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Abstract Wireless sensor networks have been widely deployed in the last decades
to provide various services, like environmental monitoring or object tracking. Such a
network is composed of a set of sensor nodes which are used to sense and transmit
collected information to a base station. To achieve this goal, two properties have to
be guaranteed: (i) the sensor nodes must be placed such that the whole environment
of interest (represented by a set of targets) is covered, and (ii) every sensor node can
transmit its data to the base station (through other sensor nodes). In this paper,
we consider the Minimum Connected k-Coverage (MCkC) problem, where a positive
integer k ≥ 1 defines the coverage multiplicity of the targets. We propose two mathe-
matical programming formulations for the MCkC problem on square grid graphs and
random graphs. We compare them to a recent model proposed by (Rebai et al 2015).
We use a standard mixed integer linear programming solver to solve several instances
with different formulations. In our results, we point out the quality of the LP-bound
of each formulation as well as the total CPU time or the proportion of solved instances
to optimality within a given CPU time.
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1 Introduction

In the last decades, wireless sensor networks have been widely deployed to achieve
environmental monitoring and object tracking, e.g., seismic detection, fire detection
or precision agriculture. A wireless sensor network is composed of a set of sensor
nodes with limited memory and processing resources. Those nodes are equipped with
a power supply and several kinds of sensors. Furthermore, each sensor node has a
wireless interface which allows the communication with other sensors to exchange in-
formation. A sensor network is deployed in an environment where each sensor node
has to periodically sense information of interest in its area. With the help of other
sensors, each node has to transmit the collected data towards a base station (called
sink). In the end, all the gathered data are used by the base station to take appro-
priate decisions. The sensing and the communication areas covered by a sensor are
generally approximated using a disk defined by a radius, but other shapes have been
considered in the literature like hexagon or oval. In the following, we denote by Rse

and Rco respectively the sensing and communication radii of a sensor node. A ma-
jor part of such networks is composed of sensor nodes with the same characteristics
(homogeneous networks), however for some applications needs we can have a combi-
nation of nodes with different abilities (heterogeneous networks), that is with different
communication radii, non battery and battery powered, or static and mobile nodes.

The majority of wireless sensor networks are deployed in a two-dimensional sensing
area, but several works consider also a three-dimensional area to model for example
an indoor deployment in a building (Chakrabarty et al 2002). The area monitored
by a sensor network can be covered in part or entirely. In the latter case, all the
areas have to be covered, while in the former case only a set of specific points called
targets must be considered. In this case, the targets to cover can be positioned on
the area following several patterns: a square grid, a triangular grid, a hexagon grid
or randomly. In the remainder of this paper, we focus on the coverage of targets in a
two-dimensional sensing field.

The constraints introduced by the deployment of wireless sensor networks imply an
appropriate placement of the sensor nodes. The constraints taken into account for the
location of the sensor nodes require the solution of a particular optimization problem.
The coverage requirements of the field can be modelled by the classical Minimum

Dominating Set (MDS) problem, which is NP-Hard in general graphs (Garey and
Johnson 1979). Recently, Gonçalves et al. (Gonçalves et al 2011) have shown that
computing the domination number of square grid graphs is a polynomial problem.
Given a sensing graph G = (V,E) where V is a set of targets and E is a set of edges
representing the targets covered by the nodes (assuming sensor positions defined by
V ), a solution for the minimum dominating set problem is a set S ⊂ V of minimum
cardinality such that ∀u ∈ V − S, there is a sensor v ∈ S which is a neighbour of
u in G. To tolerate sensor failures, some applications require a multi-coverage of the
targets. This issue can be addressed by the minimum k-dominating set problem, where
a positive integer k defines the coverage multiplicity of the targets. Thus, in this case,
we aim to find a minimum dominating set S of G such that every node not in S is
adjacent to at least k vertices in S.

The Minimum Connected Dominating Set (MCDS) problem is a variant of the MDS
problem that takes into account the connectivity constraint. This problem is also
NP-Hard in general graphs (Garey and Johnson 1979). It is often used in wireless
ad-hoc networks to construct and maintain a virtual backbone for message routing
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in the network (Das and Bharghavan 1997). A minimum connected dominating set
of G = (V,E) is a dominating set S ⊂ V such that the subgraph induced by S in
G is connected. The MCDS problem is related to the Maximum Leaf Spanning Tree
(MLST) problem. Indeed, the sum of the cardinal of their respective optimal solutions
is equal to |V |. The MLST problem consists in finding a spanning tree in G with the
maximum number of leaves among the spanning trees of G. The MLST problem has
recently been proven to be APX-hard for cubic graphs (Bonsma 2012) and to be
APX-hard for all k−regular graphs with any odd k ≥ 5 (Reich 2016). Moreover, Guha
and Khuller (Guha and Khuller 1998) showed that in general graphs the existence of
an algorithm for finding the MCDS with approximation ratio α implies the existence
of an algorithm for the MLST problem with approximation ratio 2α.

In the aforementioned problems, we assume that the sensing and communication
radii are the same, i.e., Rse = Rco. However, there are applications in which these two
radii are different, e.g., in the context of precision agriculture, humidity sensors have a
small sensing radius of at most 3 to 4 meters (Roveti 2001) while the communication
radius can be up to 100 meters. Rebai et al. (Rebai et al 2015) consider the same
problem of sensor deployment achieving coverage and connectivity for different values
of the two radii Rse and Rco. The authors hint that the resolution complexity of this
problem may depend on the links between Rco and Rse.

In this paper, we consider the Minimum Connected k-Coverage (MCkC) problem,
which is the same when k = 1 as the one studied by Rebai et al. The MCkC problem
is a generalization of the MCDS problem, where we consider two distinct graphs to
model the sensing and communication interactions for sensor placement. We suppose
that the radii are integers with Rco ≥ Rse. Let a wireless sensor network be defined as
R = (Gse, Gco) where Gse = (X,Ase) represents the sensing graph and Gco = (X,Aco)
the communication graph. Both Gse and Gco are directed graphs, to model the fact
that sensing and communication may not be performed in a bidirectional fashion.
Moreover, we assume Gco is a connected digraph, while it is not necessarily the case
for the digraph Gse. The set of nodes X includes the sink t and the targets of the
field (and also the locations where the sensors may be placed). We suppose as it is
usual that the sink t does not need to be covered and cannot send data to sensors.
Ase is a set of arcs (i, j), i 6= j, connecting node i to node j (different from t) if the
Euclidean distance d(i, j) between them is no larger than the radius Rse. Similarly,
Aco is a set of arcs (i, j), i 6= j, connecting node i (different from t) to node j if the
Euclidean distance d(i, j) between them is no larger than the radius Rco. We introduce
the notion of k-coverage which is different from the notion of k-domination of Gse. The
former requires that every target v ∈ X is dominated by at least k sensors in its closed

sensing neighbourhood (i.e., the sensing neighbourhood of v including v itself), while
the latter only imposes that every target v ∈ X, v is not in the k-dominating set, is
dominated by at least k sensors in its (open) sensing neighbourhood. Given a sensor
network R = (Gse, Gco) and an integer k, a solution to the Connected k-Coverage
problem is a set S ⊆ X satisfying: (i) S is a k-coverage set S of Gse such that every
vertex of S − {t} is adjacent to at least k − 1 other vertices of S and every node in
X − S − {t} is adjacent to at least k vertices in S, (ii) S ∪ {t} induces a connected
subgraph of Gco. A connected k-coverage S is minimum for the MCkC problem if and
only if for every connected k-coverage S′ we have |S| ≤ |S′|. For readability reasons,
in the following sections when k = 1 the Minimum Connected k-Coverage (MCkC)
problem will be denoted Minimum Connected Coverage (MCC) problem.

In this paper, we present two mathematical programs for the MCC and MCkC
problems, that can also be applied to the MLST and MCDS problems. We compare
them to a recent model proposed by Rebai et al. (Rebai et al 2015). We assume that
the targets are deployed either via a grid with square pattern, denoted by square grid

in the sequel, or randomly in a square area. This two kinds of deployment define
planar graphs where X represents the vertices (targets). In the case of grid graphs,
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a target node

the sink node

Fig. 1: Square grid with 4 rows and 4 columns.

the vertices are deployed following a square grid with unitary distances (d = 1) with
n rows and n columns, i.e., |X| = n2. Figure 1 shows such a grid. We choose to focus
on square grid graphs, which are close to 4−regular low density graphs, since these
graphs appear to be among the most challenging instances in terms of exact resolution,
and have up to now been the subject of very few specific works, as noticed in (Reich
2016). Random graphs are also considered in order to evaluate the performance of
the mathematical programming formulations we propose for the MCC and MCkC
problems on graphs where targets are not deployed following a regular pattern. In the
rest of this paper, we consider that both Gse and Gco are connected digraphs.

The remainder of the paper is organized as follows: Section 2 presents related
works. In the case where targets are located via a regular pattern, Section 3 proposes
a sufficient condition on integer radii Rco and Rse according to which coverage of
targets implies connectivity. After recalling a recent model dedicated to grid graphs,
Section 4 describes two formulations that can be used for general graphs. Section
5 compares the three formulations through computational experiments on grids and
random graphs. Section 5 extends our computational experiments to a generalization
of the MCC problem: the Minimum Connected k-Coverage problem. Finally, Section
6 concludes this paper.

2 Related work

In (Lucena et al 2010), Lucena et al. propose enhanced formulations of the MLST
problem related to a previous edge-vertex formulation and polyhedron investigations
by Fujie (Fujie 2003), (Fujie 2004) and Gonçalves et al. (Gonçalves et al 2011). These
two prior works did not provide experimental results of their formulations while the
work by Lucena et al. shows detailed comparisons of several algorithms based on
these formulations. Gendron et al. (Gendron et al 2014) later extended this study by
presenting a branch-and-cut algorithm and a Benders decomposition algorithm based
on the same formulation. So far they have obtained the best exact results since they
succeeded in solving problems with 200 vertices and low edge density. The authors
of (Reis et al 2015) propose a flow based formulation for the MLST problem. While
this formulation is very simple, it gives roughly similar results to the ones exhibited
by Lucena et al. (Lucena et al 2010).

Fan and Watson (Fan and Watson 2012) focus on several mixed integer linear for-
mulations for the MCDS problem: Miller-Tucker-Zemlin (MTZ) formulation, Martin
constraints, and flow formulations. They have succeeded in solving a 300 vertices in-
stance with low density. Finally, Rebai et al. (Rebai et al 2015) propose a formulation
inspired by path constraints and focus their studies on the MCC problem in square
grid graphs. To our knowledge, the complexity of this problem is unknown in square
grid graphs. In a recent work (Rebai et al 2016), Rebai et al. have considered another
problem close to the previous one, called critical grid coverage problem, which is an
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used sensing arc

used communication arc

a target node

a sensor node

the sink node

Fig. 2: A non-connected coverage solution in a 7x7 Grid with Rse = 1 and Rco = 2.

NP-Complete problem (Ke et al 2011). In this problem, only a given part of the square
grid, called critical cells, have to be covered by the sensors and not all the grid. The
authors proposed two mixed integer linear programming models, which are able to
compute optimal solutions for square grid graphs of size up to 15× 15.

3 When coverage implies connectivity

This section deals with a sufficient condition on integer radii Rco and Rse (with
Rco ≥ Rse) such that a dominating set for Gse induces a connected subgraph in Gco

when targets are deployed according to a regular pattern. We mean by d-regular pattern
that every target is at an Euclidean distance d ≤ Rse from all the other targets in its
sensing neighbourhood.
Wang et al. (Wang et al 2003) have studied the total coverage of the area and the
connectivity for the sensors placement with no restriction on Rse and Rco. They
have proven that when the communication radius Rco is at least twice the sensing
range Rse, the connectivity is automatically achieved when the total coverage of the
area is reached. This result cannot be generalised to the case of a discrete set of
targets coverage. Indeed, we prove in Propositions 1 and 2 that we need a larger
communication radius than twice the sensing radius in order to get the connectivity
ensured by the covering.

Proposition 1 In a wireless sensor network R = (Gse, Gco) where targets are deployed

according to a square grid, if Rco = 2Rse then a dominating set for Gse does not necessarily

induce a connected subgraph in Gco.

Proof We propose to build a dominating set for Gse that does not induce a connected
subgraph in Gco when Rco = 2Rse.

Figure 2 presents an example of sensors placement which is a dominating set for
a grid 7 × 7 when Rse = 1. When Rco = 2Rse = 2, this subset of sensors induces a
subgraph of Gco which is composed of 8 connected components and not a single one.
This subgraph of Gco is illustrated in Figure 2 where communication links between
sensors are shown by dashed lines. ut

In the next proposition, we propose an extension of Wang et al’s result to the
discrete case of target coverage when radii are integers and every pair of adjacent
targets in Gse are at distance d from each other, i.e., we consider graphs where the
targets are deployed following a d-regular pattern.

Proposition 2 In a wireless sensor network R = (Gse, Gco) where targets are deployed

according to a d-regular pattern, if Rco ≥ 2Rse +d then a dominating set of Gse automat-

ically induces a connected subgraph in Gco.
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Proof We suppose that Rco = 2Rse + d. Consider a sensor network R = (Gse, Gco)
and a dominating set S of Gse. We suppose that the subgraph induced by S is not
connected in Gco. So, there exists at least one pair of adjacent targets in Gse called a

and b (such that d(a, b) = d) that are not covered by the same connected component.
Consider x (resp. y) a sensor that covers the target a (resp. b) which belongs to a
connected component named Ca (resp. Cb).
We have d(x, a) ≤ Rse and d(y, b) ≤ Rse. According to triangular inequalities respected
by Euclidean distances, d(x, y) ≤ d(x, a)+d(a, b)+d(b, y). So, d(x, y) ≤ 2Rse+d, which
means that Ca and Cb are connected, this leads to a contradiction with our hypothesis.

ut

From Propositions 1 and 2, we can deduce the following result.

Corollary 1 In a wireless sensor network R = (Gse, Gco) where targets are deployed

according to a d-regular pattern, if Rco ≥ 2Rse + d then every solution for the k-coverage

problem is also a solution for the connected k-coverage problem.

Proof Observe first that every solution for the k-coverage problem in Gse is also a
solution for the 1-coverage problem (or dominating set problem). So, we can apply
Proposition 2 to conclude that every solution induces a connected subgraph in Gco.

ut

Note that for grids, coverage implies connectivity when Rco ≥ 2Rse + 1.

4 Three Mixed Integer Linear Programming formulations of MCC

We first recall the formulation in (Rebai et al 2015) which is dedicated to grids. We
then present two different formulations based on single commodity flow and MTZ
constraints respectively.

4.1 Model of Rebai et al. (Rebai et al 2015) (MIP1)

The model proposed in (Rebai et al 2015) is only defined for grid graphs. It relies on
the distinction between two types of paths connecting a sensor to the sink: direct and
non-direct connection paths. For any node i, consider the smallest rectangle on the
grid that contains this node and the sink t. Let Vi denotes the set of nodes located
inside this rectangle. Let Gco

d = (X,Aco
d ) denotes the partial subgraph of Gco where,

for every j′ ∈ X\{t}, only the arcs (j′, j) where j ∈ Vj′ are kept. Figure 3 gives an
example of Gco

d for a 4× 4 grid. A path from a node i to the sink is said to be a direct

connection path if it only uses arcs in Aco
d . Otherwise, if the path includes at least one

arc that does not belong to Aco
d , it is said to be an non-direct connection path. Examples

of direct and non-direct connection paths are illustrated by Figure 4. It was shown
in (Rebai et al 2015) that the length (number of arcs) of a non-direct connection path

in an optimal solution can be upper bounded by P = d2(n−1)
Rco e. When Rco = 1, P can

be viewed as the maximal Manhattan distance in Aco, i.e., the sum of the number of
rows and the number of columns of the grid.

The model proposed in (Rebai et al 2015) is given in Formulation MIP1. For i ∈ X,
the binary variable zi is equal to 1 if a sensor is placed on node i and there exists a
direct connection path in Gco

d from this sensor to the sink, and 0 otherwise. For i ∈ X
and p ∈ {0, ..., P}, the binary variable zpi is equal to 1 if a sensor placed on node i is
located at p sensors from a direct connection path to the sink, and 0 otherwise. It can
be noted that z0i = 1 means that there exists (i, j) ∈ Aco such that zj = 1. On the
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Vi

i
a target node

the sink node

Arc in Aco
d

Fig. 3: Graph Gco
d for a 4× 4 grid with Rco = 1.

i

j

h

k

direct connection path from i

non-direct connection path from h

Fig. 4: Direct and non-direct connection paths with Rco = 1.

example given by Figure 4, zi = zk = 1, z0j = 1 and z1h = 1.

Formulation MIP1

min
∑
i∈X

(
zi +

P∑
p=0

zpi

)
s.t.∑
i:(i,j)∈Ase

(
zi +

P∑
p=0

zpi

)
≥ 1 j ∈ X (1)

∑
(j,i)∈Aco

d

zi ≥ zj j ∈ X : (j, t) /∈ Aco (2)

∑
i:(j,i)∈Aco

zi ≥ z0j j ∈ X \ {t} (3)

∑
i:(j,i)∈Aco

zp−1
i ≥ zpj j ∈ X \ {t}, p = 1, ..., P (4)

zpi = 0 i : (i, t) ∈ Aco, p = 1, ..., P (5)

zi ∈ {0, 1}, zpi ∈ {0, 1} i ∈ X, p = 0, ..., P
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The objective function measures the total number of sensors placed on the grid.

Indeed, the expression

(
zi +

P∑
p=0

zpi

)
is equal to 1 if a sensor is placed on node i and 0

otherwise. Constraints (1) are covering constraints. They mean that each node of the
grid must belong to the neighbourhood of at least one sensor. With Constraints (2)
one can check that a sensor placed on node j has a direct connection path to the
sink if there exists a successor i of j in Gco

d that has a direct connection path to the
sink. Similarly, Constraints (3) are related to non-direct connection paths. A sensor
placed on node j has an non-direct connection path to the sink if a sensor placed
on node i belongs to its communication neighbourhood and has a direct connection
path to the sink. Constraints (4) implement the induction condition on non-direct
connection paths. A sensor placed on node j is located at a distance of p nodes
from a direct connection path to the sink if at least one sensor in its communication
neighbourhood is located at a distance of (p−1) nodes from a direct connection path.
Finally, Constraints (5) ensure that if a sensor is placed on a node i which has the
sink in its communication neighbourhood then this sensor is connected to the sink
via the arc (i, t).

For a n×n grid, the number of variables and the number of constraints are bounded
by O(|X|

√
|X|).

Below, we present two models that can be used for general graphs. Let us first
recall that a solution of the MCC problem can be viewed as a subset S of X. Set S
represents the nodes where sensors will be placed. Each sensor in S communicates
with the sink t through a path in Aco joining nodes from S. Moreover, each node i in
X \ {t} is covered by a sensor located either on i or on one of its neighbours in Gse.
This solution S can be represented by a directed spanning tree of the grid rooted at
t. In the in-tree, a node with no sensor is connected to a sensor by an arc in Ase and
then this sensor is connected to the sink t through a path of sensors connected by
communication arcs in Aco.

4.2 Single Commodity Flow Model (MIP2)

The Single Commodity Flow (SCF) model that we describe hereafter was introduced
by Gavish (Gavish 1982) for solving the directed minimal spanning tree problem and
recently used by Reis et al. for the MLST problem (Reis et al 2015) and Fan and
Watson (Fan and Watson 2012) for the MCDS problem. It is based on the idea that
every node of X will send one unit of flow towards the sink node t. The flow is conveyed
by arcs from Ase and from Aco. A node with no sensor will send a unit of flow through
an arc in Ase. A node with a sensor will gather incoming flows from Ase and Aco and
send all through a unique outgoing arc in Aco. For this model (given in Formulation
MIP2), we need to define the following variables:

– xi, i ∈ X, is equal to 1 if a sensor is placed on node i and 0 otherwise,
– fcoij , (i, j) ∈ Aco, is the amount of communication flow on arc (i, j) from node i

to node j, if a sensor on i communicates with a sensor on j. Variable fcoij is a
non-negative real number, upper-bounded by the number of nodes in X \ {t}, i.e.,
n2 − 1,

– fseij , (i, j) ∈ Ase, is the amount of sensing flow from node i to node j, if no sensor
is placed on i and the sensing flow from i is sent to the sensor on node j. It is
equal to 0 otherwise. It follows from the definition that 0 ≤ fseij ≤ 1.

We also need to define the following notations. Mi is any large enough integer that
we fix to (n2 − 1) in our experiments. δ−i denotes the in-degree of i in Aco.
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Formulation MIP2

min
∑
i∈X

xi

s.t. ∑
i∈X:(i,t)∈Aco

xi ≥ 1 (6)

xi +
∑

j∈X:(i,j)∈Ase

xj ≥ 1 i ∈ X \ {t} (7)

∑
j∈X:(j,t)∈Aco

fcojt = n2 − 1 (8)

xi +
∑

j∈X:(i,j)∈Ase

fseij = 1 i ∈ X \ {t} (9)

∑
j∈X:(j,i)∈Aco

fcoji +
∑

j∈X:(j,i)∈Ase

fseji + xi

=
∑

j∈X:(i,j)∈Aco

fcoij i ∈ X \ {t} (10)

∑
j∈X:(i,j)∈Aco

fcoij ≤Mixi i ∈ X \ {t} (11)

∑
j∈X:(j,i)∈Ase

fseji ≤ (δ−i − 1)xi i ∈ X \ {t} (12)

xi ∈ {0, 1} i ∈ X

0 ≤ fcoij ≤ n
2 − 1, fcoij ∈ R (i, j) ∈ Aco

0 ≤ fseij ≤ 1, fseij ∈ R (i, j) ∈ Ase

With Constraints (6), the coverage of the sink node t by one of its predecessor
nodes in the communication graph is satisfied. The coverage of the other nodes is
satisfied by Constraints (7). Constraint (8) expresses that the incoming communica-
tion flow at the sink node is the aggregation of flows sent by each node in X \ {t}.
Constraints (9) ensure that if a sensor is placed on node i (xi = 1), the sensing outflow
from i in Ase is 0. But, if no sensor is placed on i (xi = 0), node i sends one unit of
flow on a unique sensing arc in Ase. Constraints (10) ensure the connectivity of the
solution by flow conservation: if no sensor is placed on node i, the incoming – com-
munication and sensing – flow is equal to outgoing communication flow. However, if a
sensor is located on node i, the outgoing communication flow is equal to the incoming
flow plus one. Constraints (11) ensure that if no sensor is placed on node i then its
outgoing communication flows are equal to 0. Finally, Constraints (12) mean that if
no sensor is placed on node i then its incoming sensing flow is equal to 0. On the
contrary, if a sensor is placed on node i then the incoming sensing flow is the number
of non-sensor nodes that use i and this number is limited by (δ−i − 1).

The number of variables is bounded by O(|Aco|) (since we make the assumption
Rse ≤ Rco) and the number of constraints by O(|X|).

4.3 Formulation based on Miller-Tucker-Zemlin Model (MIP3)

Here, we change the way of handling the connectivity requirement. The model of this
subsection is inspired from the Miller-Tucker-Zemlin (MTZ) formulations of spanning
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trees and other graph applications. MTZ constraints have been initially used to solve
the travelling salesman problem (Miller et al 1960).

For this model (given in Formulation MIP3), we need to define the following
variables:

– xi, i ∈ X, is the same variable as above,
– ycoij , (i, j) ∈ Aco, is also a binary variable, equal to 1 if and only if a communication

link from i to j is used from a sensor placed on node i to a sensor placed on node
j.

– yseij , (i, j) ∈ Ase, is a binary variable, equal to 1 if and only if a node i, with
no sensor, is covered by a sensor placed on node j through the arc (i, j). With
these definitions of the yco and yse variables, the set of arcs such that one of these
variables is equal to 1 should build a spanning oriented tree of X, rooted at t.

– Li, i ∈ X, counts the number of sensors in the path of sensors from i to the sink
node if a sensor is placed on node i. If Lt = 0, Li can be defined as a non-negative
real number.

Formulation MIP3

min
∑
i∈X

xi

s.t.

Constraints (6), (7)∑
j∈X:(i,j)∈Aco

ycoij = xi i ∈ X \ {t} (13)

xi +
∑

j∈X:(i,j)∈Ase

yseij = 1 i ∈ X \ {t} (14)

∑
(j,i)∈Ase

yseji +
∑

(j,i)∈Aco

ycoji ≤ (δ−i − 1)xi i ∈ X \ {t} (15)

Lt = 0 (16)

Li ≥ Lj + 1− (n2 − 1)(1− ycoij ) (i, j) ∈ Aco (17)

Li ≥ 0 i ∈ X
xi ∈ {0, 1} i ∈ X
ycoij ∈ {0, 1} (i, j) ∈ Aco

yseij ∈ {0, 1} (i, j) ∈ Ase

Constraints (13) say that the number of outgoing communication arcs from a
non-sink node i is equal to 1 if i receives a sensor and 0 otherwise. Constraints (14)
say that the number of outgoing sensing arcs from a non-sink node i is equal to 0 if
i receives a sensor and 1 otherwise. Observe that Constraints (14) and (9), as well
as variables yseij and fseij , are actually the same. Constraints (15) ensure that a non-
sink node i has incoming arcs only if a sensor is placed on i and that the number
of incoming arcs of i is limited by its in-degree minus one. Constraints (17) are the
original Miller-Tucker-Zemlin constraints to guarantee that the solutions are directed
subtrees rooted at t which span selected sensors in Gco.

The number of variables and the number of constraints are bounded by O(|Aco|).
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5 Comparison of the three MIP formulations

The objective of our computational experiments is to compare the formulations on
two kinds of instances : grid sensor networks and randomly generated graphs. We
coded the MIP formulations by use of the AMPL mathematical programming mod-
eller (Fourer et al 1993) and solve the mathematical programming problems by use
of Cplex12.6.2 (IBM-ILOG 2014) with a time limit of 1 hour. All our instances have
been tested on an Intel(R) Xeon(R) CPU E5-2680 v3 2.50GHz with 48 CPU and with
64 GB of RAM.

5.1 Results for the MCC problem

5.1.1 Grid sensor networks

All the considered instances in this section are grids with n rows and n columns,
denoted Gn, with different values of Rco and Rse. The sink node t is located at the
left high corner.

We performed computational experiments on several instances of Gn with n = 6
to 15, Rse varying from 1 to 3 and Rse ≤ Rco ≤ 2Rse (see Proposition 2 in Section
3). Table 1 summarizes the number of decision variables and constraints for each
formulation MIP1, MIP2, and MIP3, as described in the previous section. The number
of variables of MIP2 and MIP3 depends on |Aco|, in other words it depends on the
value of Rco. We can also observe that the number of constraints of MIP3 actually
depends on |Aco|. Moreover, the out-degree of a node x in Gco, denoted by δ+x , is
upper bounded by (2Rco + 1)2 (the number of nodes in the square of side length 2Rco

which contains the circle of radius Rco). Thus, |Aco| is bounded by O(|X| × (Rco)2).

Number of MIP1 MIP2 MIP3

Variables O(|X|
√
|X|) O(|X|(Rco)2) O(|X|(Rco)2)

Constraints O(|X|
√
|X|) O(|X|) O(|X|(Rco)2)

Table 1: Number of variables and constraints for each formulation

Our results are detailed in Table 2 as well as in Table 3 where the first column
Instance gives the characteristics of the instance in the format n Rse Rco. The best
results are emphasized in bold.

In Table 2, the next columns give, for each formulation MIP1, MIP2, and MIP3,
(i) the bound computed as the optimal value of the continuous relaxation of the
formulation, obtained by solving specifically the LP-relaxation of the model and (ii)
the initial gap, denoted by gapi, between the best known solution value, denoted
bkn, computed by one of the three formulations and the bound as a percentage, i.e.,
precisely, bkn−bound

bkn ∗ 100.
For instances, when Rse = Rco = 1, we can observe that MIP3 always provides the

best bound by continuous relaxation. The average gap on these 10 instances is equal
to about 37.2% with MIP1, 26.5% with MIP2, and 8.6% with MIP3. When Rse = 1
and Rco = 2, MIP1, MIP2 and MIP3 provide similar bounds with an average gap of
22.6%. Again for Rse = Rco = 2, MIP3 provides globally better bounds. However,
for the remaining instances with (Rse, Rco) = (2, 3), (3, 3), and (3, 4), the difference
between the three bounds is not enough significant while we observe that the bounds
become stronger.

In Table 3, we provide the results of the branch-and-bound phases of the three
formulations. For each formulation MIP1, MIP2, and MIP3, we give (i) the CPU time
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MIP1 MIP2 MIP3
Instance bound gapi bound gapi bound gapi

6 1 1 9 35.7 11 21.4 13 7.1
7 1 1 12 40 14 30 18 10
8 1 1 15 42.3 18 30.7 23 11.5
9 1 1 19 36.6 22 26.6 28 6.7

10 1 1 23 41.0 27 30.7 35 10.3
11 1 1 27 42.5 33 29.7 42 10.6

12 1 1 32 38.4 39 25 49 5.7
13 1 1 37 42.1 45 29.6 58 9.4
14 1 1 43 41.8 51 31.1 67 9.5
15 1 1 49 39.5 59 27.2 76 6.2
6 1 2 9 18.1 9 18.1 9 18.1
7 1 2 12 20 12 20 12 20
8 1 2 15 21.0 15 21.0 15 21.0
9 1 2 19 20.8 19 20.8 19 20.8

10 1 2 23 20.6 23 20.6 23 20.6
11 1 2 27 22.9 27 22.9 27 22.9
12 1 2 32 23.8 32 23.8 32 23.8
13 1 2 37 24.4 37 24.4 37 24.4
14 1 2 43 23.2 43 23.2 43 23.2
15 1 2 49 24.6 49 24.6 49 24.6
6 2 2 4 42.8 5 28.5 5 28.5
7 2 2 6 25 6 25 6 25
8 2 2 7 36.3 7 36.3 8 27.2
9 2 2 9 30.7 9 30.7 9 30.7

10 2 2 10 41.1 11 35.2 11 35.2
11 2 2 12 33.3 13 27.7 13 27.7
12 2 2 14 39.1 15 34.7 15 34.7
13 2 2 16 38.4 17 34.6 18 30.7
14 2 2 19 38.7 19 38.7 20 35.4
15 2 2 21 43.2 22 40.5 23 37.8
6 2 3 4 0 4 0 4 0
7 2 3 6 0 6 0 6 0
8 2 3 7 12.5 7 12.5 7 12.5
9 2 3 9 0 9 0 9 0

10 2 3 10 16.6 10 16.6 10 16.6
11 2 3 12 14.3 12 14.3 12 14.3
12 2 3 14 12.5 14 12.5 14 12.5
13 2 3 16 15.7 16 15.7 16 15.7
14 2 3 19 13.6 19 13.6 19 13.6
15 2 3 21 19.2 21 19.2 21 19.2
6 3 3 3 0 3 0 3 0
7 3 3 4 0 4 0 4 0
8 3 3 4 0 4 0 4 0
9 3 3 4 20 5 0 4 20

10 3 3 5 28.5 5 28.5 5 28.5
11 3 3 6 25 7 12.5 7 12.5
12 3 3 8 20 8 20 8 20
13 3 3 9 25 9 25 9 25
14 3 3 9 30.7 10 23.0 9 30.7
15 3 3 10 37.5 10 37.5 10 37.5
6 3 4 3 0 3 0 3 0
7 3 4 4 0 4 0 4 0
8 3 4 4 0 4 0 4 0
9 3 4 4 0 4 0 4 0

10 3 4 5 16.6 5 16.6 5 16.6
11 3 4 6 14.2 6 14.2 6 14.2
12 3 4 8 0 8 0 8 0
13 3 4 9 0 9 0 9 0
14 3 4 9 10 9 10 9 10
15 3 4 10 16.6 10 16.6 10 16.6

Table 2: Continuous relaxation bounds and gaps for the three formulations on grid sensor networks
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MIP1 MIP2 MIP3
Instance CPU / nb CPU / nb CPU / nb

gapf nodes gapf nodes gapf nodes
6 1 1 7.2s 8969 0.41s 1274 0.35s 0
7 1 1 839s 2M 28.5s 420K 3.6s 17K
8 1 1 25.8% 4M 12.0% 13M 89.7s 447K
9 1 1 29% 1M 748.8s 975K 26.2s 54K

10 1 1 39% 283K 14.7% 854K 4.1% 3M
11 1 1 38% 513K 18.5% 854K 8.1% 1M
12 1 1 38% 160K 17.0% 885K 3500s 2M
13 1 1 42% 44K 22.1% 651K 8.2% 1M
14 1 1 42% 36K 24.0% 407K 8.4% 1M
15 1 1 40% 17K 23.4% 283K 4.3% 529K
6 1 2 30s 121K 0.34s 0 0.53s 0
7 1 2 11.5% 10M 7.9s 23K 4.3s 4K
8 1 2 14.8% 5M 42.1s 305K 33.5s 86K
9 1 2 18.2% 3M 1956.9s 2M 2127.5s 2M

10 1 2 22.4% 2M 9.1% 3M 8.7% 2M
11 1 2 26.8% 932K 12.3% 1M 13.9% 2M
12 1 2 31.6% 22K 16.7% 1M 16.7% 1M
13 1 2 36.9% 7729 18.1% 1M 17.8% 1M
14 1 2 42.4% 1432 18.6% 1M 18.1% 1M
15 1 2 48.5% 238 20.9% 1M 21.4% 1M
6 2 2 3.7s 9522 0.52s 0 0.9s 0
7 2 2 15.3s 21K 5.3s 2602 6.9s 14K
8 2 2 704s 1M 37.4s 106K 26.2s 45K
9 2 2 15.3% 9M 364.9s 208K 274.2s 317K

10 2 2 32.6% 2M 17.2% 797K 16.3% 2M
11 2 2 29.5% 1341K 13.2% 491K 18.8% 1M
12 2 2 39% 952K 23.1% 523K 21.1% 1M
13 2 2 38.5% 406K 24.7% 311K 24.6% 595K
14 2 2 42.8% 155K 31.5% 168K 30.3% 477K
15 2 2 44% 67K 36.1% 119K 34.8% 397K
6 2 3 0.1s 0 0.36s 0 0.34s 0
7 2 3 3.2s 560 0.15s 0 1.9s 290
8 2 3 8.5s 2879 0.84s 0 1.4s 0
9 2 3 11.6s 2670 2.6s 102 3.8s 1234

10 2 3 1909s 265K 12.6s 1022 22.5s 13K
11 2 3 13% 690K 28.0s 1600 207.5s 83K
12 2 3 9.4% 384K 342.2s 60K 851.9s 325K
13 2 3 18.4% 1095K 5.3% 475K 2472.5s 599k
14 2 3 20.7% 108K 8.6% 360K 16.7% 336K
15 2 3 31% 8153 14.6% 273K 14.4% 618K
6 3 3 0.03s 0 0.16s 0 0.54s 0
7 3 3 0.18s 0 0.26s 0 1.3s 122
8 3 3 0.57s 0 0.28s 0 1.7s 219
9 3 3 3.4s 173 3.9s 0 1.8s 2334

10 3 3 47s 31K 14.3s 2117 8.9s 985
11 3 3 174s 52K 18.63s 278 175.4s 191K
12 3 3 20% 1655K 797.6s 41K 690.5s 137K
13 3 3 29.4% 486K 17.8% 361K 16.6% 532K
14 3 3 30.8% 185K 17.6% 189K 21.3% 772K
15 3 3 31.2% 396K 28.4% 168K 24.7% 328K
6 3 4 0.24s 0 0.04s 0 0.34s 0
7 3 4 0.89s 94 0.06s 0 0.60s 0
8 3 4 1.8s 17 0.07s 0 1.12s 0
9 3 4 0.27s 0 0.15s 0 0.43s 0

10 3 4 5.8s 78 1.94s 0 7.9s 119
11 3 4 1233s 277K 1.9s 0 8.3s 1K
12 3 4 27.2s 1548 1.7s 0 50.2s 16K
13 3 4 216s 42K 0.91s 0 55.1s 17K
14 3 4 1204s 5666 57.5s 312 178.3s 47K
15 3 4 23.5% 351K 323.4s 11K 13.9% 227k

Table 3: Results of the branch-and-bound phase of the three formulations on grid sensor networks
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MIP1 MIP2 (flow) MIP3 (MTZ)

gapi gapf CPU #opt gapi gapf CPU #opt gapi gapf CPU #opt

G 1 1 40.0 40.2 423.1s 2/10 28.2 20.5 14.4s 3/10 8.7 6.6 2.0s 5/10
G 1 2 21.9 34.8 30s 1/10 21.9 15.9 0.34s 4/10 21.9 16.1 0.53s 4/10
G 2 2 36.9 37.7 241s 3/10 33.2 24.3 13.4s 4/10 31.3 24.3 10.4s 4/10
G 2 3 10.4 25.8 386.5s 5/10 10.4 11.6 3.3s 7/10 10.4 15.6 5.8s 8/10
G 3 3 18.7 30.1 37.5s 6/10 17.6 21.2 6.27s 7/10 17.4 20.9 31.6s 7/10
G 3 4 5.7 - 298.8s 9/10 5.7 - 7.2s 10/10 5.7 - 33.6s 9/10

average 21.7 33.73 236.1s 19.1 18.7 10.2s 15.9 16.7 16.0s

Table 4: Synthesis of numerical results for MIP1, MIP2 and MIP3

(in seconds) for the whole branch-and-bound phase when it stops before reaching the
time limit, or, alternatively, the final gap denoted by gapf when the time limit is
reached, and (ii) the number of generated nodes.

Here again, we can observe different behaviours of the models depending on Rse

and Rco but the most striking observation is that with MIP1, we can solve 26 instances
over the 60 considered within the time limit of one hour, while MIP2 can solve 34
instances and MIP3, two more instances than MIP2. Focusing on the instances where
Rse = Rco = 1, we can observe that MIP3 either solves the instances faster, or can
solve instances that neither MIP1 nor MIP2 can solve within the time limit, or reaches
the time limit with a better final gap. Concerning the other pairs (Rse, Rco), the per-
formances of MIP2 and MIP3 seem rather similar. Our final observation is that MIP1
is always outperformed either by MIP2 or MIP3 on 55 instances. Table 4 summarizes
our numerical results. It presents, for each pair (Rse, Rco), the average initial and final
gaps (in percentage). The average gapf is computed over the subset of instances not
solved by both formulations, as a consequence gapf is not always lower than gapi.
Also, the average CPU time (in seconds) for the whole branch-and-bound phase is
computed only for instances solved by the three formulations. If we focus on MIP2
and MIP3, Table 4 shows that MIP3 slightly outperforms MIP2 over 3 criteria: MIP3
solves three more instances to optimality and provides better average initial and final
gaps. However, if the average CPU time for the whole branch-and-bound phase is
computed only for instances solved by MIP2 and MIP3, it is divided by 1.6 in favour
of MIP2.

In the following, we do not take into account MIP1 model since it is dedicated to
grid sensor networks.

5.1.2 Random sensor networks

In this section, we propose to examine the performance of our two models for randomly
generated graphs.
Our instances are generated as follows. We first defined a square area of side s in the
euclidean plane with the origin of the euclidean plane as the left low corner of the
square. n targets were then randomly generated with a uniform distribution in this
square. Given s and n, we generated sensing and communication graphs relatively to
Rse varying from 1 to 3 and Rse ≤ Rco ≤ 2Rse. We repeated the generation until
the graphs become connected. For each pair (s,n), we selected five random targets
placement. The sink node t is always located at the origin of the euclidean plan. An
illustration of the generation of 50 targets in a square of side 4 is given in Figure 5.
In this example, an optimal solution of sensors placement is represented by twelve
rhombi.

Table 5 compares the average number of arcs of our testbed instances for Rco =
Rse = 1 versus grid instances, and shows the large density of our instances.

Our results are detailed in Table 6 where the first column Instances gives the
characteristics of the instance in the format n s Rse Rco. The column CPU lists the
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Fig. 5: n=50 targets generated in a square of side s = 4.

Grid graphs Random graphs
n |Aco| n |Aco|
49 84 51 370,6
81 144 81 671,6
100 180 101 747,8
121 220 121 778,0
144 264 151 1259,4

Table 5: Comparison of |Aco| between grid and random graphs when Rco = Rse = 1

average CPU time for instances solved to optimality within one hour. The best results
are emphasized in bold.

Flow model MIP2 MTZ model MIP3
Instances gapi% gapf% CPU #solved gapi% gapf% CPU #solved

G 50 4 1 1 28.8 - 1.01s 5/5 36.4 - 17.4s 5/5
G 50 4 1 2 0.0 - 0.04s 5/5 0.0 - 0.76s 5/5
G 80 5 1 1 33.3 - 13.1s 5/5 37.9 - 747,6s 5/5
G 80 5 1 2 0.00 - 0.17s 5/5 0.00 - 1.43s 5/5

G 100 6 1 1 32.9 - 42.7s 5/5 37.1 11.05 1999.9s 1/5
G 100 6 1 2 0.00 - 0.23s 5/5 0.00 - 1.95s 5/5
G 120 7 1 1 40.8 8.3 258.1s 4/5 41.3 19.9 3600s 0/5
G 120 7 1 2 0.0 - 0.27s 5/5 0.0 - 3.0s 5/5
G 120 7 2 2 21.1 - 63.5s 5/5 28.3 - 341.0s 5/5
G 120 7 2 3 8.6 - 3.00s 5/5 8.6 - 5.2s 5/5
G 150 7 1 1 35.6 7.9 866.4s 2/5 39.9 20.4 3600s 0/5
G 150 7 1 2 0.0 - 0.24s 5/5 0.0 - 2.7s 5/5
G 150 7 2 2 21.9 - 134.1s 5/5 26.7 17.6 203.6s 3/5
G 150 7 2 3 2.9 - 2.4s 5/5 5.7 - 7.3s 5/5

Table 6: Synthesis of Numerical results for random sensor networks

For the whole of instances, MIP2 (flow model) outperforms MIP3 (MTZ model)
over all criteria. Over the 70 tested instances, 66 (resp. 54) are solved to optimality
within one hour by MIP2 (resp. MIP3) and the MIP solving for instances solved by
both models needs only 12,6 seconds in average for MIP2 compared to 121,1 seconds
for MIP3. Thus, MIP2 is ten times faster than MIP3. This can be partly explained by
the fact that the average initial gap gapi provided by MIP2 is better than for MIP3:
16% versus 19%. Finally, the average final gap gapf computed for the instances, not
solved within one hour by both models, is 2,6 times larger for MIP3 than for MIP2
(8.1% vs 21.5%). Important density of random graphs can also explain the superiority
of MIP2 over MIP3, since the number of constraints of MIP3 depends on |Aco|.
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5.2 Results for the MCkC problem with k = 2 or 3

In this section, we consider a generalization of the MCC problem: the Minimum Con-
nected k-Coverage (MCkC) problem where a positive integer k defines the coverage
multiplicity of the targets.
In order to satisfy the k-coverage constraint, our two models MIP2 and MIP3, dedi-
cated to the MCC problem, can easily be modified by replacing the 1-coverage con-
straint

xi +
∑

j∈X:(i,j)∈Ase

xj ≥ 1 ∀i ∈ X \ {t}

by the k-coverage constraint

xi +
∑

j∈X:(i,j)∈Ase

xj ≥ k ∀i ∈ X \ {t}

5.2.1 Grid sensor networks

For square grids and a given Rse, it exists kmax such that, for all k > kmax, the MCkC
problem does not admit a solution. For example, for Rse = 1, a target located in a
corner of the grid has a sensing neighbourhood of cardinality 3. So, this target cannot
be covered more than three times. We conclude to kmax = 3 when Rse = 1. Figure 6
illustrates the case kmax = 6 when Rse = 2. Table 7 lists kmax for Rse varying from
1 to 4.

a target node

the sink node

Fig. 6: Sensing neighbourhood for a target in a corner of the grid when Rse = 2.

Rse kmax

1 3
2 6
3 11
4 17

Table 7: Maximal values for k

Numerical results for Grid sensor networks are summarized in Table 8 for MIP2
and in Table 9 for MIP3, in which the best results are emphasized in bold. Note that
the values presented for each pair (Rse,Rco) in these two tables are average values
over the ten grid instances. MIP2 (based on single flow commodity) solves three more
instances than MIP3 (based on MTZ constraints) for k = 2 and two more instances
for k = 3. For both models, two behaviours are observed. First, when k = 2, instances
with Rse = Rco are more difficult to solve. Indeed, initial gaps are larger: 15.3% (resp.
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14.1%) in average for MIP2 (resp. MIP3), whereas, for instances with Rco = Rse + 1,
the average gap is reduced to 4.5%. Secondly, the Minimum Connected k-Coverage
Problem is easier to solve when k is larger. Indeed, for k = 3, MIP2 (resp. MIP3)
solves 59 (resp. 57) of the 60 instances within the time limit of one hour. Those
observations can be explained by the fact that less extra sensors are necessary to
ensure connectivity when k and Rco increase.

2-coverage 3-coverage
Instance gapi% gapf% CPU #solved gapi% gapf% CPU #solved

G 1 1 18.1 12.7 1034s 3/10 3.5 - 21s 10/10
G 1 2 4.9 - 280s 10/10 3.3 - 22s 10/10
G 2 2 18.5 11.4 212s 5/10 3.5 2.4 140s 9/10
G 2 3 3.7 - 15s 10/10 2.5 - 44s 10/10
G 3 3 9.4 - 568s 10/10 3.7 - 16s 10/10
G 3 4 5.4 - 8s 10/10 2.9 - 3s 10/10

Table 8: Numerical results for minimum connected k-coverage with adapted flow model (MIP2).

2-coverage 3-coverage
Instance gapi% gapf% CPU #solved gapi% gapf% CPU #solved

G 1 1 15.6 14.2 169s 3/10 3.5 1.0 144s 9/10
G 1 2 4.8 1.53 449s 9/10 3.3 - 59s 10/10
G 2 2 16.5 11.4 46s 4/10 4.0 4.6 411s 8/10
G 2 3 3.6 - 266s 10/10 2.5 - 211s 10/10
G 3 3 10.2 11.3 422s 9/10 3.9 - 96s 10/10
G 3 4 5.4 - 12s 10/10 2.9 - 11s 10/10

Table 9: Numerical results for minimum connected k-coverage with adapted MTZ model (MIP3).

5.2.2 Random sensor networks

Numerical results for Random sensor networks are summarized in Table 10 for the
minimum connected 2-coverage problem. Table 11 sums up the results obtained for
the set of graph instances with 150 nodes. The best results are emphasized in bold.

We have the same observation than for grid square instances. Indeed, when k = 2,
instances with Rse = Rco are more difficult to solve. Initial gaps are larger: 8% (resp.
10.5%) in average for MIP2 (resp. MIP3), whereas, for instances with Rco > Rse,
the average gap is reduced to 0% for both. The Minimum Connected k-Coverage
problem is easier to solve when k is larger. Futhermore, MIP2 outperforms MIP3 when
considering multiple coverage of targets. The superiority of MIP2 is particularly high
for random graphs as for the MCC problem. Concerning the MC2C problem, MIP2
solves the 70 instances to optimality within one hour and the MIP resolution needs
only 26.8 seconds in average. MIP3 solves 11 less instances than MIP2 and takes 78
times longer to solve the same instance pool.
For k = 3, Table 11 focuses on graph instances with 150 instances. It shows the same
observations as for other random graph instances, i.e., MIP2 outperforms MIP3 for
all performance criteria: initial gaps, CPU and number of instances solved. In detail,
for instances with Rco > Rse, initial gap in average is reduced to 0.005% (resp. 0.01%)
for MIP2 (resp. MIP3), CPU time resolution is divided by 12 for MIP2, and MIP2
solves three more instances.
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Flow model MIP2 MTZ model MIP3
Instance gapi% gapf% CPU #solved gapi% gapf% CPU #solved
G 50 1 1 8.3 - 0.31s 5/5 12.9 - 64.6s 5/5
G 50 1 2 0.0 - 0.05s 5/5 0.0 - 0.72s 5/5
G 80 1 1 7.5 - 1.6s 5/5 11.7 - 410,4s 5/5
G 80 1 2 0.00 - 0.15s 5/5 0.00 - 1.9s 5/5

G 100 1 1 11.9 - 3.5s 5/5 12.5 5.5 341.7s 4/5
G 100 1 2 0.00 - 0.19s 5/5 0.00 - 1.6s 5/5
G 120 1 1 15.3 - 344.9s 5/5 17.8 7.2 3600s 0/5
G 120 1 2 0.0 - 0.18s 5/5 0.0 - 1.9s 5/5
G 120 2 2 3.1 - 2.3s 5/5 4.7 - 19.4s 5/5
G 120 2 3 0.0 - 0.30s 5/5 0.0 - 3.5s 5/5
G 150 1 1 9.6 - 19.2s 5/5 11.9 6.5 3600s 0/5
G 150 1 2 0.0 - 0.24s 5/5 0.0 - 3.5s 5/5
G 150 2 2 1.7 - 1.9s 5/5 1.7 - 18.2s 5/5
G 150 2 3 0.0 - 0.33s 5/5 0.0 - 6.4s 5/5

Table 10: Numerical results for minimum connected 2-coverage with adapted MIP2 and MIP3.

Flow model MIP2 MTZ model MIP3
Instance gapi% Bd CPU/gapf% #nodes gapi% Bd CPU/gapf% #nodes
G 1 1 1 0.00 54 0.5s 0 0.00 54 6.9s 25K
G 1 1 2 0.02 62 0.5s 0 0.02 62 965.7s 4M
G 1 1 3 0.02 60 4.2s 0 0.02 60 3.2% 3M
G 1 1 4 0.00 59 0.3s 0 0.02 58 1.7% 20M
G 1 1 5 0.02 64 1.1s 159 0.02 64 1.5% 20M
G 1 2 1 0.0 54 0.38s 0 0.0 54 1.8s 0
G 1 2 2 0.0 62 0.15s 0 0.0 62 1.5s 0
G 1 2 3 0.0 60 0.2s 0 0.0 60 1.5s 0
G 1 2 4 0.0 58 0.14s 0 0.0 58 1.9s 0
G 1 2 5 0.0 64 0.16s 0 0.0 64 1.0s 0
G 2 2 1 0.0 18 0.44s 0 0.0 18 20.6s 20K
G 2 2 2 0.0 19 0.33s 0 0.0 19 6.4s 2K
G 2 2 3 0.0 17 1.1s 0 0.0 17 5.9s 7K
G 2 2 4 0.0 19 0.38s 0 0.0 19 20.5s 10K
G 2 5 0.0 18 0.32s 0 0.0 18 6.4s 5K

G 2 3 1 0.0 18 0.36s 0 0.0 18 5.9s 162
G 2 3 2 0.0 19 0.61s 0 0.0 19 5.6s 655
G 2 3 3 0.0 17 0.29s 0 0.0 17 4.3s 155
G 2 3 4 0.0 19 0.58s 0 0.0 19 7.8s 1K
G 2 3 5 0.0 18 0.47s 0 0.0 18 9.6s 3K

Table 11: Numerical results for minimum connected 3-coverage for graphs with 150 nodes.

6 Conclusion

Concerning the MCC problem, for all instances of grid sensor networks, either the
MIP2 or MIP3 model yields a better LP-bound at the root of the branch-and-bound
process than the MIP1 formulation of Rebai et al. Furthermore, those two formulations
outperform MIP1 with a higher proportion of solved instances, a reduced CPU time
and a lower number of explored nodes in the tree search. MIP3 (based on MTZ
constraints) provides the best average results. Concerning random sensor networks,
MIP2 has much better performances than MIP3 over all criteria. This observation can
be partly explained by the larger density of random graph instances that significantly
increases the number of constraints of MIP3. Our computational experiments confirm
the difficulty of solving the MCC problem with classical mathematical mixed integer
linear formulations inspired by the literature for this kind of placement problems. The
solving difficulty is especially true for small values of Rse and Rco. We note that the
quality of the LP-bound and thus the efficiency of our two models are sensitive to the
values of Rse and Rco. This remark remains valid for the MCkC problem. On the other
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hand, MIP2 (based on single flow commodity) outperforms MIP3 when considering
multiple coverage of targets regardless of testbed instances.
Future works will consist in (i) improving our two general models by valid inequalities
that take into account particular structures of the grid, such as symmetry, and (ii)

testing them on general graphs.
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Gonçalves D, Pinlou A, Rao M, Thomassé S (2011) The domination number of grids. SIAM Journal
on Discrete Mathematics 25(3):1443–1453

Guha S, Khuller S (1998) Approximation algorithms for connected dominating sets. Algorithmica
20(4):374–387

IBM-ILOG (2014) IBM ILOG CPLEX 12.6 Reference Manual. URL http://www-01.ibm.com/
support/knowledgecenter/SSSA5P_12.6.0/ilog.odms.studio.help/Optimization_Studio/
topics/COS_home.html

Ke W, Liu B, Tsai M (2011) The critical-square-grid coverage problem in wireless sensor networks is
NP-Complete. Computer Networks 55(9):2209–2220, DOI 10.1016/j.comnet.2011.03.004, URL
https://doi.org/10.1016/j.comnet.2011.03.004

Lucena A, Maculan N, Simonetti L (2010) Reformulations and solution algorithms for the maxi-
mum leaf spanning tree problem. Computational Management Science 7(3):289–311

Miller CE, Tucker AW, Zemlin RA (1960) Integer programming formulation of traveling salesman
problems. J ACM 7(4):326–329

Rebai M, Le Berre M, Snoussi H, Hnaien F, Khoukhi L (2015) Sensor deployment optimization
methods to achieve both coverage and connectivity in wireless sensor networks. Comput Oper
Res 59:11–21

Rebai M, Afsar HM, Snoussi H (2016) Exact methods for sensor deployment problem with connec-
tivity constraint in wireless sensor networks. International Journal of Sensor Networks (IJS-
NET) 21(3):157–168, DOI 10.1504/IJSNET.2016.078324, URL https://doi.org/10.1504/
IJSNET.2016.078324

Reich A (2016) Complexity of the maximum leaf spanning tree problem on planar and regular
graphs. Theoretical Computer Science 626(C):134–143

Reis M, Lee O, Usberti F (2015) Flow-based formulation for the maximum leaf spanning tree
problem. Electronic Notes in Discrete Mathematics 50:205 – 210

Roveti DK (2001) Choosing a humidity sensor: a review of three tech-
nologies. URL http://www.sensorsmag.com/sensors/humidity-moisture/
choosing-a-humidity-sensor-a-review-three-technologies-840

Wang X, Xing G, Zhang Y, Lu C, Pless R, Gill C (2003) Integrated coverage and connectivity
configuration in wireless sensor networks. In: Proceedings of the 1st International Conference
on Embedded Networked Sensor Systems, ACM, SenSys’03, pp 28–39


