to train the
network illustrated later on. Finally, the output of the two
Siamese subnetworks in the figure is a pair of B-elements real-
valued patch descriptors (d1, d2), where the number of filters
in the bottleneck layer B controls the rate of the descriptors.
The scheme for binarizing the (d1, d2) real-valued descriptors
will be described in the following.

2) Training Distance Metric: We recall that our goal is to
design a network able to generate patch descriptors (d1, d2)
that can be trained end-to-end to match pairs of image patches.
Towards this end, we need a function suitable to account for
the distance between a pair of real-valued descriptors (d1, d2)
in the descriptors space. Works such as [12], for example, rely
on one or more fully connected layers to learn an appropriate
distance metric function. That is, a large number of extra
learnable parameters are required for learning the distance
metric. Thus, we propose to evaluate the similarity between

d1 and d2 via the function

C(d1, d2) � 〈d1, d2〉
‖d1‖ · ‖d2‖ =

∑B
j=1 d1, j d2, j√∑B

j=1 d2
1, j

√∑B
j=1 d2

2, j

(3)

referred to as cosine similarity and whose range lies in [−1, 1].
Such function enjoys several useful properties such as the fact
it is always continuous and differentiable thus allowing a fully
supervised, end-to-end training of the network. Most impor-
tant, the affinity of the cosine similarity with the Hamming
distance [43] enables descriptor binarization and comparison
via Hamming function, as mandated by the CDVS standard.
Concluding, given a pair of patches (P1, P2), the network is
trained to output the cosine similarity y = C(d1, d2) according
to the procedure described in the following. The real-valued
descriptors (d1, d2) learned as above are binarized at inference
time and compared using the Hamming distance as mandated
by the CDVS standard as described in the following.

B. Training Procedure

The architecture described in the previous sections is trained
to minimize the quadratic error between the cosine similarity y
computed over a pair of patches and the corresponding ground
truth label t (i.e. matching or non-matching pair). Let us define
the i -th pair of identically sized patches xi = (Pi

1 , Pi
2) as the

i-th training sample. Pi
1 and Pi

2 are a pair of matching patches
or, equivalently, xi is a matching sample if Pi

1 and Pi
2 represent

the same detail; Pi
1 and Pi

2 are a pair of non-matching patches
or, equivalently, xi is a non-matching sample otherwise. Let
us define yi = C(di

1, di
2) as in Eq. 3 and t i respectively as the

network output and the corresponding target output for xi . Our
goal is to learn the network parameters w enabling the network
to generate the descriptors pair (di

1, di
2) such that yi = t i .

To this end, we decide to encode the target network output t i as
follows. In the case xi is a matching sample, the network shall
generate (di

1, di
2) so that C(di

1, di
2) ≈ 1: therefore, we impose

t i = 1 for matching samples. Concerning non-matching sam-
ples, we impose t i = 0 since non-matching patches (Pi

1 , Pi
2 ) is

equivalent to measuring the cosine similarity between random
i.i.d. vectors (di

1, di
2). So, our learned (di

1, di
2) will be spread-

out descriptors [44], such that the probability of having



Fig. 5. The procedure for extracting LDVS descriptors from an image.

almost orthogonal descriptors by randomly sampling pairs of
non-matching samples is close to one. For each i -th training
sample, we optimize the network parameters to minimize a
L(li , yi ) loss function which is defined as the quadratic error
between target t i and actual network output yi as

L(t i , yi ) = (t i − C(di
1, di

2))
2 (4)

recasting our classification between matching and non-
matching patches as a l2 regularized regression problem. As a
side remark, we also experimented with a Hinge loss function
which offers the possibility to optimize with a margin m.
However, our practical experiments showed no appreciable
performance gain, whereas the choice of a suitable m value
proved to be an additional problem per se.

Considering the practical aspects of the training procedure,
the gradient of the loss function is minimized via Stochastic
gradient descent and is computed via error gradients back-
propagation for all hidden layers. We observed that prelim-
inary normalizing the input patches over their own l2 norm
increases the network robustness and generalization capacity
with respect to changes in illumination conditions. Notice that
as a preliminary step, we normalize the input patches with
respect to the mean pixel intensity and standard deviation
values computed over the entire training set, as commonly
practiced in the state-of-art approaches. We also experimen-
tally observed that Spatial Batch Normalization [45] improves
both performances as well as convergence speed. Finally,
we found that applying spatial Dropout with probability
p = 0.5 before each M-th convolutional layer improves the
network generalization ability. In our experiments in Sec. VI,
we trained the network from scratch for each of the considered
B values in order to be able to find optimal performance.

V. IMAGE MATCHING PIPELINE

In this section, we describe an image matching pipeline
designed around the proposed binary patch descriptors. First,
we detail the process of extracting an LDVS descriptor from
an arbitrary image. Then, we will detail the procedure to match
two images by comparing the relative LDVS descriptors.

A. LDVS Binary Descriptors Extraction

Fig. 5 illustrates our proposed pipeline for extracting LDVS
descriptors from a natural image (dashed boxes represent
procedures differing from the standard CDVS counterpart
shown in 2). As per the CDVS standard, robust scale-invariant
keypoints are located in the image using the ALP algorithm
and are ranked on a relevance basis selecting a subset thereof
depending on the descriptor mode as described in Sec. III.
Next, we extract a 64 × 64 image patch around each retained
keypoint as follows. For a given keypoint, let σ be the
relative scale, (x, y) its position inside the image, and θ its
dominant orientation. A grayscale (8 bit) patch image centered

Fig. 6. Procedure for matching two images comparing the respective LDVS
descriptors.

around (x, y), with a rotation angle equal to θ , inscribed into
a circle with radius set to 3.96 · 2 · √

2 · σ (where σ is the
scale of the keypoint) is sampled with a step of 1/64th of
the patch size, so that each patch has 64 × 64 pixels. Bilinear
interpolation is used to find the pixel values after alignment
with the patch rotation angle. The pixel content inside each
patch is extracted from a Gaussian filtered version of the image
as done in CDVS during the compact descriptor computation
steps. Next, each 64 × 64 patch is provided in input to the
trained network illustrated in Fig. 4.

We recall that the two Siamese subnetworks share the same
parameters, thus providing a patch into any of the convolu-
tional subnetworks yields in output a B-elements descriptor.
However, the descriptor produced by the subnetwork is a
vector of real-valued elements, whereas binary descriptors
are needed to achieve descriptor rates comparable to CDVS.
Under the hypothesis (experimentally verified) that the net-
work generates descriptors with zero-mean elements, each of
the B-elements real-valued descriptor d is quantized to its sign
value over a single bit producing a B-bits descriptor b. Finally,
the coordinates of each keypoint are compressed according
to the CDVS standard as discussed in Sec. III-.1. For the
sake of clarity and borrowing from the CDVS terminology,
we refer to each pair of a learnable binary descriptor of
B bits and relative compressed coordinates as a learnable
feature.

Summarizing, image I is encoded as a set of learnable
features, one feature for each detected and selected keypoint.
Each feature includes the proposed learnable binary descriptor
and its compressed coordinates. The set of features describing
image I is refereed to as the LDVS descriptor of the image.
The actual number of features in each LDVS descriptor and
the size of each binary descriptor in each feature will depend
on the actual coding mode, as in MPEG CDVS.

B. Image Matching

We detail here the procedure to match two images I1,
I2 via the relative LDVS descriptors as depicted in Fig. 6.
Preliminary, for each feature in the LDVS descriptor, key-
point coordinates are decoded recovering the (x, y) parameters
associated with each binary descriptor, as per CDVS standard.
At this point, each image is represented as a set of features,
i.e. learned binary descriptors with relative coordinates.

The feature matching block compares query and reference
images features following the principles of the two-way CDVS
matching scheme recalled in Sec. III-.2. Namely, for each
binary descriptor b1 in the query LDVS descriptor, we cal-
culate its Hamming distance with respect to each descriptor



b2 in the reference LDVS descriptor and vice-versa as

H̄ (b1, b2) = 1

B
H (b1, b2). (5)

such distance will range from 1 for non-matching pairs, i.e.
for patches representing different details, to 0 for perfectly
identical pairs of patches, i.e. patches representing most likely
the same image detail. As per CDVS standard, if the ratio
r between first closest neighbor distance and second closest
neighbor exceeds the threshold �L DV S , then b1 and b2 are
considered a match.

We recall that the network in Fig. 4 has been trained to
discriminate between pairs of matching and non-matching
real-valued descriptors (d1, d2) according to a cosine similarity
function. The choice of the cosine similarity at training time
is what allows us to compare binary descriptors via Hamming
distance at deployment time. In fact, the cosine similarity
between d1, and d2, defined as in 3, can be expressed as a
function of the L2-normalized inner product between the sign-
quantized descriptors b1 and b2, as in the following. Given the
definition of Hamming distance

H (b1, b2) � ‖b1‖ + ‖b2‖ − 2〈b1, b2〉, (6)

where 〈·, ·〉 refers to the inner product between vectors, and
‖ · ‖ indicates the bit count of the sequence, we can conclude
that the cosine similarity between d1 and d2 (up to a scaling
factor and an additive term) is similar to the Hamming distance
between b1 and b2 [43]. The distance between binary learned
descriptors can be measured as the relative Hamming distance,
which can be efficiently computed via simple bitwise X O R
and P O PC NT operations as in the MPEG standard.

The rest of the feature matching procedure follows the
MPEG CDVS specifications recalled in Sec. III-.2. After each
descriptor in the query image is matched with its nearest
descriptor in the reference image that survived the ratio test
using a two-way approach, a score s is returned for each pair
of matching descriptors. The following geometric verification
block finally attempts to separate true from false matches
by performing a geometric consistency check using the same
approach [41] used in MPEG CDVS. As a side note, exper-
iments with the RANSAC-based geometry consistency [46]
showed no appreciable performance gain despite increased
computational complexity. Finally, as per the MPEG CDVS
reference image matching procedure, a matching score S for
each pair of images to be compared is returned.

VI. EXPERIMENTAL EVALUATION

In this section, we first experimentally find the hyper-
parameters that maximize the performance of LDVS descrip-
tors over the Brown et al. dataset [47]. Then, we evaluate
and benchmark LDVS descriptors at patch matching over the
Brown et al. and HPatches datasets [19] Finally, the pairwise
image matching pipeline described in Sec. V is experimentally
evaluated in an image matching task comparing the perfor-
mance of our LDVS descriptors against the standard MPEG
CDVS pipeline based on compressed SIFT descriptors.

Fig. 7. Example of patches extracted from the Liberty (L), Notre-dame (N)
and Yosemite (Y) datasets.

A. Preliminary Analysis

1) Experimental Setup: The patch matching performance of
the proposed framework is first evaluated over three datasets
composed of 64 × 64 patches extracted from 3D reconstruc-
tions of the Liberty statue (L), the Notre-dame cathedral (N)
and the Yosemite mountains (Y ) [47]. The patches are centered
upon Difference of Gaussians (DoG) key points with canonical
scale and orientation. A few examples are shown in Fig. 7.

Following the approach of [47], the network is trained
three times, one for each L, N, Y dataset. For each training
set, the network performance is evaluated on the other two
datasets, for a total of six different training/testing setups per
experiment (e.g., in the tables below the N/Y setup refers
to the case in which we train on Notre-dame and test on
Yosemite). For each setup, training takes place over 250k
pairs of matching patches and 250k pairs of non-matching
patches; testing takes place over 25k matching pairs and 25k
non-matching pairs of patches. The proposed neural network
architecture is implemented using the Torch7 framework on
an NVIDIA GeForce GTX 1080 GPU.

The training relies on gradient descent with adaptive opti-
mization (AdaGrad) [48]) over batches of 100 matching sam-
ples and 100 non-matching samples. Throughout the training
phase and for each experiment, an initial learning rate of 10−3,
a learning rate decay of 5 × 10−5 and a weight decay of
10−4 are used. Training ends when the error on the test has
not decreased for 10 consecutive epochs or after 400 epochs.
Following the approach of [47], as a first step ROC curves are
computed thresholding the normalized Hamming distance in
(5) between pairs of binary descriptors of B bits each. For each
setup, the False Positive Rate (FPR) for a True Positive Rate
(TPR) of 95% is measured and in the following is reported as
the percentual patch classification error.

2) Effects of Quantization: As a preliminary experiment,
we investigate the effect of sign-quantization over the learned
descriptors for M = 3 convolutional modules and descriptors
of B = 128 elements. Fig. 8 shows the cosine similarity (top)
in Eq. 3 and the normalized Hamming distance distributions
(bottom) in Eq. 5 of the matching and non-matching patches
over the entire test set, computed over pairs of real-valued
(d1, d2) and sign-quantized (b1, b2) descriptors, respectively.
The top figure shows that the average cosine similarity
between pairs of matching patches is close to 1, while the
average value of the similarity between non-matching patches
is around zero. This confirms that our neural network has been
trained so to generate descriptors with zero cosine similarity,
i.e. orthogonal, for pairs of non-matching image patches.

3) Optimal Network Depth: As a first step, we experiment
at finding the depth of the architecture in Fig. 4 yielding



Fig. 8. Cosine similarity (top) and normalized Hamming distance (bottom)
distributions of the matching and non-matching patches over the entire test set,
computed over real-valued descriptors (top) and quantized binary descriptors
(bottom).

TABLE I

PATCH CLASSIFICATION ERROR AS A FUNCTION OF THE NETWORK

DEPTH M FOR DESCRIPTORS OF B = 128 BITS

the best patch matching performance on the Brown et al.
dataset for descriptors of B = 128 bits. Namely, our goal is
to experimentally find the number of convolutional layers M
that maximizes the network performance at patch matching.
To this end, we vary the number of convolutional modules
in Fig. 4 such as M ∈ {2, 3, 4}. As M increases, the number
of featuremaps produced by each layer doubles, while their
resolution is halved. We follow the common design pattern
where the number of filters doubles at each convolutional
layer, starting from f1 = 64 filters in the first layer. For exam-
ple, in the case M = 4, we would obtain ( f1, f2, f3, f4 =
64, 128, 256, 512).

Table I shows the test set performance of the three different
network configurations in which M varies within {2, 3, 4}. The
fM and F M R = wM × hM columns respectively report the
featuremaps number and resolution (where fM × F M R =
FOM ). The configuration where featuremaps have 8 × 8
resolution yields the best results. As a possible explanation,
we hypothesize that a shallow architecture with larger fea-
turemaps (M = 2) does not capture the high-level semantic
information of the patches. On the contrary, a deeper architec-
ture with low-resolution featuremaps (M = 4) is not able to

preserve the spatial detail of the textures. From now on, in our
experiments, we will consider the architecture with M = 3
convolutional blocks since it did yield the best results in this
experiment.

4) Performance-Complexity Tradeoff: Next, we investigate
the performance-complexity trade-off of the LDVS architec-
ture as a function of the numbers of filters f1, f2, f3 in each
convolutional layer (M = 3). We consider three different con-
figurations to which we refer to as 0.5X, 1X, 1.5X , in which
the number of filters doubles with m (i.e. module index of
each convolutional layer, going from M = 1 to M = 3).
Let us indicate as 1X the network architecture considered up
to this point where ( f1, f2, f3 = 64, 128, 256). Now, 0.5X
indicates the case where ( f1, f2, f3 = 32, 64, 128) (half the
number of filters), and 1.5X to ( f1, f2, f3 = 96, 192, 384)
(50% more filters), respectively. For each subnetwork, the M+
1-th convolutional layer is replaced by a Fully Connected
layer with B hidden units which takes at input FOM =
f3 × F M R features and has B outputs, one for each of the
two subnetworks the Siamese structure is composed of ((FC)
scheme). Notice that only the number of learnable parameters
is affected, while the total number of neurons in the network
does not vary. Also, we recall that the proposed architecture
includes 5 × 5 filters in the first convolutional layer and 3 × 3
filters in the following layers. Moreover, we compare the
fully convolutional architecture proposed in Fig. 4 with an
architecture similar to [43] and comparable to [12], [17], [34],
where the bottleneck layer has a fully connected topology.

Table II reports the memory and computational complex-
ity as the number of learnable parameters and multiply-
add (MADD) operations. The LDSV-FC architecture memory
complexity is dominated by the number of parameters in the
fully connected layer. The number of parameters of LDVS is
between three and four times less than its LDVS-FC counter-
part, showing the benefits of a convolutional bottleneck layer.
Concerning the number of MADD operations, our architecture
has lower complexity than [12] and [34] and about the same
order of complexity of [15] in its no-bottleneck version.

Table III then shows that the proposed fully convolutional
(Conv.) approach has also better performance than the (FC)
variant for almost all configurations despite the lower com-
plexity. In detail, the Conv. 1.5X configuration offers the
smallest average error over the six setups. Hence, in the
following, we will identify our LDVS descriptor with the Conv.
1.5x configuration.

We also experimented at increasing the number of the filters
in each layer beyond 1.5X, up to 2X and 3X. The experiments
showed that while the error over the training set further
decreased, the error over the test set that represents the network
ability to generalize over previously unseen data increased. We
attribute such an effect to the tendency of networks with large
learning capacities to overfit to the training data, especially in
the FC case where the bottleneck layer has a fully connected
topology. Notice that techniques such as L2 regularization and
probabilistic dropout showed to be ineffective towards this
end. In the following, we will refer to the M = 3, Conv.
1.5X architecture as proposed due to its favorable complexity-
performance trade-off.



TABLE II

NUMBER OF LEARNABLE PARAMETERS AND MULTIPLY-ADD (MADD) OPERATIONS AS A FUNCTION OF THE NUMBERS OF FILTERS f1, f2, f3
FOR THE PROPOSED FULLY CONVOLUTIONAL ARCHITECTURE (conv.) AND THE REFERENCE WHERE THE LAST LAYER IS FULLY

CONNECTED (fc) (M = 3, B = 128) AND FOR SOME COMPARABLE CONVOLUTIONAL ARCHITECTURES

TABLE III

PATCH CLASSIFICATION ERROR OVER BROWN et al. AS A FUNCTION OF

THE NUMBER OF FILTERS ( f1, f2, f3) FOR THE FULLY
CONVOLUTIONAL LDVS (conv.) AND WHERE THE

LAST LAYER IS FULLY CONNECTED (fc)
(m = 3, b = 128)

TABLE IV

PATCH CLASSIFICATION ERROR OVER THE BROWN et al.
DATASET FOR LDVS AND OTHER

BINARY DESCRIPTORS

B. Pair-Wise Patch Matching

1) Experiments on Brown et al. Dataset: Table IV compares
our LDVS with several state-of-the-art references. LDVS out-
perform or perform favorably with respect to the competitors
on an equal bitrate basis. Only for the N/L, Y/L, and N/Y
setups DeepCD [34] performs better, but at the expense of
a 3 times larger descriptor (768 bits with respect to B =
256 bits for the proposed scheme). We attribute such gains
to the optimal tradeoff between semantic level and resolution
of the feature maps extracted from the patches together with
a better network generalization ability in reason of the fully
convolutional design that is less prone to yield to overfitting
issues. Finally, CS L2Net outperforms CDVS since it relies on
a different and more complex central-surround architecture.

TABLE V

AVERAGE MAP (%) FOR LDVS OVER THE HPATCHES [19] DATASET

FOR VERIFICATION, MATCHING AND RETRIEVAL TASKS

2) Experiments on HPatches Dataset: Furthermore,
we experiment over the HPatches [19], a large dataset of
patches (2.5M pairs) with predefined evaluation protocol for
the tasks of patch matching, retrieval, and classification. The
protocol is composed of 116 image sequences each of which
is provided with six other images for homographies under
different levels of geometric noise and illumination variations.
We trained our LDVS descriptor for different descriptor
rates over a training set of 250k matching patches and 250k
non-matching patches and tested it on a previously unseen
set of 25k matching patches and 25k non-matching patches.
Then, we computed the performance at the three considered
tasks using the [19] evaluation framework reporting the results
in Tab. V. For this experiment, increasing the descriptor
length to 192 and 256 did not lead to significant performance
improvements. For this reason, Tab. V reports performance
on the three HPatches tasks obtained with LDVS 128 bits
descriptors, showing that the proposed binary descriptor is
competitive with respect to others, especially at Verification
and Retrieval, even at lower descriptors rates.

C. Pair-Wise Image Matching Experiments
Next, we evaluate our LDVS descriptors and the relative

pair-wise image matching pipeline described in Sec. V against
the standard MPEG CDVS descriptors and relative image
matching pipeline described in Sec. III-.2.

1) Experimental Setup: All our following experiments are
performed over the reference MPEG CDVS dataset, which
consists of about 17k matching pairs and 17k non-matching
pairs of images, hence a considerably large and complex
collection of images. Such dataset is a collection of differ-
ent annotated datasets including the Stanford Mobile Visual
Search Dataset [51], the Stanford Streaming Augmented Real-
ity Dataset [52], and the Zurich Building Image Database [53].
Images are annotated for pairwise image matching, i.e. a list of



Fig. 9. Patch classification error (FPR) over Brown et al. as a function of the
descriptor length averaged across all setups (rightmost column of Tab. IV).

Fig. 10. Examples of patches sampled at random from the CDVS dataset.

all images depicting the same object (e.g., a specific building)
is provided.

The data required to train the network in Fig. 4 (with
M = 3 convolutional blocks) from scratch are prepared as fol-
lows. First, we extract a set of about 1.6 million pairs of 64×64
matching patches using the standard CDVS extraction and
matching pipeline. Second, we generate an equally sized set of
non-matching pairs of patches by randomly drawing 64 × 64
patches from non-matching pairs of images. While such a
choice is not expected to be optimal towards maximizing the
performance of the proposed LDVS descriptors, it is meant
to guarantee a fair comparison with CDVS descriptors. The
above sets of pairs of patches are randomly subdivided into a
training set of 250k pairs of matching patches and 250k pairs
of non-matching patches, whereas the remaining patches are
used for testing purposes. Overall, the training set is composed
of about 1 M pairs of image patches, where matching pairs of
patches are labeled as t = 1 and non-matching pairs as t = 0
as explained in Sec. IV-B as exemplified in Fig. 10. To ensure
the network is tested on patches not seen at training time,
we exclude from the test set patches extracted from images that
contributed at least one patch to the train set. Notice that all
the results reported in the following refer to patches extracted
from the test images.

2) Comparison With MPEG CDVS: We recall that the
CDVS standard considers different bitrates or modes for
representing an image as a collection of compressed SIFT
descriptors. Each CDVS mode yields different average local
descriptors length, and a fixed (maximum) amount of descrip-
tors that can be retained for each image, as done in the
Feature Matching stage in Fig. 5. To ensure a fair comparison,
we first extracted all the CDVS descriptors for all modes,
noting for each mode the average compressed local descriptor
size and the average number of local descriptors per CDVS
descriptor. Then, concerning the proposed LDVS descriptors,

TABLE VI

COMPARISON OF THE AVERAGE DESCRIPTOR LENGTH FOR OUR LDVS
DESCRIPTORS AND STANDARD MPEG CDVS DESCRIPTORS

Fig. 11. Pair-wise image matching performance comparison between the
proposed LDVS and standard CDVS descriptors as a function of the descriptor
mode. Top-left: number of inliers per matching image (NIM). Top-right:
number of matches wrongly labeled as inliers per non-matching image
(NINM). Bottom-left: area under the curve (AUC). Bottom-right: true positive
rate (TPR) when FPR= 1%.

for each mode, we only retained the CDVS average number
of descriptors and limited the descriptor size B to the CDVS
average equivalent number. Table VI summarizes the resulting
average number of local descriptors and the average descriptor
length in bits for our LDVS descriptors and standard CDVS
descriptors.

The performance of our LDVS descriptors and standard
CDVS descriptors are compared according to the following
metrics:

• Number of Inliers per Matching Image (NIM): average
number of true matching inliers for each pair of matching
images.

• Number of matches wrongly labeled as inliers per Non-
matching Image (NINM): average number of false match-
ing inliers for each pair of non-matching images.

• Area Under the Curve (AUC): area of the graph under
the S scores ROC curves

• True Positive Rate (TPR): true positives rate for a fixed
1% False Positive Rate as in the official CDVS evaluation
framework.

AUC and TPR are computed by thresholding the S scores
(see 2) for each pair of annotated query/reference image. For
each metric, we report the average value computed over the
annotated CDVS image dataset, i.e. about 17k matching and



Fig. 12. Example of inliers as a function of the descriptor mode (or bitrate) for MPEG CDVS (top) and LDVS (below) descriptors. The maximum selected
number of keypoints for Mode 2, Mode 3, Mode 4, and Mode 5, as in Tab. VI, is 250, 250, 300, and 500, respectively. The proposed LDVS descriptor yields
more inliers especially at lower bitrates, enabling robust geometric verification and better performance at image matching.

17k non-matching images. While the ratio test threshold value
for CDVS (�C DV S) is set at 0.85, we verified that optimal per-
formance with LDVS is obtained by setting �L DV S = 0.90.

Fig. 11 shows that for each of the four considered met-
rics, the proposed LDVS descriptors outperform the CDVS
reference for every mode (i.e., at any bitrate). Concerning the
number of true inliers NIM, i.e. the number of correct descrip-
tors matches surviving geometry verification, the proposed
approach almost doubles such number with respect to CDVS.
We recall that the proposed approach and CDVS rely on the
same number of descriptors per image since they share the
same keypoint detection and feature selection steps in Fig. 5).
More inliers are key to improve the robustness of the overall
image matching process, especially at low bitrates where the
available descriptors are few. At the same time, the number
of false inliers NINM is significantly lower for our approach,
especially at low bitrates (CDVS yields about three times more
false inliers at Mode2). That is, in the case of non-matching
images, the average number of matched keypoints that survives
the geometric verification phase and end up wrongly being
considered inliers is considerably lower than CDVS. As a
result of more inliers for true matching pairs and fewer inliers
for nonmatching pairs, our approach scores better than CDVS
in terms of AUC and TPR metrics at all rates. Concluding, this
experiment shows that the proposed LDVS descriptors allow
more robust image matching thanks to the ability to better
discriminate matching images from non-matching ones.

Fig. 12 depicts inliers for CDVS (top) and our LDVS
(bottom) descriptor for a sample image. The picture shows
how our LDVS descriptor yields more inliers than CDVS
at any bitrate. This is particularly evident in Mode 2 and
Mode 3, i.e. in the case where the number of descriptors
available for image matching is lower. In conclusion, our
LDVS descriptors outperform CDVS descriptors even when
fitted within a CDVS-optimized pair-wise image matching
pipeline, especially in the case of limited computational,
storage and bandwidth resources (i.e. at lower bitrates).

VII. CONCLUSION

The proposed LDVS descriptors are learnable, binary local
descriptors designed for image matching within the MPEG
CDVS international standard. LDVS descriptors are learned

so that they can be sign-quantized and compared using the
Hamming distance as required by the standard. The fully con-
volutional architecture exhibits a low parameters count with
respect to comparable architectures. LDVS performs favorably
at patch matching over competing learned binary descriptor
technologies on two challenging datasets Brown et al. and
HPatches. Then, a complete pair-wise image matching pipeline
is designed around the introduced LDVS descriptors. We inte-
grate them into the reference CDVS evaluation framework that
employs a geometric consistency test. Experiments show that
LDVS descriptors outperform same-rate compressed CDVS
descriptors at pair-wise image matching, especially at low
descriptor lengths. We attribute such gains to the LDVS
descriptors ability to generate a greater number of matches
capable to survive geometric consistency checks.
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