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Uplink Dimensioning Over Log-Normal
Shadowing for OMA and NOMA Schemes

Bin Liu, Philippe Martins, Laurent Decreusefond,
Jean-Sebastien Gomez, and Rongfang Song

Abstract—This paper investigates the uplink dimensioning
problem for OMA (Orthogonal Multiple Access) and NOMA
(Non-Orthogonal Multiple Access) schemes. Dimensioning is to
make radio resource provision for a service area to fulfill
an outage constraint. The radio resource limit and outage in
dimensioning make classical inhomogeneous Poisson assumption
of uplink served user point process questionable. In this paper,
we first prove that this process admits a homogeneous Poisson
distribution in the limiting regime. As a consequence, uplink cov-
erage probabilities over log-normal shadowing for both schemes
are derived. Then, tractable stochastic geometry models for two
schemes are proposed to obtain numbers of total required radio
blocks. Their upper bounds under an outage constraint are also
given to reduce computing overhead. Finally, the simulations
confirm accuracy of derivations and demonstrate the effectiveness
of our models.

Index Terms—Network Dimensioning, Stochastic Geometry,
OMA, NOMA, Log-normal Shadowing.

I. INTRODUCTION

The fifth generation cellular network supports low delay,
high throughput, and massive mobile user/device accesses. To
achieve these targets, telecommunication operators shall care-
fully assign proper radio resources to guarantee high Quality-
of-Service (QoS) for the user equipment (UE) in their service
areas, such as in airports, in office buildings, in business
centers. A natural question arises: for a required overloading
probability, how many radio resources shall be assigned to
base stations (BSs) in these service areas? Alternatively, given
radio resources in these BSs, what is the acceptable UE
loads. This is a network dimensioning problem, and becomes
indispensable in recent years with ever-increasing UE data
demands.

There have been several studies on dimensioning problems.
An early research [1] investigated user performance, such
as blocking probability and throughput, for classical cellular
networks. Reference [2] studied dimensioning of orthogonal
frequency division multiple access in noise-limited downlink
networks. This work was extended to fast fading cases for
downlink networks in [3]. Blaszczyszyn [4] derived coverage
probability in downlink direction for infinite log-normal shad-
owing networks. Because of the coupling of interference and
traffic, Karray [5] used queuing theory to characterize network
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parameter dimensioning. All aforementioned works have not
considered uplink dimensioning over shadowing.

In recent years, the enormous wireless throughput demands
motivate the NOMA application. Saito [6] first proposed the
NOMA scheme in power domain in dowinlink direction.
Zhang [7] expanded NOMA to uplink direction through an-
alyzing the outage and sum-rate performance. Afterwards, a
stochastic geometry (SG) model was employed to demonstrate
the system wide NOMA performance gains over OMA in [8],
where the uplink power control scheme in [9] was adopted.
This classical scheme in [8] [9] was expanded to over-
compensation and enhancement power controls for the NOMA
scheme in [10]. In [11], a network NOMA scheme was pro-
posed to realize uplink coordinated multi-point transmission
to further improve coverage and ergodic rates. In the recent
work [12], Wei systematically compared the ergodic rate gain
of NOMA over OMA in uplink direction for various network
scenarios. A related NOMA capacity dimensioning work in
[13] studied the classical user pairing problem. Unfortunately,
these prior literature on NOMA focused only on the physical
layer in the network without shadowing.

In recognition of these facts, employing SG to investigate
dimensioning for NOMA scheme in uplink direction becomes
indispensable for 5G and beyond. Roughly speaking, SG
analysis for dimensioning faces the following challenges: (1)
The inhomogeneous Poisson assumption of uplink user point
process (p.p.) applied in existing literature can not be reused
directly because of resource limitation effect in the context of
dimensioning. (2) How the shadowing effect impacts dimen-
sioning is still an open issue. Motivated by above facts, we
first investigate uplink served user p.p. distribution. Then, the
SG dimensioning models for both OMA and NOMA schemes
are derived in the shadowing network. To the best of our
knowledge, this paper is the first work on these issues.

Our contributions are threefold. Firstly, we prove that the
uplink served user p.p. admits homogeneous Poisson dis-
tribution. Secondly, uplink SG models of two schemes are
derived to obtain expressions of total required Radio Block
(RB) numbers. We also give their upper bounds to simplify
network deployment. Thirdly, simulation results confirm the
homogeneous Poisson assumption, and the effectiveness of
SG models in determining RB provisions. Incidentally, since
the terms UE and user have the same meaning in this paper,
hereafter, they will be used interchangeably.

II. SYSTEM MODEL

We consider an interference-limited uplink cellular network,
where the wireless channel in each BS is sliced in a grid
of RBs. In a service area, the BSs and UEs are deployed
according to homogeneous Poisson point processes Φb with
intensity λb, and Φ with intensity λ respectively. Since we
investigate uplink dimensioning, we assume λ� λb, namely
the network is saturated. Each BS-UE link has independent
and identically distributed (i.i.d.) log-normal shadowing Si,
i ∈ N. A UE selects the BS with minimal propagation loss
(including path-loss and shadowing) as its serving BS. Hence,
all UEs camping on the same BS form a “virtual” cell. On
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Fig. 1: System model in uplink OMA scheme.

one RB in the OMA scheme, each BS uniformly selects
one UE in its “virtual” cell to provide uplink service. All
UEs utilize distance-shadowing based total power control
strategy to compensate the large-scale propagation loss. In
OMA scheme, we assume: 1) all the UEs have the same
uplink transmission data rate requirements. 2) and all the
UEs have the same target received power Pu at their serving
BSs. Without loss of generality, the performance analysis is
performed at the typical BS at origin thanks to Slivnyak’s
theorem [14]. A UE camping on this typical BS on one RB
is referred to as the typical UE at location x1, as shown in
Fig.1.

The served user p.p. distribution is a key prerequisite in a SG
model. In most literature, uplink user p.p. is usually assumed
to admit Poisson distribution. M. Haenggi [15] showed that
this p.p. is an inhomogeneous Poisson process. At the same
year, an approximation of uplink user p.p. was given in [16]
to reduce computation consumption. Afterwards, exact uplink
user p.p. distribution in [15] is leveraged to obtain Signal-to-
Interference Ratios (SIR) meta distribution in [17] in a network
with power control. These classical uplink analyses are based
on the assumption of ideal network with unlimited radio
resource. In the context of dimensioning, the practical limited
radio resource in a saturated network leads to service outage,
namely not all users are served or not all RB requirements are
satisfied. As a result, the classical Poissoness of uplink served
user p.p. demands re-investigation. The following lemma 1
shows that it approaches a homogeneous Poisson p.p. in the
limiting regime. Therefore, in OMA scheme, the collection of
all UEs on one RB served by different BSs is assumed to be
a homogeneous Poisson p.p. Φu = {xi}i∈N with intensity λu.

Lemma 1: Assume that both BS and UE point processes
admit homogeneous Poisson distributions with intensities λb
and λ respectively, and each BS has limited radio resource,
under the condition of λ� λb, the served uplink UE p.p.
approaches a homogeneous Poisson p.p. as λ− >∞ in the
networks without shadowing or with weak shadowing.

Proof: Without loss of generality, we assume λb = 1, and
there are M (M ∈ N,M < λ) RBs to be allocated per BS
to M UEs of one-RB requirement. A simple uplink network
model is considered: each BS picks an UE uniformly among
its M closest UEs on one RB.

In the network without shadowing and fading, the square of
the radius of the inscribed circle into the typical Voronoi cell,
denoted by R2

I , has an exponential distribution of parameter
4πλb [18]. The M -th farthest point of a Poisson p.p. from

a given point is located at a distance whose square, denoted
by R2

M , has a gamma distribution of parameters M and πλ.
A very conservative event that guarantees the typical Voronoi
cell contains M points, has the probability

P(R2
M ≤ R2

I) =

(
πλ

πλ+ 4πλb

)M
(1)

This probability goes to 1 when λ goes to infinity. It shows
when λ� λb, the M closest UEs to a given BS are within
its Voronoi cell with a high probability. We can even let M
go to infinity with λ provided that we keep M = o(λ).

Next, consider the case that a BS picks an UE uniformly
among its M closest UEs. From the previous considerations,
the situation at each BS is similar and is independent of the
situation at the other BSs. For a BS located at y, the uniformly
chosen UE among M UEs is located at a point x(y) = y +
Reiθ, where R and θ are independent random variables. The
distribution of θ is uniform over [0, 2π) and the distribution
of R2 is

fR2(r) =

M∑
j=1

1

M

(πλ)
j

(j − 1)!
rj−1e−πλr (2)

The displacement theorem [14] entails that
Φu = {x(y), y ∈ Φb} is a Poisson p.p. because of the
situation independence at each BS. Since the distribution of
x(y) − y is independent of the location y, the p.p. Φu is
stationary hence it is homogeneous. As we have as many
points in Φb as in Φu, the intensity of Φu is λb.

In the network with strong shadowing, the previous rea-
soning does not hold any longer because the shape of the
domain monitored by a given BS is totally unknown. However,
considering the fact that weak shadowing slightly perturbs the
UE location distribution, we can still approximate Φu by a
homogeneous Poisson p.p. of intensity λu = λb.

�
Remark 1: Lemma 1 gives an insight on what happens when

intensity of UE p.p. approaches infinity. With lemma 1 at hand,
we can safely take advantage of tractability of Poisson p.p. to
analyze network performance in the context of dimensioning.

III. UPLINK COVERAGE PERFORMANCE

In order to make this paper self-contained, in the following,
we derive uplink coverage probability briefly. The path-loss
function is modeled by ` (x) = (K|x|)β with constant K > 0
and path-loss exponent β > 2. Let S = exp(m+ σN) to rep-
resent shadowing variable, where N is the standard Gaussian
random variable with zero mean and unit variance. To simplify
the analysis, let E [S] = 1 [4]. Define propagation loss between
UE xi, xi ∈ Φu and the typical BS as Li

∆
= ` (xi) /S (xi),

where S (xi) is their link shadowing. Also define Yi as the
propagation loss between UE xi and its serving BS (see Fig.1).
Then, the received power Pi, i ∈ N on the typical BS from
each UE xi becomes Pi = PuYi/Li. Note that Yi, i ∈ N
are i.i.d. and can be represented by random variable Y . It
has Cumulative Distribution Function (CDF) [4]: FY (y) =

1 − exp(−by2/β), where b
∆
= λbπE(S2/β)/K2. We further

define propagation loss process as Θu
∆
= {Li}i∈N. Following
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the same line as in [4], one can obtain that the propagation
loss process Θu is inhomogeneous Poisson p.p. with intensity
measures Λa ([0, t)) = at2/β , where a ∆

= λuπE(S
2
β )/K2.

In order to find the interfering power distribution,
we also define a relative propagation loss process as
Ψ

∆
= {LiY }i∈N = {Hi}i∈N, where Hi is the relative propaga-

tion loss from UE xi to the typical BS. Note that H1 = 1,
while Hi > 1, i ∈ N\{1}. With these parameter definitions,
we can derive interfering power distribution by inspecting the
intensity measure of relative propagation loss process Ψ, as
shown in lemma 2.

Lemma 2: The relative propagation loss process Ψ is inho-
mogeneous Poisson p.p. on (1,+∞) with intensity measure
Λ ((1, h)) = h

2
β − 1, h ∈ (1,+∞).

Proof: The p.p. Ψ can be viewed as a transformation of p.p.
Θu by the probability kernel

p (t, A) = P
{
t

Y
∈ A

}
, t ∈ (0, +∞) , A ∈ B(R+)

In terms of the displacement theorem [14], when
h ∈ (1, +∞), the Ψ is Poisson p.p. with intensity measure:

Λ ((1, h)) =

∫ +∞

0

p (t, (1, h)) Λa (dt) = h2/β − 1

where the λb = λu is used in the last equation. �
Remark 2: Thanks to homogeneous served UE Poisson p.p.

in the limiting regime, the distribution of Ψ as well as coverage
probability (see below), are invariant with respect to both the
shadowing effect and intensities of BS and UE point processes,
on the condition that both uplink and downlink suffer from
shadowing effects of the same distribution.

Then, sum of interference power I =
∑+∞
hi>1

1
hi

has the
Laplace transform

LI (z) = E[e−zI ] = exp{−
∫ +∞

1

(1− e− zh )Λ(dh)}

= exp(1− ϕβ(z)), z ∈ R+ (3)

where ϕβ(z)
∆
= e−z + z

2
β γ(1− 2

β , z), and
γ(α, z) =

∫ z
0
tα−1e−tdt is the lower incomplete gamma

function.
Finally, coverage probability is written as

Pc (θ) = P {I ≤ 1/θ} = FI (1/θ), where FI (y), (y ∈ R+) is
the CDF of interference power I . This CDF can be retrieved
from numerical inverse Laplace transform of 1

zLI (z), i.e.,
FI(y) = L−1

{
1
zLI(z)

}
. Incidentally, we let θ > 1 ensure

only one BS is selected by one UE.
Remark 3: Thanks to the power control mechanism, the

coverage probability is only a function of the path-loss com-
ponent β. As shown in the simulation section, the coverage
probability increases and the RB requirement decreases as a
consequence of the increasing β.

IV. UPLINK DIMENSIONING

A. OMA Dimensioning

Dimensioning determines the RB provision in a service
area for the acceptable UE loads or total RB requirements

if an overloading constraint is given. Since UE load can be
viewed as a special case of the UE with fixed RB requirement,
we focus on the latter case where UEs have variable RB
requirements. The outage rate is defined as the mean ratio
of the unfulfilled total RB requirements to the total RB
requirements in a service area with respect to BS and UE
p.p. distributions.

Generally, the total RB provision on BSs is a function of
both Φb and Φu point processes. All BSs allocate RBs of
different numbers to different UEs according to their SIRs,
which in turn are highly coupled with the UE deployment on
every RB. To simplify the analysis, we investigate the mean
required RBs, and regard the collection of served UEs on each
RB at different BSs as a p.p. realization φu of Φu.

Firstly, the allocated RB number in a BS for a served UE
is expressed by

n (φu) = min(

⌈
C

Wrblog2 (1 + SIR (φu))

⌉
, lm) (4)

where Wrb is the bandwidth of one RB; the lm is the maximum
number of RBs that can be allocated to a UE to avoid resource
overuse; and the C refers to UE capacity requirement. Thus,
the number of total RBs allocated by BS p.p. realization φb to
fulfill all UE requirements in a compact set A ∈ R2 is given
by

N (φb) =
∑

yj∈φb
EΦu [n(φu)] =

∫
y∈A

EΦu [n(φu)]φb(dy)

(5)

We define θl as the required SIR to allocate l RBs to
a UE. According to the Shannon formula, the relation be-
tween θl and capacity C is given by θl = 2C/(l·W rb) − 1,
l ∈ {1, 2, . . . lm − 1} and θ0 = +∞, θlm = −∞. Hence, (5)
can be rewritten as

N (φb) =

∫
y∈A

EΦu [
∑lm

l=1
l · 1[θl,θl−1){SIR(φu)}]φb(dy)

=
∑lm

l=1
l

∫
y∈A

∫
Nu

1[θl,θl−1){SIR(φu)}dP(φu)φb(dy)

(6)

where 1{·} is an indicator function that equals 1 when the
condition in the brace is satisfied and 0 otherwise. The Nu
is UE configuration space, P(·) is probability measure. Let
P lc refer to the probability of SIR in region [θl, θl−1), i.e.,
P lc

∆
= PΦu

{
1[θl,θl−1){SIR(φu)}

}
. Hence, (6) can be simpli-

fied to

N (φb) =

lm∑
l=1

l

∫
y∈A

P lcφb (dy) =

lm∑
l=1

lφb(Al) (7)

where compact set Al ∈ R2, |Al|
∆
= P lc |A|, and |Al| is a

Lebesgue measure. Since the BS p.p. is a Poisson one, φb(Al)
follows a Poisson law of parameter λb |Al|. Equation (7) shows
that given a BS p.p. realization φb, the mean number of total
RBs N (φb) is a compound Poisson process.

Remark 4: The uplink dimensioning (7) seems unrelated to
the shadowing effect, but strong shadowing can enhance edge
effect and impact the RB provision for a finite service area
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(see simulation section for details).
Finally, the expectation of the mean number of total RBs

with respect to Φb is given by

N̄tot = EΦb

[
λ

λb
N (φb)

]
=

lm∑
l=1

lλP lc |A|. (8)

Given an target outage rate, leveraging (7) to determine
imperative total RB provision demands high memory and com-
puting consumption. Whereas an upper bound for the number
of total RBs according to concentration inequality [2] [3] can
significantly ease network deployment task. For target outage
rate ε > 0, the upper bound is written as N̂tot = N̄tot + α,
where α is the root of

g

(
αlm∑lm

l=1 l
2λP lc |A|

)
= − l2m ln(ε)∑lm

l=1 l
2λ
b
P lc |A|

(9)

and g (c) = (1 + c) ln (1 + c)− c, for all c > 0.

B. NOMA Dimensioning

In uplink direction, each BS selects two UEs on one RB
as a NOMA group. Reference [8] pointed out this 2-UE
NOMA scheme is more practical because of lower processing
complexity. We apply power back-off scheme in [7] [8] to
differentiate UEs in a same NOMA group. One of the NOMA
UE is selected randomly and is backed off its transmission
power by a factor of ρ, ρ ∈ (0, 1], i.e., the received power on
its serving BS becomes ρPu. This back-off UE is treated as
UE2. The left UE in the same NOMA group keeps its receiving
power on its serving BS unchanged, i.e., Pu, and is treated as
UE1. To simplify the analysis, we also let UE1 collection,
or UE2 collection, has the same target received power at their
serving BSs. The UE1 and UE2 camping on the typical BS are
at locations x1, x2 respectively. In addition, the locations of all
UE1 and UE2 are assumed to constitute homogeneous Poisson
point processes Φu1 and Φu2 respectively, and x1 ∈ Φu1,
x2 ∈ Φu2.

We also make following assumptions: (1) The perfect suc-
cessive interference cancellation processing exists at all BSs.
(2) All BSs in a service area can coordinate the resources to
minimize the number of total RBs.

Firstly, we define I1 and I2 as interferences from Φu1 and
Φu2 respectively

I1 =
∑

i∈N,xi∈Φu1\{x1}

P1,i, I2 =
∑

j∈N,xj∈Φu2\{x2}

P2,j (10)

where P1,i and P2,j respectively are received power of i-th
UE1 and j-th UE2 on the typical BS. Based on the NOMA
system model, the coverage probabilities for UE1 and UE2
respectively are written as

Pc1 (θ)
∆
=P
{

Pu
ρPu + I1 + I2

≥ θ
}

= P {I1 + I2 ≤ 1/θ − ρ}

Pc2 (θ)
∆
=P
{

Pu
ρPu + I1 + I2

≥ θ, ρPu
I1 + I2

≥ θ
}

=P {I1 + I2 ≤ min(1/θ − ρ, ρ/θ)} (11)

Similarly, the CDFs of Pc1 (θ) and Pc2 (θ) can be achieved
through the Laplace transform LI1+I2 (z) of the interference
summation I1 + I2. Then, the probabilities for UE1 and UE2
when SIRs are in region [θl, θl−1) are expressed respectively
by P lc1 and P lc2. In this way, the expectations of mean numbers
of total RBs for UE1 and UE2 collections respectively are
given by

N̄tot1 =

lm∑
l=1

lλP lc1 |A| /2, N̄tot2 =

lm∑
l=1

lλP lc2 |A| /2 (12)

We can leverage upper bounds to simplify network deploy-
ment in the same way. For target outage rate ε > 0, these
upper bounds for UE1 and UE2 collections are expressed
respectively by N̂tot1 = N̄tot1 + µ and N̂tot2 = N̄tot2 + ν.
Here, µ and ν respectively are the roots of

g

(
µlm∑lm

l=1 l
2λP lc1 |A| /2

)
= − l2m ln(ε)∑lm

l=1 l
2λ
b
P lc1 |A|

g

(
νlm∑lm

l=1 l
2λP lc2 |A| /2

)
= − l2m ln(ε)∑lm

l=1 l
2λ
b
P lc2 |A|

(13)

Finally, determine the upper bound by max (N̂tot1, N̂tot2).

V. PERFORMANCE EVALUATION

In this section, the performance of SIR CDF and number
of total RBs are numerically evaluated by extensive Monte
Carlo simulation. In the simulation, Pu = 1W , λ = 10λb,
C = 1Mb/s, Wrb = 180KHz, lm = 6 for OMA and lm = 9
for NOMA, target outage rate ε = 10−2. In order to mitigate
the edge effect, we inspect the central ¼ rectangle of service
area. Since the service area is finite, we add an analytical
mean interference term in the simulation to represent the mean
interference from the outside service area.

Fig.2 demonstrates SIR CDF of BS intensity 20/unit area.
It shows that: (1) The simulation and analytical results match
well in the network without shadowing and with weak shad-
owing (σ ≤ 6dB). This validates our homogeneous Poisson
assumption of uplink served UE p.p. (2) Increasing path
loss exponent β makes the wireless environment harsher and
more insensitive to remote interference estimation error. It is
worthwhile to remark that the strong shadowing makes served
UEs locate outside the service area with a high probability and
enhances edge effect. Consequently, simulation curves of high
shadowing variances deviate from their analytical results.

Fig. 3(a) shows numbers of total RBs for different shadow-
ing effects and their upper bounds in the OMA scheme. The
larger the channel path loss exponent, the less total RBs the
service area demands. At β = 3 , the low SIRs of shadowing
variances 6dB and 9dB limit their RB assignments to lm
blocks, which results in their smaller numbers of total RBs
than that of 3dB.

The numbers of total RBs for the NOMA scheme are shown
in Fig.3(b). (1) When β > 3.5, the total RB requirements
reduce with the increasing path loss exponent. (2) Minimal
number of total RBs can be achieved for the back-off factor
ρ = 0.5 or 0.6. When ρ < 0.5, much worse coverage perfor-
mance is obtained for UE2 [8]. (3) When β ≤ 3, SIRs of both
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Fig. 2: CDFs of SIR for different shadowing variances and
path-loss exponents (λb = 20/unit area).

UEs are so small that their RB assignments are always limited
to lm blocks, while RB assignments at β = 3.5 and 4 partly
have this limitation. Hence, the CDF of total RB requirements
of the former increase faster than those of the latter. This
resource limit leads to smaller numbers of total RBs given
an outage rate. (4) Finally, as expected, the numbers of total
RBs of all back-off factors are bounded by their corresponding
upper bounds.

Thanks to the multiplex mechanism in power domain where
two simultaneous transmissions are supported, smaller num-
bers of total required RBs in NOMA can be obtained in Fig.
3(b) with flexible back-off factors even for a slightly larger lm
in comparison with the OMA scheme in Fig. 3(a). Hence, the
NOMA is a preferable access scheme for the 5G and beyond
networks even in the dimensioning context.

VI. CONCLUSION

In this paper, uplink dimensioning for both OMA and
NOMA schemes over shadowing effects is investigated. We
first prove that the uplink served UE p.p admits the homoge-
neous Poisson distribution in the dimensioning context. Then,
two SG models for OMA and NOMA schemes are proposed
to evaluate numbers of total RBs. These numbers are found to
obey compound Poisson distributions. Finally, main simulation
results are concluded as follows: (1) Strong shadowing can en-
hance edge effect and complicate dimensioning. (2) Numbers
of total RBs are effectively bounded by upper bounds under
different network conditions.
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