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Related work

NMF /NTF-based:

e Time activations [Laurberg et al., 2008, Ozerov et al., 2011, Duong et al., 2014a]

e TF activations [Lefevre et al., 2012, Jeong and Lee, 2015, Rafii et al., 2015]

e |Interactive frameworks [Bryan and Mysore, 2013, Duong et al., 2014b]

e Humming [Smaragdis and Mysore, 2009], sing/play [FitzGerald, 2012], FO [Durrieu and Thiran, 2012]

DL-based:

e Multi-task learning [Stoller et al., 2018, Hung and Lerch, 2020, Nakano et al., 2020]

e Class conditioning
[Swaminathan and Lerch, 2019, Slizovskaia et al., 2019, Seetharaman et al., 2019, Karamatli et al., 2019]

However:

require large datasets of mixtures and corresponding isolated sources;

if informed, require the side information also during training;



One-shot deep model adaptation

Fully-supervised DNNs:

require large datasets of mixtures and corresponding isolated sources;
if informed, require the side information also during training;

do not generalize well to test data with significant timbre variation.

Proposal: use the side information + specific training strategies

e Adaptation: fine-tuning of a pre-trained DNN using the side info
e One-shot: adaptation to one mixture and not a dataset

e Side information: time activations indicating where each instrument is active



Training Loss

Minimize difference between the estimated and the ground truth sources
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which represents the average absolute error between waveforms

e 5 , estimated source / at time frame n;

e s; , ground truth source i at time frame n.



Adaptation Loss

Minimize the energy of the silent sources while forcing the mix reconstruction:
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reconstruction loss activations loss

where h; , are the binary activations of each instrument i at time frame n:

hi n = 1 if instrument i is active

h; , = 0 if instrument 7 is not active



Experiments

Data

e MUSDB18 [Rafii et al., 2017]
e 4 classes: bass, drums, vocals and other;
e first 10 songs of the test set only;

e binary activations of the ground truth sources.

Model:

e ConvTasnet adapted for music source separation [Luo and Mesgarani, 2019, Défossez et al., 2019]

e 10 epochs of fine-tuning using Ranger and Ir 10—



e-tuning strategies
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Example P-L2:D: from the 2nd block to the last one with the proposed loss;



SDR (dB) #TP other bass drums vocals

P-L1:D 8.2M 6.1 8.1 7.4 6.3
P-L2:D 5.6M 6.2 8.3 7.4 6.2
P-L3:D 2.9M 6.1 8.3 7.3 5.9
P-L4:D 0.4M 4.9 7.8 5.7 6.0
P-L5:D 0.0IM 4.6 7.7 5.7 6.1
BO - 4.4 7.9 5.8 6.3
other bass drums vocals
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Conclusions

Take-home
v/ no need for the side info during training, adaptation directly at test time;
v/ improvement of the separation, especially for underrepresented instruments;

v/ general approach that can be applied to other tasks and DL architectures.

However:

need at least a weak guiding signal;

the sources cannot be always activated.

Resources:

© https://github.com/giorgiacantisani/ugosa
J3 https://giorgiacantisani.github.io/projects/ugosa
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https://github.com/giorgiacantisani/ugosa
https://giorgiacantisani.github.io/projects/ugosa

Thank you for the attention!
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