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Related work

NMF/NTF-based:

• Time activations [Laurberg et al., 2008, Ozerov et al., 2011, Duong et al., 2014a]

• TF activations [Lefevre et al., 2012, Jeong and Lee, 2015, Rafii et al., 2015]

• Interactive frameworks [Bryan and Mysore, 2013, Duong et al., 2014b]

• Humming [Smaragdis and Mysore, 2009], sing/play [FitzGerald, 2012], F0 [Durrieu and Thiran, 2012]

DL-based:

• Multi-task learning [Stoller et al., 2018, Hung and Lerch, 2020, Nakano et al., 2020]

• Class conditioning

[Swaminathan and Lerch, 2019, Slizovskaia et al., 2019, Seetharaman et al., 2019, Karamatlı et al., 2019]

However:

7 require large datasets of mixtures and corresponding isolated sources;

7 if informed, require the side information also during training;
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One-shot deep model adaptation

Fully-supervised DNNs:

7 require large datasets of mixtures and corresponding isolated sources;

7 if informed, require the side information also during training;

7 do not generalize well to test data with significant timbre variation.

Proposal: use the side information + specific training strategies

• Adaptation: fine-tuning of a pre-trained DNN using the side info

• One-shot: adaptation to one mixture and not a dataset

• Side information: time activations indicating where each instrument is active
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Training Loss

Minimize difference between the estimated and the ground truth sources

L =
1

N

N∑
n=1

I∑
i=1

|ŝi,n − si,n|;

which represents the average absolute error between waveforms

• ŝi,n estimated source i at time frame n;

• si,n ground truth source i at time frame n.
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Adaptation Loss

Minimize the energy of the silent sources while forcing the mix reconstruction:

L =
1

N

N∑
n=1


I∑

i=1

|(hi,n · ŝi,n)− yn|︸ ︷︷ ︸
reconstruction loss

+λ
I∑

i=1

|(1− hi,n) · ŝi,n|︸ ︷︷ ︸
activations loss

 .
where hi,n are the binary activations of each instrument i at time frame n:{

hi,n = 1 if instrument i is active

hi,n = 0 if instrument i is not active
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Experiments

Data

• MUSDB18 [Rafii et al., 2017]

• 4 classes: bass, drums, vocals and other;

• first 10 songs of the test set only;

• binary activations of the ground truth sources.

Model:

• ConvTasnet adapted for music source separation [Luo and Mesgarani, 2019, Défossez et al., 2019]

• 10 epochs of fine-tuning using Ranger and lr 10−5
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Fine-tuning strategies

Example P-L2:D: from the 2nd block to the last one with the proposed loss;
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Results

SDR (dB) #TP other bass drums vocals

P-L1:D 8.2M 6.1 8.1 7.4 6.3

P-L2:D 5.6M 6.2 8.3 7.4 6.2

P-L3:D 2.9M 6.1 8.3 7.3 5.9

P-L4:D 0.4M 4.9 7.8 5.7 6.0

P-L5:D 0.01M 4.6 7.7 5.7 6.1

B0 - 4.4 7.9 5.8 6.3
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Conclusions

Take-home

3 no need for the side info during training, adaptation directly at test time;

3 improvement of the separation, especially for underrepresented instruments;

3 general approach that can be applied to other tasks and DL architectures.

However:

7 need at least a weak guiding signal;

7 the sources cannot be always activated.

Resources:

¥ https://github.com/giorgiacantisani/ugosa

W https://giorgiacantisani.github.io/projects/ugosa
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Thank you for the attention!
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