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Abstract—In this work, we study music/video cross-
modal recommendation, i.e. recommending a music track
for a video or vice versa. We rely on a self-supervised
learning paradigm to learn from a large amount of
unlabelled data. We rely on a self-supervised learning
paradigm to learn from a large amount of unlabelled
data. More precisely, we jointly learn audio and video
embeddings by using their co-occurrence in music-video
clips. In this work, we build upon a recent video-music
retrieval system (the VM-NET), which originally relies on
an audio representation obtained by a set of statistics
computed over handcrafted features. We demonstrate
here that using audio representation learning such as the
audio embeddings provided by the pre-trained MuSimNet,
OpenL3, MusicCNN or by AudioSet, largely improves rec-
ommendations. We also validate the use of the cross-modal
triplet loss originally proposed in the VM-NET compared
to the binary cross-entropy loss commonly used in self-
supervised learning. We perform all our experiments using
the Music Video Dataset (MVD).

I. INTRODUCTION

Real-world data is inherently multimodal. When we
observe our environment, we usually gather information
using several senses at the same time. Co-occurrence
of events across our senses allows us to efficiently
acquire a large amount of knowledge without the need
of ground truth annotations. Starting from this obser-
vation, an active research area has developed around
multimodal learning paradigms [5], [15], [16], [30]. One
of the most popular approaches associates audio data to
corresponding video data to perform a variety of tasks
[2], [4], [9], [19], [20], [24]. This association can be
learned in a self-supervised way, thus requiring only a
large dataset of unlabelled video clips, and no external
annotation. In this paper, we call "clip" a matching
data pair composed of a silent video and an audio
track, obtained from the same media and synchronized.
By learning to distinguish between matching and non-
matching audio-video pairs, self-supervised systems can

learn effective representations, or embeddings, of the
audio and video.

Embeddings are non-linear projections of data in
a high dimensional space tailored to solve a specific
downstream task, such as classification. In this study, we
consider the intuitive downstream task of cross-modal
recommendation. Our problem is the following: given
a query video clip, which music track from a database
is the most suitable to serve as a soundtrack? And in-
versely, given a music track, which video from a database
best illustrates its content? Music recommendation for
video has applications in automatic video editing [26],
as well as professional music supervision [10]. Video
recommendation for music has applications in automatic
MTV generation [13] and music recommendation [33].

By using the self-supervised paradigm, it is possible
to solve the cross-modal recommendation task using
only the content of the videos and music tracks. Purely
self-supervised systems do not exploit mood tags [12],
[23], usage data or other prior information [26]. How-
ever, common audio-video self-supervised systems are
computationally intensive to train (2 days on 16 GPUs
in parallel for the L3-Net [2]). One way to alleviate
this issue is to leverage pretrained input features or to
perform transfer learning. In image and video processing,
ImageNet features are commonly used as a starting
point for other tasks [6], [29], [32]. It has been shown
that pretrained features associated to transfer learning
or fine-tuning can match the performance of systems
trained from scratch [17]. This allows to reduce the
computational cost associated to the development of new
systems, and to improve performances by leveraging a
large diversity of datasets. Reusing pretrained features
can be critical in domains where access to training
data is limited (e.g. due to copyright, or high cost of
acquisition). In music research, however, there is no
widely accepted feature extractor that would be the
equivalent of ImageNet features in image processing.



Several systems, both unimodal and multimodal, can
play this role [7], [8], [21]. We study here which of
these audio embeddings is the most appropriate for the
music-video recommendation task.

We build upon the VM-NET [9], a self-supervised
network for music-video recommendation, and challenge
some of its design choices. We compare the perfor-
mance of several open-source audio embeddings for
this recommendation task, including MusiCNN, OpenL3
and AudioSet. We show that audio features already
pretrained on a cross-modal task [7] perform best. To
our knowledge, this is the first time these embeddings
are used in the context of music-video recommendation.

Paper organization. In Section II, we review the
literature about music-video embeddings. In Section III,
we describe the reference system that we use as baseline
[9]. In Section IV, we challenge three design choices of
our baseline system by changing the amount of training
data, the training loss and the input audio features.
In Section V, the performances of these variants are
evaluated on an independent test set. Some conclusions
are suggested in Section VI.

II. RELATED WORK

A. Music-Video Embeddings

Music-video embeddings refer to a joint representa-
tion between two different data modalities: music and
video. In general, music-video embeddings are computed
via a pair of projection functions (fM , fV ). fM takes
as input a music audio excerpt xM and outputs an
embedding vector eM = fM (xM ). fV takes as input
a video sample xV and outputs an embedding vector
eV = fV (xV ). Both embedding vectors belong to the
same high dimensional embedding space. This allows to
perform cross-modal retrieval, for example by computing
Euclidean distances between two embedding vectors:
da,b = ||fM (xa)− fV (xb)||2.
fM and fV can be trained jointly to associate music

and video samples according to some matching criteria.
In a broader sense this includes also systems designed for
any type of sound and for images (single frame videos).
A popular design choice is to implement fM and fV
as neural networks. These can be trained with the help
of another network that performs a fusion between both
modalities, or using a specific loss that directly organizes
the embedding vectors produced by fM and fV . The
training of such embeddings can be done using two
paradigms: supervised or self-supervised.

Supervised approaches: In the case of supervised
learning, the matching criterion that associates the audio
and video modalities is deduced from additional sources
of information. Typically, mood tags [26] [33] or projec-
tions into the valence-arousal plane [23] can be used to
recommend musics and videos that have a similar emo-
tional content. The use of mood information accelerates
the training, and allows the systems to reach promising
retrieval performances. The matching criteria can be
expressed as a score which is not necessarily binary,
allowing nuances. However, this restricts the systems to
learn a certain type of audiovisual correspondence, and
requires to collect additional information to train.

Self-supervised approaches: In the case of self-
supervised learning, a binary matching criterion is used.
The learning objective is to classify pairs of audio and
video samples between "matches" (i.e. both samples are
extracted from the same clip and from the same time
position) and "non-matches".

Early approaches have learned correlations between
audio and video modalities [11] using multiple-type la-
tent semantics analysis or dual-wing harmonium models
[13]. Later, methods based on deep neural networks
were proposed. With an appropriate loss function, neural
networks can learn directly the correspondence between
audio and video modalities. Aytar et. al. first experi-
mented with a KL-divergence loss between the audio
and video embedding vectors [4]. Alternatively, the L3-
Net proposed by Arandjelovic and Zisserman stacks
a fully-connected fusion network after the two-branch
embedding extraction network [2]. The whole system
is trained with a binary cross-entropy loss, to predict
whether both samples were extracted from the same
video clip. A variant was proposed by Owens and Efros,
who use the cross-entropy loss to predict whether an
audio and a video sample from the same clip were
temporally shifted or not [18].

These three last systems allow to leverage large non-
annotated datasets of clips and the resulting embeddings
were shown to perform well when reused for downstream
tasks. However, their training is computationally expen-
sive, and the embeddings are not specific to musical
audio signals.

B. Usages of Music-Video Embeddings

Use of audio embeddings as audio features for
a downstream task: Once trained, music-video em-
beddings can be used as feature vectors for a variety
of downstream tasks, including single-modal tasks. For
example, SoundNet [4] is used for acoustic scene and



object classification, while L3-Net [2] and its open-
source version OpenL3 [7] are used for environmental
sound classification.

Among the applications for cross-modal downstream
tasks, works related to sounding object localization [3]
and audio-visual event localization [28] are worth men-
tioning. Owen and Efros also illustrate the performances
of their system by audio-visual action recognition and
on-screen (speaker visible on the screen) vs off-screen
(not visible) audio source separation [18].

Use of audio embeddings for cross-modal rec-
ommendation: Music-video embeddings can also be
used for cross-modal recommendation or retrieval tasks.
Examples of systems for music recommendation given
video as input are [11], [12], [23], [26], [27]. In a
symmetrical way, examples of systems for video rec-
ommendation given audio as input are [13], [33].

In this paper, we propose to evaluate our music-video
embedding system on both music recommendation given
video as input and video recommendation given music
as input as Hong et. al. [9] did.

III. BASELINE SYSTEM

The baseline system that we consider in this paper is
the "VM-NET" system proposed by Hong et. al. [9]1.
This system learns music-video embeddings in a self-
supervised way (without the need for additional infor-
mation) with the goal of performing cross-modal rec-
ommendation, hence music-to-video or video-to-music
recommendation. We briefly describe this system in the
following (for more details see [9]).

Input features: As opposed to other works, the input
of the VM-NET are not the raw data (raw audio wave-
form or spectrogram, or images) but audio and image
features extracted using a previous system. Each video
clip is represented by a pair of timeless vectors (xM , xV )
(one for each modality).

The audio input to the network, xM , is a timeless
feature vector of length 1,140 which represents the whole
clip duration. To construct this vector, handcrafted fea-
tures (such as spectral centroid, MFCCs, and Chromas)
are extracted at each time frame (1 frame'21ms) and
statistically aggregated (using mean, variance and max)
over the whole clip duration (3.9 minutes on average).

The video input to the network, xV , is a timeless
feature vector of length 1,024 which also represents the
whole clip duration. To construct this vector, ImageNet

1More precisely we re-implemented the VM-NET of [9].

features [1] are computed for images of the videos
sampled every second. The features are then statistically
aggregated (using mean) over the whole clip duration.

Network architecture: In the VM-NET, xM and xV
feed two independent branches made of fully-connected
layers with ReLu activations. The audio branch consists
in 3 fully-connected layers of 2048, 1024, and 512
units respectively. The video branch consists in 2 fully-
connected layers of 2048 and 512 units respectively.
Linear activations and batch normalization are applied
at the end of each branch. Preliminary experiments
validated the original architecture.

Loss: The goal of the triplet loss [31] is to organize
the projection f of three samples in the embedding space
such that the distance between an anchor a and a positive
sample p is minimized, while the distance between the
anchor a and a negative sample n is maximized. The
loss is defined as: L(a, p, n) = max(||f(a) − f(p)||22 −
||f(a) − f(n)||22 + α, 0), where α ∈ R∗

+ is a margin
parameter, and f denotes the neural network embedding
function. In the VM-NET, the triplet loss is used not
only to ensure that the music embeddings eM and video
embeddings eV from the same clip are close but also
that, for all clips, the distances between their music
embeddings eM (resp. video embedding eV ) remains
similar to the distance between their music features xM
(resp. video features xV ). This leads to the definition of
an extended triplet loss LVMNET with four constraints
grouped into two types: inter-modal ranking constraints
(LVM ,LMV ) and soft intra-modal structure constraints
(LMM and LV V ). These constraints are combined via
a weighted sum: LVMNET = λ1LVM + λ2LMV +
λ3LV V + λ4LMM .

For the inter-modal ranking constraints LVM and
LMV , the triplets are defined as such: a and p are
taken for the same clip, while n is taken from a
different clip (see Figure 1a). The triplet loss is then
computed in both directions: music to video LVM with
(a, p, n) = (eV 1, eM1, eM2) and video to music LMV

with (a, p, n) = (eM1, eV 1, eV 2). This ensures that each
sample gets closer from its paired sample than from any
other sample.

The soft intra-modal structure constraints are com-
puted separately for the music (LMM ) and for the video
(LV V ). We only describe it for the music case (see
Figure 1b). The process is the same for the video case.
The triplets are mined such that a, p and n are taken
from three different clips but from the same modality
(either music or video). For selecting a, p and n we
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(a) The LVM inter-modal ranking constraint. Video eV 1 and
music eM1 taken from the same clip are brought together,
while external music eM2 is pulled away.
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(b) The LMM music intra-modal structure constraint. Relative
distances between music input features are preserved during
training.

Fig. 1: The two types of constraints present in the
LVMNET loss. Squares represent the video modality,
while circles represent the audio modality. Same colors
represent the same clip.

use the values of the input features x (not the values
of the embeddings e). We select them such that the
feature vectors xM(a) and xM(p) are closer (in terms of
Euclidean distance) than xM(a) and xM(n). The triplet
loss is then applied to their corresponding embeddings:
(a, p, n) = (eM(a), eM(p), eM(n)) for LMM . This ensures
that the "modality-specific characteristics of the input
features are preserved even after the embedding pro-
cess." The process is the same for defining LV V using
(a, p, n) = (eV (a), eV (p), eV (n)).

Datasets: We use two different datasets.
HIMV-50K dataset: The original VM-NET system is

trained on a subset of the YouTube-8M dataset [1].
This subset corresponds to the clips annotated as "music
video". It is denoted as "HIMV-200K" in [9] and consists
of 205,000 video-music pairs. It should be noted that
while the audio of these clips always contains music,
the video can be anything from professional promotional
clips to amateur montages of still images. From the
list provided by the authors2, we fetched all relevant
YouTube IDs to re-create their dataset. However, due
to country-specific restrictions, dead links and storage
limitations, we only have access to 51,000 video-music
pairs. We partition our dataset by leaving out 1,000

2https://github.com/csehong/VM-NET/blob/master/data/

(randomly selected) pairs for validation, and we use the
remaining 50,000 pairs for training. We call it HIMV-
50K in the following.

Music Video Dataset (MVD): While the previous
dataset is large and diverse therefore suitable for training
a neural network, the quality of the video part of the
clips is very heterogeneous. Therefore, to evaluate the
performance of our system, we propose to use a cleaner
dataset, the Music Video Dataset (MVD). This is because
evaluating the VM-NET on the noisy HIMV-50K dataset
would make results difficult to interpret. The MVD
[24], [25] consists in 2,212 music video clips, manually
curated. The music and video parts of the clips are of
professional quality. The average duration of each clip
is 4 minutes. We randomly selected N = 2, 000 of these
clips to evaluate our systems.

IV. PROPOSED EXPERIMENTS

A. Experiment 1: Size of the Training Data

In the first experiment, we explore how critical the size
of the training dataset is for music-video recommenda-
tion. Intuitively, using pretrained visual features should
alleviate the need for huge datasets. To validate this,
we train the VM-NET with three subsets of the HIMV-
50K training dataset: 10k pairs, 30k pairs and 50k pairs.
For the audio branch, we use the original handcrafted
features.

B. Experiment 2: Triplet loss (TL) or Binary Cross-
Entropy (BCE)

As shown in the L3-Net paper [2], it is possible to
learn relevant audio-video embeddings with a binary
cross-entropy loss. In the second experiment, we then
replace the LVMNET triplet loss by a binary cross-
entropy loss. To do so, we stack three fully-connected
layers on top of the VM-NET with 1024, 128 and 1
unit respectively. The output activation is now a sigmoid.
The target of the network is set to 0 for non-matching
audio-video pairs and 1 for matching pairs. We therefore
train the VM-NET for a binary classification task. For
the audio branch, we still use the original handcrafted
features.

C. Experiment 3: Input Audio Features

The VM-NET uses pretrained ImageNet features for
its video branch and handcrafted audio features for its
music branch. This latter choice may be sub-optimal
considering recent advances in feature learning using
deep leaning. We therefore gather four pretrained music
embeddings and use them as audio feature extractors
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Fig. 2: Experiment 2: Replacing the Triplet Loss by the
BCE Loss (orange block). Experiment 3: Substituting
handcrafted audio features for pretrained audio features
(blue block).

for our multimodal embedding training (See Figure 2).
We do not retrain them with the VM-NET, for a more
efficient use of computation resources (we refer to the
respective papers for more details on how each of them
were trained). We train each network with the LVMNET

triplet loss.
MuSimNet: We compute the embedding vectors using

MuSimNet. This network has been proposed to estimate
music similarity and trained using a triplet loss paradigm
[22]. For each track, we randomly select 24 segments of
12s duration and compute their corresponding embed-
dings. We then aggregate those over time using mean,
variance and max, resulting in a single 384 dimensional
feature vector for each music track.

MusiCNN: We compute the output of the penulti-
mate layer of the music autotagging model MusiCNN
[21]. The open-source library musicnn was installed
according to the instructions3. We compute the frame
level features at a rate of 1Hz and we aggregate those
over time using mean, variance and max, resulting in
one single 600 dimensional feature vector for each music
track.

OpenL3: We compute the music embeddings pro-
vided by the OpenL3 model. OpenL3 has been trained
to obtain embeddings usable for an audiovisual cor-
respondence task. This is a task similar to ours. The
open-source library openl3 was installed according to
the instructions4. We compute the frame level features
at a rate of 1Hz and we aggregate those over time
using mean, max and var, resulting in one single 18,432
dimensional feature vector for each music track. We use
the system trained on the "music" dataset.

AudioSet: We downloaded the audio features pro-
vided by the YouTube-8M dataset5. These features are
obtained from a model trained on an auto-tagging task on
the YouTube-8M dataset. That this is the same dataset
as the one we use for training the VM-NET. For the

3https://github.com/jordipons/musicnn
4https://github.com/marl/openl3
5https://research.google.com/youtube8m/download.html

MVD, we compute these audio features with the open-
source framework mediapipe. We obtain one single
128 dimensional feature vector for each music track.

V. EVALUATION AND RESULTS

A. Training Details

We reimplemented the VM-NET in Keras from the
provided Tensorflow code6. After a preliminary vali-
dation experiment, we kept the original code and hy-
perparameters of the triplet loss LVMNET . We train
the VM-NET using only the HIMV-50K dataset. We
downloaded the YouTube-8M video features directly
from the YouTube-8M webpage. To compute the hand-
crafted audio features, we used the original VM-NET
code, which makes use of the Librosa library [14]. In
experiments 1 and 2, we use only these handcrafted
audio features. We use the ADAM optimizer with a
learning rate of 10−6, a dropout scheme with probability
0.5 and a batch size of 1000. For all TL systems, we
use early stopping to prevent from overfitting. For the
BCE system, preliminary evaluations on the validation
data showed that early stopping was detrimental for the
performances. Instead, we train the VM-NET for 15,000
epochs. All experiments are performed on a Nvidia
GeForce GTX 1080 Ti GPU. Running the evaluation
script takes approximately 30 seconds for the TL sys-
tems, and 5 minutes for the BCE system.

B. Evaluation Metrics

Because of its higher quality, we only evaluate the
VM-NET on the MVD. Since the video features are
not available for the MVD (they are only available
for the HIMV-50K dataset), we compute those using
mediapipe. We evaluate our systems for two tasks:
• Video to Music: from a video query, retrieve the

corresponding music.
• Music to video: from a music query, retrieve the

corresponding video.
In both cases, there is a single correct item to be
retrieved.

To obtain the video recommendations given a music
query, we first compute its embedding eM and compare
it with all embeddings of the video from the test set
{eV 1, ..., eV N}. When using the triplet loss, the com-
parison is done using the Euclidean distance (smaller
distance means more similar). When using the BCE loss,
it is done using the sigmoid value (larger likelihood

6https://github.com/csehong/VM-NET



TABLE I: Results of Experiment 1: comparing different
training-set sizes (test set: MVD). Conclusion: the more
training data, the better the performances of the VM-
NET.

Music to Video Video to Music
R@1 R@10 R@25 R@1 R@10 R@25

Chance 0.05 0.5 1.25 0.05 0.5 1.25
Small (10k) 1.40 3.25 5.35 1.25 2.85 5.75

Medium (30k) 1.60 5.30 8.90 1.25 4.85 9.35
Large (50k) 2.05 7.85 13.30 1.85 7.00 12.90

means more similar). We then rank the video according
to those.

For a given query eM , if the corresponding video is
in the top k of the ranked list, we set the recall R to
1, otherwise to 0. For each query, R is hence binary.
We repeat this operation using all music tracks of the
test set as query. To obtain the music recommendations
given a video query, we swap the audio and video
modalities. The final metric is the average of R@k over
the 2,000 test clips, displayed as percentages. We use
k ∈ {1, 10, 25}. The higher, the better.

C. Results of the Experiment 1

Table I shows the results of Experiment 1. The VM-
NET trained on the Small dataset in 11 hours, on
the Medium dataset in 14 hours and on the Large
dataset in 18 hours. Since the test set consists of 2,000
clips, we denote as "Chance" the recall expectancy of
a random recommendation system. We observe that the
performances of the VM-NET improve when the size
of the training dataset increases. Although this is an
expected result in most machine learning systems, it is
not always obvious how critical the dataset size can
be. As performances do not seem to saturate in our
experiments, we guess that the VM-NET could benefit
from an even larger training set.

The difference between the results obtained for M→V
and V→M may be explained by the distribution of the
data in the embedding space. We computed the average
dispersion of ev and em, and obtained 0.628 for music
and 0.940 for video with the Large dataset. Since the ev
are more spread, it is easier to distinguish among them
given a music query than it is to distinguish the em given
a video query. The fact that the performance increases
when increasing the training set size could however only
be partly explained by this dispersion (which does not
necessarily increase with the training set size).

TABLE II: Results of Experiment 2: comparing different
training loss functions (test set: MVD, training set:
Large). Conclusion: the Triplet Loss performs better than
the BCE loss.

Music to Video Video to Music
R@1 R@10 R@25 R@1 R@10 R@25

Chance 0.05 0.5 1.25 0.05 0.5 1.25
TL 2.05 7.85 13.30 1.85 7.00 12.90

BCE 0.95 5.80 10.85 1.65 6.40 11.20

TABLE III: Results of Experiment 3: comparing differ-
ent audio input features (test set: MVD, training set:
Large, loss: TL). Conclusion: the handcrafted features
are outperformed by pretrained embeddings such as
AudioSet or OpenL3.

Music to Video Video to Music
R@1 R@10 R@25 R@1 R@10 R@25

Chance 0.05 0.5 1.25 0.05 0.5 1.25
Handcrafted 2.05 7.85 13.30 1.85 7.00 12.90
MuSimNet 1.30 7.05 14.75 0.80 7.20 13.20
MusiCNN 1.60 9.30 18.55 1.65 8.45 16.90
AudioSet 2.00 12.10 23.45 1.65 10.30 21.60
OpenL3 2.55 13.95 27.50 1.90 10.25 20.00

D. Results of the Experiment 2

The VM-NET trained on with the triplet loss in 18
hours and with the BCE in 20 hours, so the training
time of both systems is similar. On Table II, we ob-
serve that replacing the LVMNET loss by a the BCE
seems to degrade the performances of the VM-NET. We
hypothesize that the triplet loss, that allows to perform
metric learning, is more suited to our recommendation
problem than the BCE, which trains a projection for a
discriminative task.

E. Results of the Experiment 3

Table III shows the results of Experiment 3. The two
first rows show that the MuSimNet features perform
comparably to the handcrafted features. The fact that
the MuSimNet features, which have been trained for a
music similarity task, do not outperform the handcrafted
ones can be explained by the fact that features that
represent music similarity may not help representing
audio to video similarity. The MusiCNN features, which
were trained on a music tagging task, perform a little
better than the MuSimNet features. Here, we assume that
the VM-NET was able to take advantage of the music
knowledge encapsulated in the MusiCNN features.

Finally, the two best performing embeddings are
Audioset and OpenL3. These two embeddings were



Video	Query	vq

Video	to	Music	retrieval
Top	3	recommended	music	tracks

Hard_Rock_23 Hard_Rock_41 Bon_Jovi_15 Hard_Rock_68

Histogram	of	d(vq,m*)
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Fig. 3: Qualitative results on the MVD for Video to Music and Music to Video recommendation tasks. All distances
were multiplied by 1,000 for readability.

trained on a much larger dataset than the MuSimNet
and MusiCNN. Note that the Audioset features were
trained on a classification task on the YouTube-8M
dataset, so the same content as for the video branch.
Note also that the OpenL3 features were trained on an
audiovisual correspondence task, so a task similar to
ours. Additionally, the OpenL3 features were trained on
music videos, which is closer to our application scenario.

The last row of Table III shows that when using
OpenL3 features, the VM-NET achieves a R@25=27.5
for music-to-video. This means that for more than 25%
of the music queries, the VM-NET was able to retrieve
the exact corresponding video in its top 25 recommen-
dations, out of 2,000 videos. Remember that all test

samples (queries and database) are taken from MVD, a
different dataset than the one used for training. Finally,
we observe that the dimensionality d of the audio feature
vector does not seem to have any impact on the rec-
ommendation performance. Indeed, the best performing
features are the OpenL3 features (d = 18, 432) while the
second best performing features are the Audioset features
(d = 128). In comparison, the original handcrafted
features have a dimension of 1,140. However, d seems
to have an impact on the training time. The VM-NET
trained with the audio handcrafted features (d = 1, 140)
in 18 hours, the MuSimNet features (d = 384) in 18
hours as well, the MusiCNN features (d = 600) in 19
hours, the AudioSet features (d = 128) in 6 hours, and



the OpenL3 features (d = 18, 432) in 42 hours.

F. Qualitative Results

To better understand the results, we provide in Fig-
ure 3 some examples of recommendations obtained by
our best7 system on the MVD. We give 2 examples
of Video query to Music [left part] and 2 examples
of Music query to Video [right part]. We only display
the first 3 recommendations provided by the system
(from left to right). As proposed by [9], we select one
key frame (picture) of the clip to represent both the
music track and the video. On top of each picture, we
indicate its Euclidean distance to the query (distances
were multiplied by 1,000 for readability). Below each
picture, we provide the name of the clip as provided
in the MVD. To the right of the figure, we display the
histogram of the distances between the query and all
cross-modal samples. We highlight in red the histogram
bin corresponding to the ground truth sample (extracted
from the same clip as the query), along with its rank
in the list of recommendations. Note that the exact
matching sample of the query was retrieved in none
of these examples, hence the recall at 3 for all these
examples is zero.

As we see, while the R@3 is zero, the recommended
musics (or videos) are from similar music genres than
the video (or music) query (hard-rock for the first case,
reggaeton/latin for the second) which still makes sense in
terms of applications. Such applications are recommen-
dation systems for creative applications, e.g. music video
editing or music supervision [10]. In these cases, there is
no ground truth music track to be retrieved. This shows
the limitations of the Recall metric, and a perceptual
evaluation would provide complementary insights.

VI. CONCLUSION AND PERSPECTIVES

In this work, we studied music-video cross-modal
recommendation. We built upon a recent video-music
retrieval system named VM-NET which originally relies
on an audio representation obtained by a set of statistics
computed over handcrafted features. We have demon-
strated that using feature learning especially the audio
embeddings provided by the pre-trained OpenL3 network
allows to largely improve the obtained recommendations.
This may be explained by the fact that OpenL3 features
were trained on a task similar to ours, on a large dataset
of musical videos. Quoting [7], the "training data domain
matches the downstream task". The other audio features

7We used the large training set, the triplet-loss LLV MNET and the
OpenL3 features.

we considered (MuSimNet, MusiCNN and AudioSet) do
not present these three characteristics simultaneously.

While using OpenL3 features improves the recommen-
dations, there is still room for improvements such as
first increasing the training set size. However, it seems
that for our specific task, downloading low-quality video
from YouTube will not help and that having access to
professionally produced music-video clips is needed (as
it is the case for the MVD dataset). The fact that we did
not fine-tune the audio feature extractors (MuSimNet,
MusiCNN, AudioSet and OpenL3) along with the VM-
NET also leaves room for potential improvement. So
far, the evaluation protocol requires that the system will
recommend the exact same ground-truth video or audio
from the pair, which is a severe metric. A subjective hu-
man evaluation of the obtained recommendations would
therefore help evaluating the quality of the recommen-
dations. Finally, the main restriction of the VM-NET is
that it performs the recommendation at the full clip level,
without considering any temporal variation within the
clips. Future studies will consider finer-grained temporal
recommendations.
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