
HAL Id: hal-03164338
https://telecom-paris.hal.science/hal-03164338v1

Preprint submitted on 9 Mar 2021 (v1), last revised 27 Apr 2023 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Monotonic alpha-divergence minimisation
Kamélia Daudel, Randal Douc, François Roueff

To cite this version:
Kamélia Daudel, Randal Douc, François Roueff. Monotonic alpha-divergence minimisation. 2021.
�hal-03164338v1�

https://telecom-paris.hal.science/hal-03164338v1
https://hal.archives-ouvertes.fr


MONOTONIC ALPHA-DIVERGENCE MINIMISATION
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ABSTRACT

In this paper, we introduce a novel iterative algorithm which carries out α-divergence
minimisation by ensuring a systematic decrease in the α-divergence at each step.
In its most general form, our framework allows us to simultaneously optimise
the weights and components parameters of a given mixture model. Notably, our
approach permits to build on various methods previously proposed for α-divergence
minimisation such as gradient or power descent schemes. Furthermore, we shed
a new light on an integrated Expectation Maximization algorithm. We provide
empirical evidence that our methodology yields improved results, all the while
illustrating the numerical benefits of having introduced some flexibility through the
parameter α of the α-divergence.

1 Introduction

Bayesian inference tasks often induce intractable and hard-to-compute posterior densities which need
to be approximated. Among the class of approximating methods, Variational inference methods (e.g
Variational Bayes [1, 2]) have attracted a lot of attention as they have empirically been shown to be
widely applicable to many high-dimensional machine-learning problems ([3, 4, 5]).

These optimisation-based methods introduce a simpler density familyQ and find the best approximation
to the unknown posterior density among this family in terms of a certain divergence, the most common
choice of divergence being the forward Kullback-Leibler divergence ([6, 7]).

However, the forward Kullback-Leibler is known to have some drawbacks: its zero-forcing behavior
typically results in light tails and covariance underestimation ([8]), which could be especially inconve-
nient for multimodal posterior densities in high-dimensional settings when the approximating familyQ
does not exactly match the posterior density ([9, 10]).

To avoid this hurdle, advances in Variational Inference seeked to employ more general classes of
divergences such as the α-divergence ([11, 12]) and Renyi’s α-divergence ([13, 14]), which have
been used in [15, 16, 17, 18] and [19, 20]. Indeed, thanks to the hyperparameter α these families of
divergences interpolate between the forward (α→ 1) and the reverse (α→ 0) Kullback-Leibler, that
is, they provide a more flexible framework between the zero-forcing property of the case α→ 1 and
the mass-covering behavior of the case α→ 0 ([8]).
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In the spirit of α-divergence-based methods, we propose in this paper to build a framework for α-
divergence minimisation. The particularity of our work will be that is it amenable to mixture models
optimisation and that it ensures a monotonic decrease in the α-divergence at each step. The paper is
then organised as follows:

• In Section 2, we introduce some notation and we state the optimisation problem we aim at solving in
terms of the targeted density, the approximating density q ∈ Q and the α-divergence.

• In Section 3, we consider the typical Variational Inference case where q belongs to a parametric
family. In this particular case, we state in Theorem 1 conditions which ensure a systematic decrease in
the α-divergence at each step for all α ∈ [0, 1). We then show in Corollary 2 that these conditions are
satisfied for a well-chosen iterative scheme. The formulation of this iterative scheme is particularly
convenient, a fact that we illustrate over several examples. Furthermore, we derive in Corollary 3
additional iterative schemes satisfying the conditions of Theorem 1, which we then use to underline the
links between our approach and gradient descent schemes for α-divergence and Renyi’s α-divergence
minimisation.

• In Section 4, we further extend the results from Section 3 to the more general case of mixture
models. We derive in Theorem 2 and 3 conditions to simultaneously optimise both the weights and the
component parameters of a given mixture model, all the while maintaining the systematic decrease in
the α-divergence initially enjoyed in Theorem 1. These conditions are then met in Corollary 5 and 6, so
that we can derive algorithms that are applicable to a wide range of mixture models. Furthermore, we
connect our approach to the Power Descent algorithm from [20] and provide in Proposition 7 additional
monotonicity results which go beyond the case α ∈ [0, 1). We also apply our results to the particular
case of Gaussian Mixture Models before recovering the Mixture Population Monte Carlo (M-PMC)
algorithm from [21] as a special case.

• Lastly, we show in Section 5 that having enhanced our framework beyond the particular example of
the M-PMC algorithm also has practical benefits when we consider multimodal targets and we provide
numerical experiments to compare our results to those obtained using a typical Adaptive Importance
Sampling algorithm.

2 Notation and optimisation problem

Let (Y,Y, ν) be a measured space, where ν is a σ-finite measure on (Y,Y). Assume that we have
access to some observed variables D generated from a probabilistic model p(D |y) parameterised by a
hidden random variable y ∈ Y that is drawn from a certain prior p0. The posterior density of the latent
variable y given the data D is then given by:

p(y|D) =
p(y,D)

p(D)
=
p0(y)p(D |y)

p(D)
,

where the normalisation constant p(D) =
∫
Y
p0(y)p(D |y)ν(dy) is called the marginal likelihood or

model evidence and is oftentimes unknown or too costly to compute.

We denote by P the probability measure on (Y,Y) with corresponding density p(·|D) with respect to
ν. As for the approximating family, we denote by Q the probability measure on (Y,Y) with associated
density q ∈ Q with respect to ν.

We now specify the optimisation problem we consider in this paper in terms of the α-divergence.
We let fα be the convex function on (0,+∞) defined by f0(u) = − log(u), f1(u) = u log u and
fα(u) = 1

α(α−1) [uα − 1] for all α ∈ R \ {0, 1}. Then, the α-divergence between Q and P (extended
by continuity to the cases α = 0 and α = 1 as for example done in [22]) is given by

Dα(Q||P) =

∫
Y

fα

(
q(y)

p(y|D)

)
p(y|D)ν(dy) , (1)

2
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and the Variational Inference optimisation problem we aim at solving is

inf
q∈Q

Dα(Q||P) .

Notably, it can easily be proven that the optimisation problem above is equivalent to solving

inf
q∈Q

Ψα(q; p) with p(y) = p(y,D) for all y ∈ Y , (2)

where, for all measurable positive function p on (Y,Y) and for all q ∈ Q, we have set

Ψα(q; p) =

∫
Y

fα

(
q(y)

p(y)

)
p(y)ν(dy) . (3)

As the normalisation constant does not appear anymore in the optimisation problem (2), this formulation
is often preferred in practice. Therefore, we consider the general optimisation problem

inf
q∈Q

Ψα(q; p) , (4)

where p is any measurable positive function on (Y,Y). Note that we may drop the dependency on p in
Ψα for notational ease and when no ambiguity occurs.

At this stage, we are left with the choice of the approximating family Q appearing in the optimisation
problem (4). The natural idea in Variational Inference and the starting point of our approach is then to
work within a parametric family : letting (T, T ) be a measurable space, K : (θ,A) 7→

∫
A
k(θ, y)ν(dy)

be a Markov transition kernel on T × Y with kernel density k defined on T × Y, we consider a
parametric family of the form

Q = {q : y 7→ k(θ, y) : θ ∈ T} .

3 An iterative algorithm for optimising Ψα(k(θ, ·))

In this section, our goal is to define iterative procedures which optimise Ψα(k(θ, ·)) with respect to θ
and which are such that they ensure a systematic decrease in Ψα at each step. For this purpose, we start
by introducing some mild conditions on k, p and ν that will be used throughout the paper.

(A1) The density kernel k on T × Y, the function p on Y and the σ-finite measure ν on
(Y,Y) satisfy, for all (θ, y) ∈ T× Y, k(θ, y) > 0, p(y) > 0 and

∫
Y
p(y)ν(dy) <∞.

Let us now construct a sequence (θn)n>1 valued in T such that the sequence (Ψα(k(θn, ·))n>1 is
decreasing. The core idea of our approach will rely on the following proposition.

Proposition 1. Assume (A1). For all α ∈ [0, 1) and all θ, θ′ ∈ T, it holds that

Ψα(k(θ, ·)) 6
∫
Y

k(θ′, y)αp(y)1−α

α− 1
log

(
k(θ, y)

k(θ′, y)

)
ν(dy) + Ψα(k(θ′, ·)) . (5)

Proof. We treat the two cases α = 0 and α ∈ (0, 1) separately.

(a) Case α = 0, with f0(u) = − log(u) for all u > 0. This case is immediate since

Ψ0(k(θ, ·)) = −
∫
Y

p(y) log

(
k(θ, y)

k(θ′, y)

)
ν(dy) + Ψ0(k(θ′, ·)) .

3
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(b) Case α ∈ (0, 1) with fα(u) = 1
α(α−1) [uα − 1] for all u > 0. We have that

Ψα(k(θ, ·)) =

∫
Y

[(
k(θ,y)
p(y)

)α
− 1
]

α(α− 1)
p(y)ν(dy)

=

∫
Y

(
k(θ′, y)

p(y)

)α [( k(θ,y)
k(θ′,y)

)α
− 1
]

α(α− 1)
p(y)ν(dy) + Ψα(k(θ′, ·))

Furthermore, the concavity of the log function gives log(uα) 6 uα − 1 for all u > 0 and since
α ∈ (0, 1), we can write

1

α− 1
log(u) =

1

α(α− 1)
log(uα) > fα(u) .

Thus,

Ψα(k(θ, ·)) 6
∫
Y

k(θ′, y)αp(y)1−α

α− 1
log

(
k(θ, y)

k(θ′, y)

)
ν(dy) + Ψα(k(θ′, ·))

which is exactly (5).

This result then allows us to deduce Theorem 1 below.
Theorem 1. Assume (A1). Let α ∈ [0, 1) and starting from an initial θ1 ∈ T, let (θn)n>1 be defined
iteratively such that for all n > 1,∫

Y

k(θn, y)αp(y)1−α

α− 1
log

(
k(θn+1, y)

k(θn, y)

)
ν(dy) 6 0 . (6)

Further assume that Ψα(k(θ1, ·)) <∞. Then, at time n, we have Ψα(k(θn+1, ·)) 6 Ψα(k(θn, ·)).

Proof. The results follows by setting θ = θn+1 and θ′ = θn in (5) combined with (6).

At this point, we seek to find iterative schemes satisfying (6). This leads us to our first corollary.
Corollary 2. Assume (A1). Let α ∈ [0, 1) and starting from an initial θ1 ∈ T, let (θn)n>1 be defined
iteratively as follows

θn+1 = argmax
θ∈T

∫
Y

k(θn, y)αp(y)1−α log(k(θ, y))ν(dy) , n > 1 . (7)

Then (6) holds and we can apply Theorem 1.

Proof. We have that (6) holds by definition of θn+1 combined with the fact that α ∈ [0, 1) and we can
thus apply Theorem 1.

Let us comment on Corollary 2. A remarkable aspect is that (7) is written as a maximisation problem
involving the logarithm of the kernel k. This means that we can use (7) to derive simple update rules
for (θn)n>1 for some notable choices of kernel k, as illustrated in the following examples.
Example 1 (Gaussian distribution). We consider the case of a d-dimensional Gaussian density with
k(θ, y) = N (y;m,Σ) and where θ = (m,Σ) ∈ T denotes the mean and covariance matrix of the
Gaussian density. Then, starting from θ1 = (m1,Σ1) ∈ T, solving (7) yields the following update
formulas:

∀n > 1 , mn+1 =

∫
Y
k(θn, y)αp(y)1−αy ν(dy)∫
Y
k(θn, y)αp(y)1−αν(dy)

Σn+1 =

∫
Y
k(θn, y)αp(y)1−α(y −mn)(y −mn)T ν(dy)∫

Y
k(θn, y)αp(y)1−αν(dy)

.

4
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Example 2 (Student’s distribution). We consider the case of a d-dimensional Student’s density of the
form k(θ, y) = T (y;m,Σ, ν), where θ = (m,Σ) ∈ T denotes the mean and covariance matrix of the
Student’s density. Then, starting from θ1 = (m1,Σ1) ∈ T, solving (7) yields the following update
formulas:

∀n > 1 , mn+1 =

∫
Y
k(θn, y)αp(y)1−αgn(y)y ν(dy)∫
Y
k(θn, y)αp(y)1−αgn(y)ν(dy)

Σn+1 =

∫
Y
k(θn, y)αp(y)1−αgn(y)(y −mn)(y −mn)T ν(dy)∫

Y
k(θn, y)αp(y)1−αgn(y)ν(dy)

,

where we have set gn(y) = (ν + d)/(ν + (y −mn)T (Σn)−1(y −mn)) for all y ∈ Y and all n > 1.
Example 3 (Mean-field approximation). A generic member of the mean-field variational family is
k(θ, y) =

∏L
`=1 k

(`)(θ(`), y(`)) with θ = (θ(1), . . . , θ(L)) ∈ T. Then, starting from θ1 ∈ T, solving (7)
yields the following update formulas: for all n > 1,

θ
(`)
n+1 = argmax

θ(`)

∫
Y

k(θn, y)αp(y)1−α log(k(`)(θ(`), y(`)))ν(dy) , 1 6 ` 6 L .

Interestingly, while Corollary 2 has a convenient formulation and corresponds to the intuitive choice so
that (6) holds, it is also possible to derive alternative schemes satisfying (6) under additional smoothness
conditions (see Appendix A.1 for the definition of β-smoothness), as written in Corollary 3.
Corollary 3. Assume (A1). Let α ∈ [0, 1), let (γn)n>1 be valued in (0, 1] and let (cn)n>1 be a positive
sequence. Starting from an initial θ1 ∈ T, let (θn)n>1 be defined iteratively as follows

θn+1 = θn −
γn
βn
∇gn(θn) , n > 1 , (8)

where (gn)n>1 is the sequence of functions defined by: for all n > 1 and all θ ∈ T

gn(θ) = cn

∫
Y

k(θn, y)αp(y)1−α

α− 1
log

(
k(θ, y)

k(θn, y)

)
ν(dy) , (9)

and gn is assumed to be βn-smooth. Then (6) holds and we can apply Theorem 1.

Proof. Since γn ∈ (0, 1] and gn is a βn-smooth function by assumption, we can apply Lemma 12 and
we obtain that for all n > 1,

gn(θn)− gn
(
θn −

γn
βn
∇gn(θn)

)
>

γn
2βn
‖∇gn(θn)‖2 .

Thus, by definition of θn+1 in (8), we have

0 = gn(θn) > gn(θn+1) ,

which in turn implies (6) and the proof is concluded.

Let us now reflect on the implications of Corollary 3. Under common differentiability assumptions, we
can write: for all n > 1 and all θ ∈ T

∇gn(θ) = cn

∫
Y

k(θn, y)αp(y)1−α

α− 1
∇(log k(θ, y))ν(dy) .

Then, considering the two cases where cn = 1 and cn = (
∫
Y
k(θn, y)αp(y)1−αν(dy))−1 at time n, (8)

becomes respectively

θn+1 = θn −
γn
βn

∫
Y

k(θn, y)αp(y)1−α

α− 1
∇(log k(θn, y))ν(dy) , n > 1 (10)

θn+1 = θn −
γn
βn

(
1

α− 1

∫
Y
k(θn, y)αp(y)1−α∇(log k(θn, y))ν(dy)∫

Y
k(θn, y)αp(y)1−αν(dy)

)
, n > 1 . (11)

5
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Here, letting p(y) = p(y,D) for all y ∈ Y, the iterative schemes (10) and (11) can both be seen as
usual gradient descent iterations used for α-divergence

Dα(K(θ, ·)||P) =

∫
Y

1

α(α− 1)

[(
k(θ, y)

p(y|D)

)α
− 1

]
p(y|D)ν(dy)

and Renyi’s α-divergence

D(AR)
α (K(θ, ·)||P) =

1

α(α− 1)
log

(∫
Y

k(θ, y)
α
p(y|D)

1−α
ν(dy)

)
minimisation with a learning policy proportional to (γnβ

−1
n )n>1. Notice that Renyi’s α-divergence is

defined following the convention from [22], alternative definitions may use a different scaling factor.

This establishes the link between our approach and typical gradient descent algorithms for α-divergence
and Renyi’s α-divergence optimisation. Lastly, we give an example where the conditions on (gn)n>1

from Corollary 3 are satisfied.
Example 4. We consider the case of a d-dimensional Gaussian density with k(θ, y) = N (y; θ, σ2Id)
where θ ∈ T = Rd and σ2 > 0 is assumed to be fixed. Then gn as defined in (9) with cn =
(
∫
Y
k(θn, y)αp(y)1−αν(dy))−1 is convex and under usual differentiability assumptions

∇gn(θ) =
σ−2

α− 1

∫
Y
k(θn, y)αp(y)1−α(y − θ)ν(dy)∫

Y
k(θn, y)αp(y)1−αν(dy)

so that by setting βn = σ−2(1− α)−1 and by denoting by ‖.‖ the Euclidean norm, we can write for
all θ, θ′ ∈ T and all n > 1

‖∇gn(θ)−∇gn(θ′)‖ 6 βn‖θ − θ′‖ .

Hence, the conditions on (gn)n>1 from Corollary 3 are satisfied and we obtain the iterative scheme
given by: for all n > 1

θn+1 = θn + γn

∫
Y
k(θn, y)αp(y)1−α(y − θn)ν(dy)∫

Y
k(θn, y)αp(y)1−αν(dy)

= (1− γn) θn + γn

∫
Y
k(θn, y)αp(y)1−α y ν(dy)∫
Y
k(θn, y)αp(y)1−αν(dy)

.

The examples we have provided throughout the section underline the benefits of the approach we
used in Theorem 1. However, the class of mixture models, which comes across as a very general and
flexible parametric family, has yet to be included in our framework. In the next section we extend the
monotonicity property to the case of mixture models.

4 Extension to mixture models

In order to generalise the approach of Section 3 to mixture models, let us first define the class of mixture
models we are going to be working with. Given J ∈ N?, we introduce the simplex of RJ :

SJ =

λ = (λ1, . . . , λJ) ∈ RJ : ∀j ∈ {1, . . . , J} , λj > 0 and
J∑
j=1

λj = 1

 ,

and we also define S+
J = {λ ∈ SJ : ∀j ∈ {1, . . . , J} , λj > 0}. The Dirac measure on (T, T ) is

denoted by δθ where θ ∈ T. Now using the notation Θ = (θ1, . . . , θJ) ∈ TJ and µλ,Θ =
∑J
j=1 λjδθj

for λ ∈ SJ and for all Θ ∈ TJ , we are interested in the mixture model approximating family given by

Q =

q : y 7→ µλ,Θk(y) =

J∑
j=1

λjk(θj , y) : λ ∈ SJ ,Θ ∈ TJ


6
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that is, we consider the optimisation problem

inf
λ∈SJ ,Θ∈TJ

Ψα(µλ,Θk; p) ,

where p is any measurable positive function on (Y,Y). Notice in particular that the framework from
Section 3 corresponds to having taken J = 1 in the optimisation problem above. Let us next denote
λn = (λj,n)16j6J and Θn = (θj,n)16j6J for all n > 1. For convenience, we also introduce the
shorthand notation µn =

∑J
j=1 λj,nδθj,n and

γnj,α(y) = k(θj,n, y)

(
µnk(y)

p(y)

)α−1

(12)

for α ∈ [0, 1), all j = 1 . . . J , all n > 1 and all y ∈ Y. The first step towards extending the approach of
Section 3 to the case of mixture models is to generalise Proposition 1, which brings us to Proposition 4
below.

Proposition 4. Assume (A1). For all α ∈ [0, 1) and all (λ,Θ), (λ′ ,Θ′) ∈ S+
J × TJ , it holds that

Ψα(µλ,Θk) 6
∫
Y

J∑
j=1

λ′jk(θ′j , y)

α− 1

(
µλ′ ,Θ′k(y)

p(y)

)α−1

log

(
λj
λ′j

k(θj , y)

k(θ′j , y)

)
ν(dy)

+ Ψα(µλ′ ,Θ′k) . (13)

Furthermore, equality holds in (13) if and only for all j = 1 . . . J , λjk(θj , y) = λ′jk(θ′j , y) for
ν-almost all y ∈ Y.

Proof. By convexity of fα, Jensen’s inequality implies

Ψα(µλ,Θk) =

∫
Y

fα

(∑J
j=1 λjk(θj , y)

p(y)

)
p(y)ν(dy)

6
∫
Y

J∑
j=1

λ′jk(θ′j , y)∑J
`=1 λ

′
`k(θ′`, y)

fα

 λjk(θj , y)

p(y)
λ′jk(θ′j ,y)∑J
`=1 λ

′
`k(θ′`,y)

 p(y)ν(dy)

=

∫
Y

J∑
j=1

λ′jk(θ′j , y)

µλ′ ,Θ′k(y)
fα

(
λjk(θj , y)

λ′jk(θ′j , y)

µλ′ ,Θ′k(y)

p(y)

)
p(y)ν(dy) . (14)

We now treat the two cases α = 0 and α ∈ (0, 1) separately.

(a) Case α = 0, with f0(u) = − log(u) for all u > 0. In this case, (14) yields

Ψ0(µλ,Θk) 6
∫
Y

J∑
j=1

λ′j ×
−k(θ′j , y)p(y)

µλ′ ,Θ′k(y)
log

(
λj
λ′j

k(θj , y)

k(θ′j , y)

)
ν(dy)

+

∫
Y

J∑
j=1

λ′jk(θ′j , y)

µλ′ ,Θ′k(y)
×
[
− log

(
µλ′ ,Θ′k(y)

p(y)

)]
p(y)ν(dy)

which is exactly (13) since for all y ∈ Y,
∑J
j=1 λ

′
jk(θ′j , y)/µλ′ ,Θ′k(y) = 1.

7
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(b) Case α ∈ (0, 1) with fα(u) = 1
α(α−1) [uα − 1] for all u > 0. In this setting, (14) gives

Ψα(µλ,Θk) 6
∫
Y

J∑
j=1

λ′jk(θ′j , y)

µλ′ ,Θ′k(y)

(
µλ′ ,Θ′k(y)

p(y)

)α [(
λj
λ′j

k(θj ,y)
k(θ′j ,y)

)α
− 1
]

α(α− 1)
p(y)ν(dy)

+

∫
Y

J∑
j=1

λ′jk(θ′j , y)

µλ′ ,Θ′k(y)

[(
µλ′ ,Θ′k(y)

p(y)

)α
− 1
]

α(α− 1)
p(y)ν(dy)

=

∫
Y

J∑
j=1

λ′jk(θ′j , y)

(
µλ′ ,Θ′k(y)

p(y)

)α−1

fα

(
λj
λ′j

k(θj , y)

k(θ′j , y)

)
ν(dy)

+

∫
Y

fα

(
µλ′ ,Θ′k(y)

p(y)

)
p(y)ν(dy) , (15)

where we have used that for all y ∈ Y,
∑J
j=1 λ

′
jk(θ′j , y)/µλ′ ,Θ′k(y) = 1. Furthermore, recall from

the proof of Proposition 4 that the concavity of the log function gives log(uα) 6 uα − 1 for all u > 0
and since α ∈ (0, 1), we can write

1

α− 1
log(u) =

1

α(α− 1)
log(uα) > fα(u) .

Thus, combining with (15) we deduce

Ψα(µλ,Θk) 6
∫
Y

J∑
j=1

λ′jk(θ′j , y)

α− 1

(
µλ′ ,Θ′k(y)

p(y)

)α−1

log

(
λj
λ′j

k(θj , y)

k(θ′j , y)

)
ν(dy) + Ψα(µλ′ ,Θ′k)

which establishes (13) for α ∈ (0, 1).

As for the case of equality, equality in (13) implies equality in (14) which in turn by strict convexity of
fα implies the desired result and concludes the proof of Proposition 4.

We can then state our second main theorem.
Theorem 2. Assume (A1). Let α ∈ [0, 1) and starting from an initial parameter set (λ1,Θ1) ∈
S+
J × TJ , let (λn,Θn)n>1 be defined iteratively such that for all n > 1,∫

Y

J∑
j=1

λj,n
γnj,α(y)

α− 1
log

(
λj,n+1

λj,n

)
ν(dy) 6 0 (16)

∫
Y

J∑
j=1

λj,n
γnj,α(y)

α− 1
log

(
k(θj,n+1, y)

k(θj,n, y)

)
ν(dy) 6 0 . (17)

Further assume that Ψα(µ1k) <∞. Then, at time n, we have Ψα(µn+1k) 6 Ψα(µnk).

Proof. The results follows immediately by setting θ = θn+1 and θ′ = θn in (13) combined with (16)
and (17).

We now plan on finding iterative schemes which satisfy (16) and (17). Strikingly, (16) does not depend
on Θn+1 nor does (17) depend on λn+1. This means that we can treat these two inequalities separately
and thus that the weights and component parameters of the mixture can be optimised simultaneously.

Observe also that the dependency in λj,n+1 appearing in (16) is simpler than the dependency in θj,n+1

appearing in (17) and that is expressed through the kernel k . For this reason, we will first study
(16). As we shall see, while the natural idea is to perform direct optimisation of the left-hand side of
(16), a more general expression for the mixture weights can be derived, which will lead to numerical
advantages later illustrated in Section 5.

8
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4.1 Choice of (λn)n>1

In the following theorem, we identify an update formula which satisfies (16), regardless of the choice
of the kernel k.

Theorem 3. Assume (A1). Let α ∈ [0, 1), let (ηn)n>1 be valued in (0, 1] and let κ be such that
(α− 1)κ > 0. Starting from an initial parameter set (λ1,Θ1) ∈ S+

J ×TJ , let (λn,Θn)n>1 be defined
iteratively such that for all n > 1

λj,n+1 =
λj,n

[∫
Y
γnj,α(y)ν(dy) + (α− 1)κ

]ηn∑J
`=1 λ`,n

[∫
Y
γn`,α(y)ν(dy) + (α− 1)κ

]ηn , j = 1 . . . J (18)

and (17) is satisfied. Then (16) holds. Further assume that Ψα(µ1k) <∞. Then, the two following
assertions hold at iteration n.

(i) We have Ψα(µn+1k) 6 Ψα(µnk).

(ii) Assuming that either {ηn = 1 and κ < 0} or {ηn ∈ (0, 1)}, we have Ψα(µn+1k) = Ψα(µnk)
if and only if λn+1 = λn and for all j = 1 . . . J , k(θj,n+1, y) = k(θj,n, y) for ν-almost all
y ∈ Y.

Proof. Since (17) is assumed, it remains to show (16) so that we can apply Theorem 2, before
characterising the case of equality. To prove (16), we treat the cases ηn = 1 and ηn ∈ (0, 1) separately.

(a) Case ηn = 1. Since (α− 1)κ > 0 with α ∈ (0, 1), we have that

κ

J∑
j=1

λj,n log(λj/λj,n) > 0

where we have used that
∑J
j=1 λj,n log(λj/λj,n) 6

∑J
j=1 λj,n(λj/λj,n − 1) = 0. In other words, to

obtain (16) in the particular case ηn = 1, it is enough to show∫
Y

J∑
j=1

λj,n
γnj,α(y)

α− 1
log

(
λj,n+1

λj,n

)
ν(dy) + κ

J∑
j=1

λj,n log

(
λj,n+1

λj,n

)
6 0

that is

J∑
j=1

λj,n

[∫
Y

γnj,α(y)

α− 1
ν(dy) + κ

]
log

(
λj,n+1

λj,n

)
6 0 . (19)

Notice then that by definition of (λj,n+1)16j6J when ηn = 1, we can write

λn+1 = argmin
λ∈S+

J

J∑
j=1

λj,n

[∫
Y

γnj,α(y)

α− 1
ν(dy) + κ

]
log

(
λj
λj,n

)
.

[Indeed, setting βj = λj,n
[∫

Y
γnj,α(y)ν(dy) + (α− 1)κ

]
and β̄j = βj/

∑J
`=1 β` for all j = 1 . . . J ,

we have that
∑J
j=1 β̄j log

(
β̄j/λj

)
> 0 and that this quantity is minimal when λj = β̄j for j = 1 . . . J .]

This implies (19) and settles the case ηn = 1.

(b) For the particular case ηn ∈ (0, 1), we will use that for all ε > 0 and all u > 0,

log(u) =
1

ε
log(uε) >

1

ε

(
1− 1

uε

)
.

9
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Indeed, since
∫
Y

γnj,α(y)

α−1 ν(dy) + κ 6 0 for all j = 1 . . . J , we can then write that for all ε > 0,

J∑
j=1

λj,n

[∫
Y

γnj,α(y)

α− 1
ν(dy) + κ

]
log

(
λj,n+1

λj,n

)

6
1

ε

J∑
j=1

λj,n

[∫
Y

γnj,α(y)

α− 1
ν(dy) + κ

] [
1−

(
λj,n
λj,n+1

)ε]
. (20)

Now notice that by definition of (λj,n+1)16j6J we can write

λn+1 = argmin
λ∈S+

J

1

ε

J∑
j=1

λj,n

[∫
Y

γnj,α(y)

α− 1
ν(dy) + κ

] [
1−

(
λj,n
λj

)ε]

when ε satisfies ηn = 1
1+ε . [Indeed setting βj = λj,n

[∫
Y
γnj,α(y)ν(dy) + (α− 1)κ

] 1
1+ε and

β̄j = βj/
∑J
`=1 β` for all j = 1 . . . J , we have by convexity of the function u 7→ u1+ε that∑J

j=1

(
β̄j/λj

)1+ε
λj > (

∑J
j=1 β̄j)

1+ε and that this quantity is minimal when λj = β̄j for
j = 1 . . . J .] We then deduce that taking ε = η−1

n − 1 (it is always possible since ηn ∈ (0, 1)
by assumption) yields

1

ε

J∑
j=1

λj,n

[∫
Y

γnj,α(y)

α− 1
ν(dy) + κ

] [
1−

(
λj,n
λj,n+1

)ε]
6 0

which in turn yields (16) [since combined with (20) it implies (19) which itself implies (16) as seen in
the case ηn = 1]. This settles the case ηn ∈ (0, 1).

We can thus apply Theorem 2 and we obtain (i). As for the case of equality, Theorem 2 implies that
for all j = 1 . . . J , λj,n+1k(θj,n+1, y) = λj,nk(θj,n, y) for ν-almost all y ∈ Y. Since λj,1 > 0 for all
j = 1 . . . J , we also have λj,n > 0 for all j = 1 . . . J under (A1). All that is left to do is thus to prove
that λn+1 = λn so that for all j = 1 . . . J , k(θj,n+1, y) = k(θj,n, y) for ν-almost all y ∈ Y.

Under the assumption that {ηn = 1 and κ < 0} equality in (19) implies that

κ

J∑
j=1

λj,n log(λj,n+1/λj,n) = 0

i.e that λn+1 = λn by strict concavity of the log function. As for the case ηn ∈ (0, 1), equality in (20)
and the strict concavity of the log function implies that λn+1 = λn, which concludes the proof.

Notice that as a byproduct of the proof of Theorem 3, the mixture weights update given by (18) can be
rewritten under the form: for all n > 1

λn+1 = argmin
λ∈S+

J

hn(λ)

where, setting ε = η−1
n − 1, we have defined for all λ ∈ S+

J ,

hn(λ) =


∑J
j=1 λj,n

[∫
Y

γnj,α(y)

α−1 ν(dy) + κ
]

log
(
λj
λj,n

)
, if ηn = 1 ,

1
ε

∑J
j=1 λj,n

[∫
Y

γnj,α(y)

α−1 ν(dy) + κ
] [

1−
(
λj,n
λj

)ε]
, if ηn ∈ (0, 1) .

More specifically, hn(λ) acts as an upper bound of the left-hand side of (18) and we recover exactly
the left-hand side of (18) in the particular case ηn = 1 and κ = 0.

Now that we have established Theorem 3, we are interested in deriving update formulas for the sequence
(Θn)n>1 satisfying (17).

10
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4.2 Choice of (Θn)n>1

We investigate three different approaches for choosing (Θn)n>1.

4.2.1 A minimisation approach

The first idea is to consider the update for (Θn)n>1 given by: for all n > 1,

Θn+1 = argmin
Θ∈TJ

gn(Θ)

where for all Θ ∈ S+
J × TJ , gn(Θ) =

∫
Y

∑J
j=1 λj,n

γnj,α(y)

α−1 log
(
k(θj ,y)
k(θj,n,y)

)
ν(dy). In this case, the

full update (λn+1,Θn+1) can be written as the following optimisation problem

(λn+1,Θn+1) = argmin
λ∈S+

J ,Θ∈TJ
(hn(λ) + gn(Θ))

and we obtain Corollary 5.

Corollary 5. Assume (A1). Let α ∈ [0, 1), let (ηn)n>1 be valued in (0, 1] and let κ be such that
(α− 1)κ > 0. Starting from an initial parameter set (λ1,Θ1) ∈ S+

J ×TJ , let (λn,Θn)n>1 be defined
iteratively for all n > 1 by (18) and

θj,n+1 = argmax
θj∈T

∫
Y

γnj,α(y) log(k(θj , y))ν(dy) , j = 1 . . . J . (21)

Then (17) holds and we can apply Theorem 3.

Proof. The result follows from the definition of Θn+1 combined with the fact that α ∈ [0, 1) and
λj,n > 0 for all j = 1 . . . J , so that (17) holds and we can apply Theorem 3.

Consequently, under the assumptions of Corollary 5 we can define Algorithm 1, which leads to a
systematic decrease in Ψα at each step and effectively generalises the monotonicity property from
Corollary 2 to the case of mixture models. In line with Corollary 3, we next present another possible
update formula for (λn,Θn)n>1.

Algorithm 1: α-divergence minimisation for Mixture Models based on (21)
At iteration n,
For all j = 1 . . . J , set

λj,n+1 =
λj,n

[∫
Y
γnj,α(y)ν(dy) + (α− 1)κ

]ηn∑J
`=1 λ`,n

[∫
Y
γn`,α(y)ν(dy) + (α− 1)κ

]ηn
θj,n+1 = argmax

θj∈T

∫
Y

γnj,α(y) log(k(θj , y))ν(dy) .

4.2.2 A Gradient Descent approach

We shall now resort to gradient descent steps to satisfy (16).

Corollary 6. Assume (A1). Let α ∈ [0, 1), let (ηn)n>1 be valued in (0, 1] and let κ be such that
(α− 1)κ > 0. Furthermore, for all j = 1 . . . J , let (γj,n)n>1 be valued in (0, 1] and let (cj,n)n>1 be

11
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a positive sequence. Starting from an initial parameter set (λ1,Θ1) ∈ S+
J × TJ , let (λn,Θn)n>1 be

defined iteratively for all n > 1 by (18) and

θj,n+1 = θj,n −
γj,n
βj,n
∇gj,n(θj,n) , j = 1 . . . J , (22)

where for all j = 1 . . . J , (gj,n)n>1 is defined by: for all n > 1 and all θ ∈ T,

gj,n(θ) = cj,n

∫
Y

γnj,α(y)

α− 1
log

(
k(θ, y)

k(θj,n, y)

)
ν(dy) . (23)

and gj,n is assumed to be βj,n-smooth. Then (17) holds and we can apply Theorem 3.

Proof. Since γj,n ∈ (0, 1] and gj,n is a βj,n-smooth function by assumption, we can apply Lemma 12
and we obtain that for all n > 1 and all j = 1 . . . J ,

gj,n(θj,n)− gj,n
(
θj,n −

γj,n
βj,n
∇gj,n(θj,n)

)
>

γj,n
2βj,n

‖∇gj,n(θj,n)‖2 .

Thus, by definition of θj,n+1 in (22), we have

0 = gj,n(θj,n) > gj,n(θj,n+1).

which in turn implies (17) so that we can apply Theorem 3.

This gives us the monotonicity property for Algorithm 2 by Corollary 6 and we are now interested
in possible choices for the constants cj,n appearing before gj,n. Under common differentiability
assumptions we can write: for all n > 1 and all θ ∈ T

∇gj,n(θ) = cj,n

∫
Y

γnj,α(y)

α− 1
∇ log (k(θ, y)) ν(dy) , j = 1 . . . J .

Algorithm 2: α-divergence minimisation for Mixture Models based on (23)
At iteration n,
For all j = 1 . . . J , set

λj,n+1 =
λj,n

[∫
Y
γnj,α(y)ν(dy) + (α− 1)κ

]ηn∑J
`=1 λ`,n

[∫
Y
γn`,α(y)ν(dy) + (α− 1)κ

]ηn
θj,n+1 = θj,n −

γj,n
βj,n
∇gj,n(θn) .

As it turned out, the two most straightforward choices for cj,n correspond to taking cj,n = λj,n
and cj,n = λj,n(

∫
Y
µnk(y)αp(y)1−αν(dy))−1 for all j = 1 . . . J and all n > 1. Indeed, letting

γj,n := γn ∈ (0, 1] and assuming that βj,n only depends on n for all j = 1 . . . J , that is βj,n := βn,
the following update formulas ensue for Θn+1 at iteration n:

θj,n+1 = θj,n −
γn
βn
λj,n

∫
Y

γnj,α(y)

α− 1
∇ log (k(θj,n, y)) ν(dy) , j = 1 . . . J , (24)

θj,n+1 = θj,n −
γn
βn

λj,n
∫
Y
γnj,α(y)∇ log (k(θj,n, y)) ν(dy)

(α− 1)
∫
Y
µnk(y)αp(y)1−αν(dy)

, j = 1 . . . J . (25)

12
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Letting p(y) = p(y,D) for all y ∈ Y, we recognise usual gradient descent steps on Θ for α-divergence

Dα(µλ,ΘK||P) =

∫
Y

1

α(α− 1)

[(
µλ,Θk(y)

p(y|D)

)α
− 1

]
p(y|D)ν(dy)

and Renyi’s α-divergence

D(AR)
α (µλ,ΘK||P) =

1

α(α− 1)
log

(∫
Y

µλ,Θk(y)
α
p(y|D)

1−α
ν(dy)

)
minimisation, with a learning policy proportional to (γnβ

−1
n )n>1. An important point to take into

consideration however is that by having performed a gradient step based on the α-divergence (resp.
Renyi’s α-divergence), λj,n now appears as a multiplicative factor by design in both updates. This is
problematic since this could prevent learning in the algorithm for very small values of λj,n. Thankfully,
we are able to circumvent this difficulty by choosing cj,n = (

∫
Y
γnj,α(y)ν(dy))−1 so that we consider

instead

θj,n+1 = θj,n −
γn
βn

∫
Y
γnj,α(y)∇ log (k(θj,n, y)) ν(dy)

(α− 1)
∫
Y
γnj,α(y)ν(dy)

, j = 1 . . . J . (26)

In this case, we are still in the framework of Corollary 6 and λj,n only appears through µnk, a property
also shared with the update we introduced in Corollary 5. This further underlines the importance of
having worked under the general conditions on (λn,Θn)n>1 stated in Theorem 2.

Finally, notice that the case where Θn is kept fixed at iteration n, that is, we solely optimise the mixture
weights of a given mixture model, also maintains the monotonicity property. In fact, this particular
case can be linked to the Power Descent update formula for mixture models from [20].

4.2.3 A Power Descent approach

The Power Descent algorithm introduced in [20] is a gradient-based algorithm which operates on
measures and performs α-divergence minimisation for all α ∈ R \ {1}. More precisely, denoting by
M1(T) the space of probability measures and letting µ ∈ M1(T), they seek to optimise

Ψα(µk) =

∫
Y

fα

(
µk(y)

p(y)

)
p(y)ν(dy)

with respect to µ, where for all for all y ∈ Y, we use the notation µk(y) =
∫
T
µ(dθ)k(θ, y). The

optimisation is then done by applying several one-step transitions of the Power Descent algorithm:
given µ1 ∈ M1(T), they consider

µn+1 = Iα(µn) , n > 1 , (27)

where, for all µ ∈ M1(T), for all θ ∈ T,

bµ,α(θ) =

∫
Y

k(θ, y)
1

α− 1

[(
µk(y)

p(y)

)α−1

− 1

]
ν(dy)

Iα(µ)(dθ) =
µ(dθ) · [(α− 1)(bµ,α(θ) + κ) + 1]

η
1−α

µ([(α− 1)(bµ,α + κ) + 1]
η

1−α )
.

Observe then that by definition of γnj,α in (12) and for µn of the form µn =
∑J
j=1 λj,nδθj,n with

Θn = Θ and ηn = η/(1− α) at time n, (18) and (27) coincide.

Interestingly, a monotonicity property has already been proved for the Power Descent algorithm in [20],
which uses a different proof technique compared to the one used in the proof of Theorem 3. Indeed, as
a particular case of [20, Theorem 1] with Γ = [(α− 1)v + 1]η/(1−α), they are able to obtain that one

13
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transition of the Power Descent algorithm leads to a systematic decrease of Ψα for all α ∈ R \ {1}, for
all η ∈ (0, 1] and all κ such that (α− 1)κ > 0.

This means that by maintaining Θn fixed and equal to a certain Θ ∈ T in Theorem 3, it is possible to
allow for a wider range of values of α and of ηn = η/(1 − α) to be used while still preserving the
monotonic decrease. In fact, we show a more general result in Proposition 7 below, where the results
from [20, Theorem 1] are further extended beyond the case η > 1 when α < 0.
Proposition 7. Assume that p and k are as in (A1). Let (α, η) belong to any of the following cases.

(i) α 6 −1 and η ∈ (0, (α− 1)/α];

(ii) α ∈ (−1, 0) and η ∈ (0, 1− α];

(iii) α ∈ [0, 1) or α > 1 and η ∈ (0, 1].

Moreover, let µ ∈ M1(T) be such that Ψα(µk) <∞ and let κ be such that (α− 1)κ > 0. Then, the
two following assertions hold.

(i) We have Ψα(Iα(µ)k) 6 Ψα(µk).

(ii) We have Ψα(Iα(µ)k) = Ψα(µk) if and only if µ = Iα(µ).

The proof of this result is deferred to Appendix A.2 and we now make two comments. Firstly, while
the results from [20] and Proposition 7 allow for a wider range of values for α and η to be used,
a strong improvement compared to [20] is that by Theorem 3 we do not need to keep Θn constant
anymore at each step of the algorithm. From there, extending Theorem 3 beyond the case α ∈ [0, 1)
and ηn ∈ (0, 1] is an interesting direction of research, which is left for future work.

Secondly, by connecting the Power Descent to (18), we now have a better understanding of the role
of the parameter ηn appearing in (18). Indeed, as underlined in [20], the Power Descent algorithm
belongs to a more general family of gradient-based algorithms which includes the Entropic Mirror
Descent algorithm, a typical optimisation algorithm for optimisation under simplex constraints. Viewed
from this angle, the parameter ηn can be understood as a learning rate applied to bµn,α, the gradient of
Ψα. This aspect will notably come in handy when interpreting our numerical experiments in Section 5.

We have derived several examples where the conditions of Theorem 3 are met and connected this
theorem to the Power Descent algorithm. We will conclude this section by presenting relevant particular
cases of Algorithm 1. We start by investigating the case where the kernel k belongs to the Gaussian
family.

4.3 Algorithm 1 within the Gaussian family

We consider the case of d-dimensional Gaussian mixture densities with k(θj , y) = N (y;mj ,Σj) and
where θj = (mj ,Σj) ∈ T denotes the mean and covariance matrix of the j-th Gaussian component
density. Then, solving (21), that is

θj,n+1 = argmax
θj∈T

∫
Y

γnj,α(y) log(k(θj , y))ν(dy) , j = 1 . . . J

yields the following update formulas at time n for the means (mj,n+1)16j6J and covariances matrices
(Σj,n+1)16j6J :

∀j = 1 . . . J, mj,n+1 =

∫
Y
γnj,α(y)y ν(dy)∫
Y
γnj,α(y)ν(dy)

(28)

Σj,n+1 =

∫
Y
γnj,α(y)(y −mj,n)(y −mj,n)T ν(dy)∫

Y
γnj,α(y)ν(dy)

. (29)

14
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Due to the intractable integrals appearing in (18), (28), and (29), we shall then use approximate update
rules in practice. Many choices are possible here and for simplicity we will restrict ourselves to using a
sequence of samplers (qn)n>1 and performing typical Adaptive Importance Sampling estimation in
order to approximate (18), (28), and (29). This leads to Algorithm 3 below, where based on (12) we
have defined for all j = 1 . . . J , all y ∈ Y and all n > 1,

γ̂nj,α(y) =
k(θj,n, y)

qn(y)

(
µnk(y)

p(y)

)α−1

.

Algorithm 3: α-divergence minimisation for Gaussian Mixture Models
At iteration n,
1. Draw independently M samples (Ym,n)16m6M from the proposal qn.

2. For all j = 1 . . . J , set

λj,n+1 =
λj,n

[∑M
m=1 γ̂

n
j,α(Ym,n) + (α− 1)κ

]ηn
∑J
`=1 λ`,n

[∑M
m=1 γ̂

n
`,α(Ym,n) + (α− 1)κ

]ηn
mj,n+1 =

∑M
m=1 γ̂

n
j,α(Ym,n) · Ym,n∑M

m=1 γ̂
n
j,α(Ym,n)

Σ
(t+1)
j =

∑M
m=1 γ̂

n
j,α(Ym,n) · (Ym,n −mj,n)(Ym,n −mj,n)T∑M

m=1 γ̂
n
j,α(Ym,n)

.

We have thus obtained a tractable version of Algorithm 1 which allows us to iteratively update both
the weights and component parameters of a Gaussian mixture model by optimising the α-divergence
between the mixture distribution and the targeted distribution. We now make two remarks.

Remark 8. A practical version of Algorithm 1 can be derived in the particular case of Student’s
distributions, which could be useful for robustification purposes (see Algorithm 4 in Appendix B).

Remark 9. We can obtain practical versions of Algorithm 2 by considering the case of d-dimensional
Gaussian mixture densities with k(θj , y) = N (y; θj , σ

2Id) where Θ ∈ TJ with T = Rd and σ2 > 0
is assumed to be fixed. In this case, gn,j is convex for all j = 1 . . . J and all n > 1.

Following (25) and letting cj,n = λj,n(
∫
Y
µnk(y)αp(y)1−αν(dy))−1 in the definition of gj,n permits

to choose βj,n = σ−2(1−α)−1 [using that
∫
Y
µnk(y)αp(y)1−αν(dy) =

∑J
j=1

∫
Y
λj,nγ

n
j,α(y)ν(dy)].

This gives the update formula at iteration n below

θj,n+1 = θj,n + γ

∫
Y
λj,nγ

n
j,α(y)(y − θj,n)ν(dy)∫

Y
µnk(y)αp(y)1−αν(dy)

, j = 1 . . . J .

In addition, following (26) and letting cj,n = (
∫
Y
γnj,α(y)ν(dy))−1 in the definition of gj,n also permits

to choose βj,n = σ−2(1− α)−1 so that the update formula at iteration n is

θn+1 = (1− γ) θn + γ

∫
Y
γnj,α(y) y ν(dy)∫
Y
γnj,α(y)ν(dy)

, j = 1 . . . J ,
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which coincides with (28) when γ = 1. Approximated versions of the two above iterative formulas are
then given respectively by

∀j = 1 . . . J , θj,n+1 = θj,n + γ
λj,n

∑M
m=1 γ̂

n
j,α(Ym,n) · (Ym,n − θj,n)∑J

j=1

∑M
m=1 λj,nγ̂

n
j,α(Ym,n)

(30)

θn+1 = (1− γ) θn + γ

∑M
m=1 γ̂

n
j,α(Ym,n) · Ym,n∑M

m=1 γ̂
n
j,α(Ym,n)

(31)

and tractable versions of Algorithm 2 for Gaussian mixture models can be deduced (see Algorithm 5
and 6 in Appendix C).

Lastly, we focus on the particular case α = 0 in Algorithm 1 (and its application to the particular case
of Gaussian Mixture Models as seen in Algorithm 3). As we shall see, this case can be linked to the
M-PMC algorithm and it will be used to drive our numerical experiments.

4.4 The M-PMC algorithm as a particular case of Algorithm 1

We are interested in interpreting the results we have obtained thus far in the light of the M-PMC
algorithm [21]. To do so, we first recall the basics of the M-PMC algorithm. For any measurable
positive function p on (Y,Y), the M-PMC algorithm aims at solving the optimisation problem

sup
(λ∈SJ ,Θ∈TJ )

∫
Y

log

 J∑
j=1

λjk(θj , y)

 p(y)ν(dy) , (32)

or equivalently, using a Variational Inference formulation, at minimising the Reverse Kullback-Leibler

inf
(λ∈SJ ,Θ∈TJ )

D0(µλ,ΘK||P) ,

where for all A ∈ Y , P(A) =
∫
A
p(y)ν(dy)/

∫
Y
p(y)ν(dy). This is done in [21, Section 2] by

introducing the following iterative update formulas for all j = 1 . . . J and for all n > 1

λj,n+1 =

∫
Y

λj,nk(θj,n, y)∑J
`=1 λ`,nk(θ`,n, y)

p(y)∫
Y
p(y)ν(dy)

ν(dy) (33)

θj,n+1 = argmax
θj∈T

∫
Y

λj,nk(θj,n, y)∑J
`=1 λ`,nk(θ`,n, y)

log(k(θj , y))p(y)ν(dy) . (34)

Observing then that the two update formulas above correspond to having considered the particular
case α = 0, ηn = 1 and κ = 0 in Algorithm 1, it follows that the M-PMC algorithm can be seen as a
particular example of our framework.
Remark 10. Equations (33) and (34) are presented in [21] as integrated versions under the target
distribution of the update formulas for the Expectation-Maximisation (EM) algorithm applied to the
mixture-density parameter estimation problem

sup
(λ∈SJ ,Θ∈TJ )

M∑
m=1

log

 J∑
j=1

λjk(θj , Ym)

 .

Hence, we can interpret Algorithm 1 as a generalisation of an integrated EM algorithm preserving the
monotonicity property and extending it to the case α ∈ [0, 1).

A practical version of the M-PMC algorithm has been introduced in [21, Section 3] for the particular
case of the Gaussian family, in which they use the sampler

qn(y) = µnk(y) =

J∑
j=1

λj,nk(θj,n, y) . (35)
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Thus, comparing Algorithm 3 to the original M-PMC algorithm for Gaussian Mixture Models from [21,
Section 3], we do not yet specify the sequence of samplers (qn)n>1 and now include additional choices
for the sequence of learning rates (ηn)n>1, the parameter α and the constant κ. This has important
practical consequences which we illustrate in our following numerical experiments.

5 Numerical Experiments: Multimodal Target

In our numerical experiments, we are interested in seeing how the choice of the sequence of samplers
(qn)n>1, the sequence of learning rates (ηn)n>1, the constant κ and the choice of α influence the
convergence of Algorithm 3. We use a similar setting to the one considered in [21]. The target p is a
mixture density of two d-dimensional Gaussian distributions multiplied by a positive constant c such
that

p(y) = c× [0.5N (y;−sud, Id) + 0.5N (y; sud, Id)] ,

where ud is the d-dimensional vector whose coordinates are all equal to 1, s = 2, c = 2 and Id is the
identity matrix. For all A ∈ Y , we also denote P(A) = c−1

∫
A
p(y)ν(dy).

Numerical Experiment 1: study of the particular case α = 0. We take J = 100, M = 200,
d = 16, N = 100 such that the total computational budget is N ×M = 20000 samples in Algorithm
3 with α = 0 and we will vary the sequence of learning rates (ηn)16n6N , the constant κ 6 0 as well
as the choice of the sampler.

We generate the initial parameter set for the means of the mixture distribution by sampling from a
centered normal distribution with covariance matrix 5Id and we set their associated initial weights
to [1/J, . . . , 1/J ] (i.e λ1 = [1/J, . . . , 1/J ] at time n = 1). For simplicity, we chose to keep the
covariance matrices fixed equal to σ2Id with σ2 = 1 and to only update the means and the mixture
weights. Furthermore, we consider a constant policy for the sequence of learning rates (ηn)16n6N

with ηn := η for all n = 1 . . . N .

As for the choice of sampler at time n, we are first interested in setting qn as in (35), since this sampler
is the best approximation to the targeted density we know of at time n (in terms of Reverse Kullback-
Leibler) and it is also the one used in the M-PMC algorithm from [21]. We denote the resulting
algorithm M-PMC(η, κ), the case (η, κ) = (1, 0) corresponding to the initial M-PMC algorithm of
[21].

We let η ∈ {1, 0.5, 0.2, 0.1}, −κ ∈ {0, 0.1, 1} and we replicate the experiment 200 times inde-
pendently for the M-PMC(η, κ) algorithm. To assess the convergence, note that since we have
sampled M samples from qn at time n, these samples can readily be used to obtain an estimate
ĉ = M−1

∑M
m=1 p(Ym,n)/qn(Ym,n) of the normalising constant c =

∫
Y
p(y)ν(dy) with no additional

computational cost.

Then, as we can see on Figure 1, the choice of η and of κ does impact the convergence of the algorithm.
Notably, for a fixed κ, choosing η < 1 results in improved numerical results in the estimation of the
normalising constant c.

This can be explained by the stochastic nature of the approximation that appears in the update formula
for the mixture weights of Algorithm 3. Recall from Section 4.2.3 that performing our mixture weights
update corresponds to applying one transition of the Power Descent algorithm: since this algorithm
is known to share similarities with gradient-based algorithms, choosing ηn = 1 might not be the best
course of action in practice when we resort to approximations [much like choosing a learning rate equal
to 1 in a Stochastic Gradient Descent scheme might not be the best choice in general].

Similarly, for a fixed η < 1, choosing −κ > 0 leads to improved numerical results. The idea behind
this is that by adding a positive constant −κ, we enforce the positivity of the mixture weights
throughout the algorithm. This is handy in practice to avoid setting some mixture weights to zero,
which could for example be an unfortunate consequence of having taken a learning large that is
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Figure 1: Normalisation constant estimation by the M-PMC(η, κ) algorithm in dimension d = 16 for
η ∈ {1, 0.5, 0.2, 0.1} and −κ ∈ {0, 0.1, 1}.

too large or having used a sampler qn which is very different from the targeted density in the early stages.

We have thus seen that by changing the values of η and of κ, we are able to improve on the initial
M-PMC algorithm of [21] for which (η, κ) = (1, 0). Next, we are interested in using at time n a
uniform sampler of the form

qn(y) = J−1
J∑
j=1

k(θj,n, y) .

This is motivated by the fact that based on the form of the integrals appearing in (18), (28), and (29),
we would like to sample according to k(θj,n, y) when updating the parameters λj ,mj and Σj . This
could easily become computationally expensive as J increases, which is why we consider a uniform
sampler as a cheaper alternative.

We call the resulting algorithm UM-PMC(η, κ) and we now want to compare it to the M-PMC(η, κ).
To do so, we will use the Mean-Squared Error at time n for each algorithm denoted MSE, which is
computed as the average of ‖mapprox,n −mtrue‖2 over 200 independent runs of the algorithm.

Here, ‖.‖ stands for the Euclidian norm, mtrue = EP[Y ] for the mean of the targeted density and
mapprox,n for the mean of the approximating density at time n (in our setting mtrue = 0.ud and
mapprox,n =

∑J
j=1 λj,nmj,n). The logMSE (logarithm of the MSE) can be visualised on Figure 2

below.

Notice then that for a relatively small number of samples M at each time n (here M = 200),
the UM-PMC(η, κ) algorithm generally outperforms the M-PMC(η, κ) algorithm in terms of
Mean-Squared Error, the latter one being more prone to missing one of the two modes, especially for
larger values of η. This means that the results of the M-PMC(η, κ) algorithm are more sensitive to the
number of samples M used. As we increase the number of samples M , it can however be observed
that the performances of the M-PMC(η, κ) algorithm in terms of Mean-Squared Error are improved
and become comparable to those of the UM-PMC(η, κ) algorithm (see Appendix D for additional plots
when M = {500, 1000}).
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Figure 2: LogMSE comparison for the M-PMC(η, κ) and the UM-PMC(η, κ) algorithms in dimension
d = 16 for η ∈ {1.0, 0.5, 0.2, 0.1} and −κ = {0, 0.1, 1}.

We now move on to our second numerical experiment in which we are interested in varying the
parameter α.

Numerical Experiment 2: effect of α. We let α ∈ {0, 0.5} and our goal in this numerical experiment
will be to estimate mtrue = EP[Y ], which is a typical Bayesian Inference task.

We take J = 100, d = 16, M = {200, 500} and N such that the total computational budget is
N × M = 20000 samples in Algorithm 3. The initial parameter set is generated exactly like in
Numerical Experiment 1. Based on our previous numerical results, we focus mainly on the UM-
PMC(η, κ) algorithm, even though we will in addition run the experiment for the M-PMC(1., 0.)
algorithm, which corresponds to the M-PMC algorithm from [21].

As for the covariance matrices, they are kept fixed equal to σ2Id so that we only update the means
and the mixture weights and this time we let σ2 ∈ {1, 4} to investigate how the variance of the kernel
impacts the convergence according to the value of α. We consider yet again a constant policy for all
1 6 n 6 N with ηn := η = 0.1 and we let −κ = 0.1, as it appears to be a good tradeoff in terms of
hyperparameters.

Note that the results from Remark 9 apply for this choice of covariance matrices, that is it is also
possible to perform gradient-descent steps for Renyi’s α divergence minimisation when updating the
means, as defined in (30) (see Algorithm 5 for the description of the full algorithm). We will then run
the experiment with γn := γ = 1 at iteration n. For a fair comparison, we will use a uniform sampler
and take the same hyperparameter as those used the UM-PMC(η, κ) algorithm. The resulting algorithm
is denoted RGD(η, κ).

We use the Parallel Interacting Markov AIS (PIMAIS) algorithm from [23] as a reference algorithm to
compare our results with. Indeed, this algorithm also approximate the targeted density by a mixture
model. More precisely, it alternates between two steps: (1) a parameter update step where the means of
each kernel is updated via several MH transitions (2) an Importance Sampling step providing weighted
particles which are then used to estimate the desired quantity (in our case EP[Y ]).
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In the PIMAIS algorithm, we then employ the MH algorithm with a Gaussian proposal with covariance
matrix σ2

MHId with σ2
MH ∈ {1, 25} to construct the Markov chains. We consider a mixture of J

Gaussians with covariance matrices σ2Id and a deterministic number of samples M/J is drawn from
each mixand at time n, so that this algorithm uses the same computational power as those we present.

Finally, M additional samples are generated at time n to estimate EP[Y ] following the PIMAIS method-
ology which gives the estimator m̂PIMAIS

approx,n (we refer to [23] for more details on how this estimator
is obtained). As for the UM-PMC(η, κ) algorithm (resp. the M-PMC(1., 0.) and the RGD(η, κ) algo-
rithms), we too generate M additional samples and we consider at time n = 1 . . . N the Importance
Sampling estimator of EP[Y ] given by

m̂approx,n =

n∑
n′=1

M∑
m=1

wm,n′Y
′
m,n′

where (Y ′m,n′)16m6M have been generated independently from µn′k at time n′ = 1 . . . n and where
for all n′ = 1 . . . n and all m = 1 . . .M , we have defined

wm,n′ ∝
p(Y ′m,n′)

µn′k(Y ′m,n′)
such that

n∑
n′=1

M∑
m=1

wm,n′ = 1 .

We replicate the experiment 200 times independently for all the algorithms. To assess the performance
of the different algorithms, we consider the Mean-Squared Error at time n denoted ˆMSE, which is
computed as the average of ‖m̂approx,n −mtrue‖2 over 200 independent runs of our algorithms (resp.
‖m̂PIMAIS

approx,n −mtrue‖2 for the PIMAIS algorithm). The Log ˆMSE (logarithm of the ˆMSE) can then be
visualised on Figure 3 below.

Figure 3: Log ˆMSE for the UM-PMC(η, κ) in dimension d = 16 for α ∈ {0., 0.5}, σ2 ∈ {1, 4},
η = 0.1 and −κ = 0.1 compared with the PIMAIS algorithm and the M-PMC(1., 0.) algorithm.

Observe that for σ2 = 1, all the versions of the UM-PMC(η, κ) algorithm considered outperform the
PIMAIS algorithm in terms of Log ˆMSE and that the case α = 0 yields the best result. Notice also
that since in this case the covariance matrix is well-tailored to the problem, increasing the number of
samples from M = 200 to M = 500 slows down the UM-PMC(η, κ) algorithm.

As for the case σ2 = 4, we obtain this time that the case α = 0.5 performs the best and that the
case α = 0 underperforms compared to the PIMAIS algorithm with σ2

MH = 1 (even though it still
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outperforms the PIMAIS algorithm with σ2
MH = 25). This underlines the importance of having

provided a framework which goes beyond the typical case of the reverse Kullback-Leibler with α = 0.
Unsurprisingly, since we have now considered a less favourable value for σ2 with σ2 = 4, increasing
the sample size results in improved results.

Moreover, observe that the RGD(η, κ) algorithm underperforms in this numerical experiment. As
already mentioned in Section 4.2.2, this is due to the fact that λj,n appears by design as a multiplicative
factor in the update formula for the means. This prevents learning when the algorithm produces small
values for λj,n, a pitfall avoided by the UM-PMC(η, κ) algorithm. Finally, note that the M-PMC(1., 0.)
algorithm performs poorly in all four cases considered in Figure 3, which further illustrates how we
were able to successfully improve on this algorithm introduced in [21] by including it into a wider
framework.

6 Conclusion

We introduced a novel methodology to carry out α-divergence minimisation via an iterative algorithm
ensuring a monotonic decrease in the α-divergence at each step. Notably, our framework allows us
to perform simultaneous updates for both the weights and component parameters of a given mixture
model for all α ∈ [0, 1).

We then underlined the links between our approach and gradient descent schemes for α-divergence
minimisation and connected our results to the Power Descent algorithm. We also presented practical
algorithms for Gaussian mixture models parameters optimisation and recovered the M-PMC algorithm
as a particular case of our framework. Finally, we provided empirical evidence that our methodology
can be used to enhance the M-PMC algorithm so that it achieves better performances compared to the
PIMAIS algorithm and shed light on the importance of having some flexibility in the choice of α.

To conclude, we state several directions to extend our work on both theoretical and practical levels.
First of all, now that we have established a systematic decrease for our iterative schemes, the next step
is to derive convergence rates and to compare them with those obtained using typical gradient descent
schemes. Based on the results from Proposition 7, another interesting direction consists in generalising
the monotonicity property from Theorem 3 beyond the case α ∈ [0, 1). Lastly, we also expect that
resorting to more advanced Monte Carlo methods in the estimation of the intractable integrals appearing
in (18), (28), and (29) will result in further improved numerical results.
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A Deferred results

A.1 Quantifying the improvement in one step of gradient descent

Here, 〈·, ·〉 denotes an inner product defined on T×T with corresponding norm ‖.‖. Typically, we will
consider T = Rd with d > 1, so that 〈·, ·〉 is the standard inner product on Rd and ‖.‖ is the Euclidian
norm.

Definition 11. A continuously differentiable function g defined on T is said to be β-smooth if for all
θ, θ′ ∈ T,

‖g(θ)− g(θ′)‖ 6 β‖θ − θ′‖ .

Lemma 12. Let γ ∈ (0, 1], let g be a β-smooth function defined on T. Then, for all θ ∈ T it holds that

g(θ)− g
(
θ − γ

β
∇g(θ)

)
>

γ

2β
‖∇g(θ)‖2 .

Proof. By assumption on g, we have that for all θ, θ′ ∈ T

g(θ′)− g(θ)− 〈∇g(θ), θ′ − θ〉 6 β

2
‖θ′ − θ‖2 .

In particular, setting θ′ = θ − γ
β∇g(θ) yields

g(θ)− g
(
θ − γ

β
∇g(θ)

)
>
γ

β
‖∇g(θ)‖2 − γ2

2β
‖∇g(θ)‖2

>
γ

β

(
1− γ

2

)
‖∇g(θ)‖2 .

Since γ ∈ (0, 1], we can deduce the desired result, that is

g(θ)− g
(
θ − γ

β
∇g(θ)

)
>

γ

2β
‖∇g(θ)‖2 .

A.2 Monotonicity property for the Power Descent

Preliminary remarks First note that for all η > 0, the iteration µ 7→ Iα(µ) is well-defined if we
have

0 < µ(|bµ,α + κ|
η

1−α ) <∞ . (36)

Furthermore, [20] already established that one transition of the Power Descent algorithm ensures a
monotonic decrease in the α-divergence at each step for all η ∈ (0, 1] and all κ such that (α− 1)κ > 0
under the assumption of Proposition 7, which settles the case (iii).

Finally, while we establish our results for (i) and (ii) in the general case where µ ∈ M1(T), the
particular case of mixture models follows immediately by choosing µ as a weighted sum of dirac
measures.

Extending the monotonicity Let (ζ, µ) be a couple of probability measures where ζ is dominated by
µ, which we denote by ζ � µ. A first lower-bound for the difference Ψα(µk)−Ψα(ζk) was derived
in [20] and was used to establish that the Power Descent algorithm diminishes Ψα for all η ∈ (0, 1].

We now prove a novel lower-bound for the difference Ψα(µk)−Ψα(ζk) which will allow us to extend
the monotonicity results from [20] beyond the case η ∈ (0, 1] when α < 0. This result relies on the
existence of an exponent % satisfying condition (A2) below, which will later on be used to specify a
range of values for η ensuring that Ψα is decreasing after having applied one transition µ 7→ Iα(µ)
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(A2) We have % ∈ R \ [0, 1] and the function fα,% : u 7→ fα(u1/%) is non-decreasing and
concave on R>0.

Proposition 13. Assume (A1). Let α ∈ R \ {1}, assume that % satisfies (A2) and let κ be such that
(α− 1)κ > 0. Then, for all µ, ζ ∈ M1(T) such that µ(|bµ,α|) <∞ and ζ � µ,

|%|−1 {µ(|bµ,α + κ|)− µ (|bµ,α + κ|g%)} 6 Ψα(µk)−Ψα(ζk) , (37)

where g is the density of ζ wrt µ, i.e. ζ(dθ) = µ(dθ)g(θ). Moreover, equality holds in (37) if and only
if ζ = µ.

Proof. First note that for all α ∈ R \ {1}, we have by (A2) that f ′α,%(u) > 0 for all u > 0, and thus
that sg(%) = sg(α− 1) where sg(v) = 1 if v > 0 and −1 otherwise. Since sg(f ′α(u)) = sg(α− 1) =
sg(κ) for all u > 0, this implies that %−1f ′α(u) = |%|−1|f ′α(u)|, %−1κ = |%−1κ| and finally that
%−1(bµ,α(θ) + κ) = |%−1||bµ,α(θ) + κ| for all θ ∈ T, which will be used later in the proof.

Write by definition of fα,% in (A2) and ζ,

Ψα(ζk) =

∫
Y

fα

(
ζk(y)

p(y)

)
p(y)ν(dy)

=

∫
Y

fα,%

([
ζk(y)

p(y)

]%)
p(y)ν(dy)

=

∫
Y

fα,%

([∫
T

µ(dθ)
k(θ, y)

µk(y)

(
g(θ)µk(y)

p(y)

)]%)
p(y)ν(dy)

6
∫
Y

fα,%

(∫
T

µ(dθ)
k(θ, y)

µk(y)

(
g(θ)µk(y)

p(y)

)%)
p(y)ν(dy) (38)

where the last inequality follows from Jensen’s inequality applied to the convex function u 7→ u% (since
% ∈ R \ [0, 1]) and the fact that fα,% is non-decreasing. Now set

uy =

∫
T

µ(dθ)
k(θ, y)

µk(y)

(
g(θ)µk(y)

p(y)

)%
vy =

(
µk(y)

p(y)

)%
and note that

uy − vy =

(
µk(y)

p(y)

)%(∫
T

µ(dθ)
k(θ, y)

µk(y)
g%(θ)− 1

)
(39)

Since fα,% is concave, fα,%(uy) 6 fα,%(vy) + f ′α,%(vy)(uy − vy). Then, combining with (38), we get

Ψα(ζk) 6
∫
Y

fα,%(uy)p(y)ν(dy) (40)

6
∫
Y

fα,%(vy)p(y)ν(dy) +

∫
Y

f ′α,%(vy)(uy − vy)p(y)ν(dy)

Note that the first term of the rhs can be written as∫
Y

fα,%(vy)p(y)ν(dy) =

∫
Y

fα

(
µk(y)

p(y)

)
p(y)ν(dy) = Ψα(µk) (41)
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Using now f ′α,%(vy) = %−1v
1/%−1
y f ′α(v

1/%
y ) and (39), the second term of the rhs of (40) may be

expressed as ∫
Y

f ′α,%(vy)(uy − vy)p(y)ν(dy)

= %−1

∫
Y

(
µk(y)

p(y)

)1−%

f ′α

(
µk(y)

p(y)

)
(
µk(y)

p(y)

)%(∫
T

µ(dθ)
k(θ, y)

µk(y)
g%(θ)− 1

)
p(y)ν(dy)

= %−1

∫
T

µ(dθ)

(∫
Y

k(θ, y)f ′α

(
µk(y)

p(y)

)
ν(dy)

)
g%(θ)

− %−1

∫
Y

µk(y)f ′α

(
µk(y)

p(y)

)
ν(dy)

= %−1 {µ (bµ,α · g%)− µ(bµ,α)}
= |%|−1 {µ (|bµ,α + κ|g%)− µ(|bµ,α + κ|)}+ |%−1κ|(1− µ(g%)) ,

where we have used that %−1(bµ,α(θ) +κ) = |%−1||bµ,α(θ) +κ| for all θ ∈ T and that %−1κ = |%−1κ|.
In addition, Jensen’s inequality applied to the convex function u 7→ u% implies that µ(g%) > 1 and thus∫

Y

f ′α,%(vy)(uy − vy)p(y)ν(dy) 6 |%|−1 {µ (|bµ,α + κ|g%)− µ(|bµ,α + κ|)} . (42)

Combining this inequality with (40) and (41) finishes the proof of the inequality. Furthermore, if the
equality holds in (37), then the equality in Jensen’s inequality (42) shows that g is constant µ-a.e. so
that ζ = µ, and the proof is completed.

Remark 14. The proof of Proposition 13 relies on f ′α being of constant sign. Notice however that
the definition of the α-divergence in (1) is invariant with respect to the transformation f̃α(u) =
fα(u) + κ(u− 1) for any arbitrary constant κ, that is fα can be equivalently replaced by f̃α in (1).
This aspect is in fact expressed through the constant κ appearing in the update formula.

We now plan on setting ζ = Iα(µ) in Proposition 13 and obtain that one iteration of the Power
Descent yields Ψα(Iα(µ)k) 6 Ψα(µk). For this purpose and based on the upper bound obtained in
Proposition 13, we strengthen the condition (36) as follows to take into account the exponent %

0 < µ(|bµ,α + κ|
η

1−α ) <∞ and µ(|bµ,α + κ|g%) 6 µ(|bµ,α + κ|)

with g =
|bµ,α+κ|

η
1−α

µ(|bµ,α+κ|
η

1−α )
. (43)

This leads to the following result.

Proposition 15. Assume (A1). Let α ∈ R \ {1}, assume that % satisfies (A2) and let κ be such that
(α− 1)κ > 0. Let µ ∈ M1(T) be such that µ(|bµ,α|) <∞ and assume that η satisfies (43). Then, the
two following assertions hold.

(i) We have Ψα(Iα(µ)k) 6 Ψα(µk).

(ii) We have Ψα(Iα(µ)k) = Ψα(µk) if and only if µ = Iα(µ).

Proof. We treat the case κ = 0 in the proof below (the case κ 6= 0 unfolds similarly). We apply
Proposition 13 with ζ = Iα(µ) so that ζ(dθ) = µ(dθ)g(θ) with g = |bµ,α|η/(1−α)/µ(|bµ,α|η/(1−α)).
Then,

Ψα(Iα(µ)k) 6 Ψα(µk) + |%|−1 {µ (|bµ,α|g%)− µ(|bµ,α|)} 6 Ψα(µk) (44)

where the last inequality follows from condition (43).
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Let us now show (ii). The if part is obvious. As for the only if part, Ψα(Iα(µ)k) = Ψα(µk) combined
with (44) yields

Ψα(Iα(µ)k) = Ψα(µk) + |%|−1 {µ (|bµ,α|g%)− µ(|bµ,α|)} ,

which is the case of equality in Proposition 13. Therefore, Iα(µ) = µ.

While Proposition 15 resembles [20, Theorem 1] in its formulation and in the properties on the iteration
µ 7→ Iα(µ) it establishes, it is important to note that the proof techniques used, and thus the conditions
on η obtained, are different.

This brings us to the proof of Proposition 7. The proof of this theorem requires intermediate results,
which are derived in Appendix A.2 alongside with the proof of Proposition 7.

Proof of Proposition 7

For the sake of readability, we only treat the case κ = 0 in the proofs below (and the case κ 6= 0 unfolds
similarly). In Proposition 13, the difference Ψα(ζk)−Ψα(µk) is split into two terms

Ψα(ζk)−Ψα(µk) = A(µ, ζ) + |%|−1 {µ (|bµ,α|g%)− µ(|bµ,α|)} ,

where g = dζ/dµ. Moreover, Proposition 13 states that A(µ, ζ) is always non-positive.

It turns out that the second term is minimal over all positive probability densities g when it is propor-
tional to |bµ,α|1/(1−%), as we show in Lemma 16 below.

Lemma 16. Let % ∈ R \ [0, 1]. Then, for any positive probability density g w.r.t µ, we have

µ (|bµ,α|g%) >
[
µ
(
|bµ,α|1/(1−%)

)]1−%
,

with equality if and only if g ∝ |bµ,α|1/(1−%).

Proof. The function x 7→ x1−% is strictly convex for % ∈ R \ [0, 1]. Thus Jensen’s inequality yields,
for any positive probability density g w.r.t. µ,

µ (|bµ,α|g%) =

∫
T

µ(dθ)

(
|bµ,α(θ)|1/(1−%)

g(θ)

)1−%

g(θ) >
[
µ
(
|bµ,α|1/(1−%)

)]1−%
(45)

which finishes the proof of the inequality. The next statement follows from the case of equality in
Jensen’s inequality: g must be proportional to |bµ,α|1/(1−%).

The next lemma shows that this choice leads to a non-positive second term, thus implying that
Ψα(ζk) 6 Ψα(µk).

Lemma 17. Assume (A1). Let α ∈ R\{1} and assume that % satisfies (A2). Then η = (1−α)/(1−%)
satisfies (43) for any µ ∈ M1(T) such that µ(|bµ,α|) <∞.

Proof. We apply (45) with g = 1 and get that[
µ
(
|bµ,α|1/(1−%)

)]1−%
6 µ(|bµ,α|) <∞ . (46)

Then (43) can be readily checked with η = (1 − α)/(1 − %). Set φ = η/(1 − α). Using that
µ(|bµ,α|) < ∞ when φ < 0 and (A1) for φ > 0, we obtain µ(|bµ,α|φ) > 0, which concludes the
proof.

While Lemma 17 seems to advocate for g = dζ/dµ to be proportional to |bµ,α|1/(1−%), notice that
this choice of g might not be optimal to minimize Ψα(ζk)−Ψα(µk), as A(µ, ζ) also depends on g
through ζ. In the next lemma, we thus propose another choice of the tuning parameter η, which also
satisfies (43) for any µ ∈ M1(T) such that µ(|bµ,α|) <∞.
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Lemma 18. Assume (A1). Let α ∈ R \ {1} and assume that % satisfies (A2). Let µ ∈ M1(T) be such
that µ(|bµ,α|) <∞. Assume in addition that |%| > 1, then η = (α− 1)/% satisfies (43).

Proof. Setting g ∝ |bµ,α|−1/%, we get

µ(|bµ,α|g%) = µ(|bµ,α|1−%/%)[µ(|bµ,α|−1/%)]−% = [µ(|bµ,α|−1/%)]−% 6 µ(|bµ,α|)

where the last inequality follows from Jensen’s inequality applied to the convex function u 7→ u−%

(since |%| > 1). Since µ(|bµ,α|) <∞, the parameter η = (α− 1)/% satisfies (43). Set φ = η/(1− α).
Using that µ(|bµ,α|) <∞ when φ < 0 and (A1) for φ > 0, we obtain µ(|bµ,α|φ) > 0, which concludes
the proof.

Lemma 17 and Lemma 18 allow us to define a range of values for η that decreases Ψα after one
transition of the Power Descent, under the assumption that % satisfies (A2). Now, in order to prove
Proposition 7 and given α ∈ R \ {1}, we need to check which values of % satisfy the conditions
expressed in (A2).

Proof of Proposition 7. The proof consists in verifying that we can apply Proposition 15, that is, given
α ∈ R \ {1}, we must find a range of constants % which satisfy (A2). We then use Lemma 17 or
Lemma 18 to deduce that, for the provided constants η, (43) holds.

(i) Assumption (A2) holds for all % < 0, with fα,%(u) = − log(u)/%. Moreover, by definition of bµ,α,
we get for all n > 1,

µ(|bµ,α|) =

∫
Y

µk(y)
p(y)

µk(y)
ν(dy) =

∫
Y

p(y)ν(dy) <∞ .

Combining with Lemma 17 and Lemma 18, (43) holds for all µ ∈ M1(T) and for any η ∈ (0, 1].

(ii) Observing that for α /∈ {0, 1},

fα,%(u) =
1

α(α− 1)

(
uα/% − 1

)
,

we get that (A2) holds for % 6 α if α < 0 Lemmas 17 and 18 provide the corresponding ranges for η
in Cases (i) and (ii). To finish the proof, we now show that for all µ ∈ M1(T), µ(|bµ,α|) is finite, so
that Lemmas 17 and 18 can indeed be applied.

Since uf ′α(u) = αfα(u) + 1/(α− 1), we have, for all n > 1,

µ(|bµ,α|) =

∫
Y

∣∣∣∣(µk(y)

p(y)

)
f ′α

(
µk(y)

p(y)

)∣∣∣∣ p(y)ν(dy) (47)

6 |α|
∫
Y

∣∣∣∣fα(µk(y)

p(y)

)∣∣∣∣ p(y)ν(dy) +
1

|α− 1|

Using that Ψα(µk) > −∞ (which is a consequence of (A1) and of Jensen’s inequality applied to the
convex function u 7→ ufα(1/u)), the r.h.s is finite if and only if Ψα(µk) is finite, which is what we
have assumed and thus the proof is finished.
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B Algorithm 1 within the Student’s family

We consider the case of d-dimensional Student’s mixture densities of the form k(θj , y) =
T (y;mj ,Σj , νj), where θj = (mj ,Σj) denotes the mean and covariance matrix of the j-th Stu-
dent’s component density. Then, based on Example 2, solving

θj,n+1 = argmax
θj∈T

∫
Y

λj,nγ
n
j,α(y) log(k(θj , y))ν(dy) , j = 1 . . . J

yields the following update formulas

∀j = 1 . . . J, mj,n+1 =

∫
Y
γnj,α(y)gnj (y)y ν(dy)∫
Y
γnj,α(y)gnj (y)ν(dy)

Σj,n+1 =

∫
Y
γnj,α(y)gnj (y)(y −mj,n)(y −mj,n)T ν(dy)∫

Y
γnj,α(y)gnj (y)ν(dy)

,

where for all y ∈ Y and for all j = 1 . . . J , we have set

gnj (y) =
νj + d

νj + (y −mj,n)T (Σj,n)−1(y −mj,n)
.

Based on Algorithm 1 and given a sequence of samplers (qn)n>1, one may consider in practice
Algorithm 4 below.

Algorithm 4: α-divergence minimisation for Student’s Mixture Models
At iteration n,

1. Draw independently M samples (Ym,n)16m6M from the proposal qn.

2. For all j = 1 . . . J , set

λj,n+1 =
λj,n

[∑M
m=1 γ̂

n
j,α(Ym,n) + (α− 1)κ

]ηn
∑J
`=1 λl,n

[∑M
m=1 γ̂

n
`,α(Ym,n) + (α− 1)κ

]ηn
mj,n+1 =

∑M
m=1 γ̂

n
j,α(Ym,n)gnj (Ym,n) · Ym,n∑M

m=1 γ̂
n
j,α(Ym,n)gnj (Ym,n)

Σj,n+1 =

∑M
m=1 γ̂

n
j,α(Ym,n)gnj (Ym,n) · (Ym,n −mj,n)(Ym,n −mj,n)T∑M

m=1 γ̂
n
j,α(Ym,n)gnj (Ym,n)

.

C Practical versions of Algorithm 2 within the Gaussian family

Based on the updates (30) and (31) from Remark 9, we obtain below the two practical algorithms for
Gaussian Mixture Models (GMMs) optimisation.
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Algorithm 5: α-divergence minimisation for GMMs based on (30)
At iteration n,
1. Draw independently M samples (Ym,n)16m6M from the proposal qn.

2. For all j = 1 . . . J , set

λj,n+1 =
λj,n

[∑M
m=1 γ̂

n
j,α(Ym,n) + (α− 1)κ

]ηn
∑J
`=1 λ`,n

[∑M
m=1 γ̂

n
`,α(Ym,n) + (α− 1)κ

]ηn
θj,n+1 = θj,n + γ

λj,n
∑M
m=1 γ̂

n
j,α(Ym,n) · (Ym,n − θj,n)∑J

j=1

∑M
m=1 λj,nγ̂

n
j,α(Ym,n)

.

Algorithm 6: α-divergence minimisation for GMMs based on (31)
At iteration n,
1. Draw independently M samples (Ym,n)16m6M from the proposal qn.

2. For all j = 1 . . . J , set

λj,n+1 =
λj,n

[∑M
m=1 γ̂

n
j,α(Ym,n) + (α− 1)κ

]ηn
∑J
`=1 λ`,n

[∑M
m=1 γ̂

n
`,α(Ym,n) + (α− 1)κ

]ηn
θj,n+1 = θj,n + γ

∑M
m=1 γ̂

n
j,α(Ym,n) · Ym,n∑M

m=1 γ̂
n
j,α(Ym,n)

.

D Additional numerical experiments

In this section we provide further plots based on the numerical experiments from Section 5.

Numerical Experiment 1 when M ∈ {500, 1000}. We work within the same framework as the one
from Numerical Experiment 1 except that we now take M ∈ {500, 1000} samples at each step n while
keeping the total computational budget equal to N ×M = 20000 samples. The experiment is repeated
200 times independently for each algorithm considered and the results are plotted on Figure 4 and
Figure 5 below.

Observe that as M increases, the performances of the UM-PMC(η, κ) algorithm are improved and
become comparable to the one of the M-PMC(η, κ) algorithm, especially for smaller values of η.

29



K. Daudel, R. Douc, F. Roueff March 9, 2021

Figure 4: M = 500. LogMSE comparison for the M-PMC(η, κ) and the UM-PMC(η, κ) algorithms
with d = 16, η ∈ {1.0, 0.5, 0.2, 0.1} and −κ = {0, 0.1, 1}.

Figure 5: M = 1000. LogMSE comparison for the M-PMC(η, κ) and the UM-PMC(η, κ) algorithms
with d = 16, η ∈ {1.0, 0.5, 0.2, 0.1} and −κ = {0, 0.1, 1}.
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