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Abstract. This article gives an overview on knowledge harvesting: auto-
matically constructing large high-quality knowledge bases from Internet
sources. The first part reviews key principles and best-practice methods.
The second part points out open challenges for future research.

1 Introduction

Enhancing computers with “machine knowledge” that can power intelligent ap-
plications is a long-standing goal of computer science [34]. Major advances on
knowledge harvesting — methods for turning noisy Internet content into crisp
knowledge structures on entities and relations — have made this formerly elusive
vision practically viable today.

A prominent use case where knowledge bases (KB’s) have become a key
asset is search engines. When we send a query like “jobs biography” to Bing or
Google, we obtain information on the life of Steve Jobs. So the search engine
automatically detects that we are interested in facts about an individual entity.
On the other hand, for a query like “jobs in bay area”, the search engine locates
the spatial entity Bay Area and properly interprets the query as a request for
local job ads. Finally, for the query “jobs at apple”, the system returns a mix of
two different interpretations. All this is feasible because the search engine has a
huge knowledge base on its back-end servers, aiding in the discovery of entities
in user requests (and their contexts) and in finding concise answers.

The KB’s in this setting are centered on individual entities, containing:

e entities like people, places, organizations, products, events (e.g., SteveJobs,
the GoldenGateBridge, the Pixar company, the iPhone7, the WoodstockConcert),

e the semantic classes to which entities belong (e.g., SteveJobs type entrepreneur,

SteveJobs type computerPioneer, SteveJobs type ZenBuddhist),
e relationships between entities (e.g., SteveJobs founded Applelnc,

SteveJobs invented iPhone, SteveJobs diedOf PancreaticCancer), as well as
e their validity times (e.g., SteveJobs wasCEQof Pixar [1986,2006]).

This concept of a comprehensive KB goes back to pioneering work in Ar-

tificial Intelligence on universal knowledge bases in the 1980s and 1990s, most
notably, the Cyc project at MCC in Austin [35] and the WordNet project at
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Princeton [19]. However, these knowledge collections have been hand-crafted
and manually curated. Thus, knowledge acquisition was inherently limited in
scope and scale. Starting this millenium with the Semantic Web vision, domain-
specific ontologies [59] have been developed, but these are also manually created.
In the last decade, automatic knowledge harvesting from Web and text sources
has become a major research avenue, and has made substantial practical impact.
Knowledge harvesting is the core methodology for the automatic construction of
large knowledge bases, going beyond manually compiled knowledge collections
like Cyc or WordNet.

These achievements are rooted in academic research and community projects.
Salient projects that started ten to fifteen years ago are DBpedia [2], Freebase
[5], KnowItAll [18], WebOfConcepts [11], WikiTaxonomy [50] and Yago [60].
More recent projects with publicly available data include BabelNet [44], Con-
ceptNet [58], DeepDive [57], EntityCube (aka. Renlifang) [46], KnowledgeVault
[15], NELL [7] Probase [73], Wikidata [68], XLore [70].

The largest general-purpose KB’s with publicly accessible contents are Ba-
belNet (babelnet.org), DBpedia (dbpedia.org), Wikidata (http://wikidata.org)
and Yago (yago-knowledge.org). They contain millions of entities, organized in
hundreds to hundred thousands of semantic classes, and hundred millions to
billions of relational facts on entities. These and other knowledge resources are
interlinked at the entity level, forming the Web of Linked Open Data [24].

Our own endeavor on knowledge harvesting was motivated by research on
semantic search. Later it became the Yago-Naga project, with the first release
of the Yago KB (yago-knowledge.org) in February 2007. The strength of Yago
is its rich type system with hundred thousands of classes. When IBM Watson
won the Jeopardy quiz show, it leveraged Yago’s knowledge of fine-grained entity
types for semantic type checking [28]. More recent Yago releases incorporated
temporal and spatial knowledge [25] and multilingual properties [53]. Yago is
maintained as a joint project of the Max Planck Institute for Informatics and
the Télécom ParisTech University.

Over the last five years, knowledge harvesting has been adopted at big indus-
trial stakeholders, and large KB’s have become a key asset in a variety of com-
mercial applications, including semantic search (see, e.g., [4]), analytics (e.g.,
aggregating by entities), recommendations and data integration (i.e., to com-
bine heterogeneous datasets in and across enterprises). Examples are the Google
Knowledge Graph (with Freebase as a catalyst), the use of KB’s in IBM Watson,
Amazon’s Evi, the Baidu Knowledge Graph, Facebook’s Graph Search, Microsoft
Satori, Wolfram Alpha as well as domain-specific knowledge bases in business,
finance, life sciences, and more (e.g., at Bloomberg, Mayo Clinic, Siemens, Wal-
mart, etc.). In addition, KB’s have found wide use as a distant supervision source
for a variety of tasks in natural language processing, such as entity linking.

This article gives an overview of knowledge harvesting. Section 2 reviews
research achievements and the state of the art, identifying key principles and
best-practice methods. Section 3 presents open challenges that provide oppor-
tunities for future research.
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2 Achievements

2.1 Knowledge Base Model

Knowledge representation has received great attention in Al research, leading to
sophisticated forms of epistemic logics and, with the advent of the Semantic Web,
description logics for ontologies [59]. However, none of these powerful models ever
led to sizable collections of knowledge. The main reason then was the lack of data
to populate knowledge models with interesting instances.

Entities, Classes and Relations: The former limitation of sparse data on
instances was eventually overcome by the advent of knowledge-sharing com-
munities like Wikipedia and the increasing availability of public datasets. This
enabled the extraction of entities and their properties from high-quality Internet
sources to populate a KB. Most of today’s KB’s use a simple relational repre-
sentation where all knowledge is cast into grounded formulas of n-ary predicates
(i.e., relation symbols). Constants (i.e., 0-ary predicates) denote entities or literal
values (e.g., coordinates, dates and other numbers), unary predicates correspond
to classes of same-type entities, and higher-arity predicates are used to capture
entity attributes or relationships with other entities.

SPO Triples: The widely used RDF data model even restricts n-ary relations
to be binary and casts the unary predicates for class membership into the binary
form (entity) type (class) — in infix notation, with type being the predicate. The
elemtary formulas in an RDF-compliant KB are also called subject-predicate-
object triples, or SPO triples for short. S is required to be an entity, whereas
O can be either an entity (e.g., someone’s spouse) or a literal (e.g., someone’s
birthdate). The following shows examples for such triples (in conceptual form,
disregarding the specifics of the RDF syntax):

SteveJobs type computerPioneer SteveJobs type entrepreneur
entrepreneur subclassOf businessperson| businessperson subclass0f person
SteveJobs hasDaughter LisaBrennan ApplelLisa namedAfter LisaBrennan
SteveJobs died0f PancreaticCancer SteveJobs diedOn 5-0ct-2011

The two triples in the first line above are about class membership. In stan-
dard logics these would be written as unary-predicate formulas: computerPioneer
(SteveJobs) and entrepreneur (SteveJobs). This form of knowledge about in-
stances of classes forms the backbone of a KB. The two triples in the second line
above organize classes in a subsumption hierarchy of subtypes and supertypes.
To avoid that this subclass0f predicate takes second-order form, the class pred-
icates are cast into binary form with the type predicate. All triples for the type
and subclass0f predicate constitute the tazonomic knowledge of a KB. Prior
work on ontologies mostly focused on intensional knowledge centered on the
subclass0f predicate, and hardly captured any instances for the type predicate.

Many KB'’s require that the subject arguments of type be individual entities
(aka. named entities) that can be uniquely identified in the real world, this way
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disregarding abstract entities (aka. general concepts) which are prone to sub-
jective interpretation. For example, concepts such as universe, love or quantum
physics are intentionally excluded to stay clear of potential pitfalls. This way, it
has become feasible to construct huge KB’s with millions of entities for many
thousands of classes with negligible error rate and very high agreement on what
is correct knowledge.

Taxonomic knowledge is already a huge asset for applications like search
and analytics. For example, a query such as “Which singers have won the No-
bel prize?” can be easily answered from the following triples (by intersecting
instances of different classes):

l BobDylan type singerl BobDylan type NobelPrizeLaureates

Likewise, an analytic task that compares frequencies of queries, clicks or
references for musicians vs. politicians, is made easy by a KB that provides the
class memberships of entities along with subclass knowledge such as:

l singer subclassOf musician‘ stateSecretary subclassOf politician‘

SPO triples with predicates other than type or subclass0f are referred to
as facts. The largest KB’s contain billions of facts for several thousand differ-
ent predicates. The predicates of interest (e.g., bornIn, hasDaughter, namedAfter
etc.) are often pre-specified. We will reconsider this point in Section 2.2.5.

Beyond SPO Triples: KB’s with this focus on binary relational facts are often
called knowledge graphs (KG'’s), as they correspond to labeled graphs with nodes
denoting entities and predicate-labeled edges for the facts. However, the restric-
tion to binary predicates is an oversimplification. There are many cases where
ternary and higher-arity relations are needed to represent real-world situations.
One important case is temporal knowledge: extending facts with their validity
times, a timepoint or a timespan. For example, capturing when Steve Jobs (co-)
founded Apple or from when until when he was CEQO of his various companies
calls for ternary predicates with an additional time argument:

SteveJobs founded AppleInc 1-April-1976
SteveJobs wasCEOof AppleInc [9-July-1997, 24-Aug-2011]

Generally, events often require three or more arguments to fully capture them:
several entities involved in various roles, time, place, etc. As an example, con-
sider the football match where Germany won 7:1 against Brazil on 8-July-2014
in Belo Horizonte. Such a composite fact cannot be broken down into binary
facts without losing information. The RDF data model then usually escapes
to so-called reification: assigning an entity id to the entire event, and adding
multiple triples for the event’s different aspects with the entity id as their com-
mon subject argument. However, this technique makes querying and reasoning
with knowledge more tedious. Higher-arity predicates, on the other hand, are a
natural representation.

Canonicalization: An important point in capturing crisp knowledge is the
uniqueness of representing entities and facts. Many (but not all) KB’s strive to
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canonicalize all arguments in their SPO triples and other facts. For classes, this
implies that differently named classes have (potentially) different instances (e.g.,
singer vs. songwriter vs. musician); conversely, differently named classes that
would always agree on their instances should be unified (e.g., humans vs. people).
For entities, the same principle applies: an entity can have different names, but
should be captured only once with a unique id. For example, knowledge about
the company Apple should not be registered twice or spread across different
names like “Apple”, “Apple Inc.”, “Apple company”. Instead, we need to map all
relevant facts to the same entity, canoncially denoted, for example, as Applelnc,
and keep its diverse surface names as labels (aka. alias names). This issue calls
for named entity disambiguation (aka. entity linking) (see, e.g., [38,56]). For
populating a KB, this step can be integrated into a knowledge harvesting method
or dealt with by specialized methods and tools.

The canonicalization principle carries over to entire facts. For example, a
high-quality KB should represent the gist of the sentences “Jobs was born in
San Francisco.” and “Apple’s charismatic Steve is from the City by the Bay” in a
single fact SteveJobs bornIn SanFrancisco. Without this unique representation,
querying a KB and using it for inference would be awkward.

Lessons Learned: A key point in enabling knowledge harvesting at large scale
has been to use a simple SPO-style representation as a backbone. This is suffi-
cient for a core KB to capture taxonomic classes and basic facts about millions of
individual entities. We emphasize, however, that this does not rule out additional
knowledge using higher-arity predicates and more sophisticated representations.
In particular, a rich KB should also comprise intensional assertions about the
world: constraints that couple different predicates or rules for deducing addi-
tional facts. For example, specifying that a person can have only one birthplace
and that the birthplace must be an entity of type location, is a vital piece of
knowledge. Obviously, this calls for more expressive predicate logics. We will
come back to this in Section 2.2.4.

2.2 Knowledge Gathering and Cleaning

For a KB model as outlined above, the core task of knowledge harvesting is to
i) identify appropriate data sources as input, ii) extract entities, classes and re-
lational facts, and iii) organize them into a clean KB. This builds on techniques
from the area of information extraction (IE), based on patterns in Web pages
and text documents (see [9, 55] for surveys). However, IE copes with one source
as fixed input (e.g., one Web site), whereas knowledge harvesting has freedom
in choosing its sources and can exploit redundancy and statistics across many
sources. Important knowledge is often expressed in many sources in complemen-
tary ways. We can pick low-hanging fruit by choosing the best suitable sources
and treat sources with different degrees of noise in very different ways.

This principle suggests a layered approach where we first tap sources with
limited noise in content and structure, using robust extraction methods for high-
quality output. This is why many KB’s intensively build on harvesting semi-
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structured elements of Wikipedia: category names, infoboxes, lists, headings, etc.
For specific domains (e.g., health), there are often specific sources that should
be prioritized (e.g., repositories such as Medscape, DrugBank, FAERS, etc.).

As a second stage, additional knowledge can then be harvested from riskier
sources. We will see below that the previously compiled high-quality knowledge
is beneficial in filtering noise and cleaning candidate facts. In other words, once
we have a strong core KB, it is an asset in acquiring more knowledge, deeper
knowledge and better knowledge — without degrading in quality.

2.2.1 Harvesting Entities and Classes

The first goal of knowledge harvesting is to compile a comprehensive set of
semantic classes (e.g., guitarists, electric guitarists, left-handed guitarists, etc.)
and their instances (i.e., individual entities such as Bob Dylan, Jimmy Page, Jimi
Hendrix, etc.). In addition, we want to capture subsumptions among classes. We
could address this task ab initio, starting with raw Internet contents, but it
would be unwise to ignore pre-existing high-quality resources. First, classic work
on linguistics and cognition led to WordNet [19], a large repository of words and
word senses with lexical relations like synonymy, antonymy, hypernymy (i.e.,
subsumption), etc. This can be seen as a source of more than 100,000 seman-
tically classes, carefully organized into a subclass/superclass taxonomy. Second,
knowledge-centric communities like Wikipedia organize articles in category sys-
tems. While these were noisy in the early years of Wikipedia (with improper or
misleading categories), the editorial guidelines and manual curation of Wikipedia
have eventually led to a very rich and reasonably accurate system of about half a
million categories. Given these prior assets, one line of successful research has de-
rived taxonomic knowledge for high-quality KB’s from WordNet and Wikipedia
[44,50,60]. The Yago KB, for example, has carefully unified WordNet classes
and Wikipedia categories and constructed a high-quality taxonomy with more
than 300,000 fine-grained classes.

Once we settle on a class taxonomy, the next step is to populate the classes
with individual entities (where one entity can belong to several classes). Here,
Wikipedia is by far the largest and best asset to tap into, as it already organizes
articles about entities within its category system. Most of the large KB’s have
seized this opportunity. It is straightforward when the taxonomy is based on
Wikipedia categories. For connecting to WordNet classes, though, clever align-
ment and pruning techniques are needed [60]. The philosophy of “picking low-
hanging fruit first” also carries over beyond Wikipedia. For example, Yago has
integrated GeoNames (geonames.org) for spatial entities [25]. For health enti-
ties like diseases, symptoms, drugs, etc., manually curated sources like UMLS,
MeSH, DrugBank, etc. can be used very effectively (see, e.g., [17]). Generally,
entities of specific types (e.g., books, songs, medical drugs, etc.) can often be
harvested from dedicated sources or specific identifier systems [62]. As a caveat,
we note that this does not completely cover the world of emerging entities like
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new events or people who suddenly become notable (e.g., a new singer). This
aspect of knowledge dynamics will be discussed in Section 2.3.

A major alternative to relying on Wikipedia-style sources is to tap all kinds
of Internet sources at large scale. A classic approach for this line of tazonomy
induction research is to use so-called Hearst patterns like X such as Yor X, Y and
other Z and match them against Web and text contents to extract class-entity or
subclass-superclass pairs [23]. Using advanced data-mining and machine-learning
techniques, this idea can be greatly generalized, to tap into additional patterns,
http links and HTML tables (where a column name and cell value may indicate a
class-entity pair), or into query-and-click logs of big search engines (see, e.g., [10,
31,47,67,69, 73]). These are powerful methods; however, they require large-scale
machinery and access to big data like complete Web crawls or search engine logs.

2.2.2 Gathering Facts from Wikipedia The most straightforward way
of gathering binary facts is to harvest infoboxes in Wikipedia. These provide
attributes and relationships of the entity featured in an article, in semi-structured
form. Here is an example in the wiki markup language:

{{ Infobox person
| name Steve Jobs

| birth_date Birth date|1955|2|24|mf=y

| birth place [[San Francisco]], California, U.S.

|

death_cause = [[Pancreatic cancer]] and [[respiratory arrest]] }}

Naturally, these P and O components for SPO triples can be extracted by
regular expressions (i.e., finite state automata). These expressions may even be
automatically learned from samples with manual markup. Unfortunately, even
Wikipedia infoboxes exhibit noise and terminological diversity. For example,
birthplaces could be stated differently in different articles: birth place = ...,
born_in = ..., born_in_city = ..., etc.; and the values may be encoded in dif-
ferent ways (e.g., with or without the state in a country). To cope with this
heterogeneity, type-checking the outputs of a regex matcher is a boost in quality
[25, 60]. Here, having rich taxonomic knowledge — entities and their fine-grained
types — is a huge benefit. The result is clean facts in canonicalized form.

There are other opportunities to extract facts from semi-structured elements
(i.e., headings, tables, etc.) in Wikipedia or similar high-quality sources. As the
diversity of how facts are expressed increases, this calls for stochastic variants of
automata, like Conditional Random Fields (CRF’s). Facts from infoboxes can
be used to train CRF-based extractors (e.g., [72]).

2.2.3 Gathering Fact Candidates from Text

For high recall (i.e., gathering as many facts as possible), we eventually need
to tap into natural language text as input, facing even higher degrees of noise
and variability. In this setting, pattern-based harvesting has been the method of
choice. For example, birthplaces of people are often expressed by phrases such
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as “his birthplace is”, “her hometown”, “is from”, etc. Of course, it would be
daunting to manually specify such patterns for hundreds or thousands of pred-
icates. Instead, a distantly supervised approach has become prevalent, centered
on the principle of pattern-fact duality [1,6,18,40]. For each relation of interest,
a small set of seed facts is needed, for example, the correct birthplaces of a few
prominent people (which could be obtained from semi-structured high-quality
sources). These facts can be matched against a corpus (or the entire Internet)
by searching for sentences that contain the subject entity and the object en-
tity. The key idea then is that facts frequently co-occur with connecting phrases
(e.g., verbal phrases) that can be distilled into patterns. The patterns in turn
co-occur with other, newly seen facts. This procedure — alternating between facts
and patterns — can be iterated, and eventually yields a large number of new fact
candidates. Patterns can be surface phrases, but can also cover generalizations
such as lifting the words ”his” and "her” into personal pronouns, capture non-
adjacent words, or use dependency parsing to consider the syntactic structure of
sentences. Also, HTML tables in Web pages can be tapped for fact harvesting
in a similar vein; this has been successfully pursued, for example, by the NELL
and Knowledge Vault projects [15,41].

Of course, this gathering process needs to be comlemented by computing
statistical measures of confidence and support. Otherwise, spurious patterns may
easily lead to drifting targets. For example, starting with Steve Job’s birthplace
San Francisco among the seed facts, the method could pick up the pattern “his
favorite place” after a few iterations. By judicious thresholding, one can obtain
a good set of assertions for facts. This approach typically results in an accuracy
around 80% — that is, there are still 20% of the assertions incorrect, due to noise
in the patterns.

2.2.4 Cleaning Fact Candidates

The high recall of the outlined gathering methods comes at the expense of
potentially degrading in precision: introducing many false candidates for facts.
For example, we may obtain the following assertions for the birthplace relation:

SteveJobs birthplace SanFrancisco|SteveJobs birthplace USA
SteveJobs birthplace Kyoto SteveJobs birthplace Applelnc

These fact candidates may be derived from diverse patterns for the birthplace
predicate, such as “his hometown”, “citizen of”, “his favorite place” or “mostly
at”. The resulting triples have to be cleaned: removing spurious assertions, and
also mapping patterns of good triples — “his hometown” in the above case — onto
canonicalized predicates. Next, we discuss methods for this purpose.

Consistency Constraints: A key idea is to mimic human skepticism: use plau-
sibility considerations to rule out dubious assertions. In technical terms, we can
impose consistency constraints on the candidate space, to discard assertions that
violate certain conditions. The simplest idea is to enforce type constraints, and
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this actually provides enormous mileage towards building a high-quality KB. For
the above example, the relation about where people are born should be spec-
ified with a type signature birthplace: person X location, or more specifically
birthplace: person X city. This constitutes a logical constraint:

’Vx, y (birthplace(x,y) = (type(x, person) A type(y, czty)))‘

The constraint is violated by 2 of the 4 candidate facts above, leaving only
San Francisco and Kyoto as possible cities where Steve Jobs was born.

This logics-based approach is far more general than mere type checking.
There are other kinds of constraints to be harnessed, most notably, functional
constraints — many relations are actually functions — and inclusion constraints
between different relations. For example, each person can have only one birth-
place, and birthplaces are usually among the cities where a person has lived:

Va,y, z ((birthplace(x, y) A birthplace(x, z)) = y = z)
Y,y (birthplace(x,y) = livedIn(z,y))

These constraints have to be manually specified by a knowledge engineer.
However, this is a fairly easy modeling task, and not a bottleneck at all. There
are also techniques for automatically learning constraints from data (see, e.g., [7,
41]), but this comes at a higher risk. In general, constraints can be hard or soft:
absolutely excluding any violation or tolerating a certain degree of exceptions.
For example, the above formula that couples birthplace and livedIn is soft.
In such cases, the constraints may be weighted. Fact candidates are weighted as
well, typically by some notion of confidence based on statistics from the gathering
stage. This opens the way to deciding between San Francisco and Kyoto for the
birthplace of Steve Jobs.

Consistency Reasoning: Fact candidates should not solely be checked against
each constraint in isolation. Instead, it is beneficial to perform joint inference
over a set of assertions and a set of constraints. Consider, for example, the
following noisy candidates and soft constraints, with the last two constraints
stating that someone can either be a scientist or a musician, but never both:

BobDylan hasWon Grammy

BobDylan hasWon LiteratureNobelPrize

BobDylan hasWon PhysicsNobelprize

Vz (hasWon(z, Grammy) = type(x, musician))

Vz (hasWon(z, PhysicsNobel Prize) = type(x, scientist))
Vz (type(z, scientist) = —type(x, musician))

Vz (type(z, musician) = —type(x, scientist))

There is no way to keep all three fact candidates while enforcing all con-
straints. There are two different combinations of prizes, though, that are con-
sistent. By viewing the data as a set of logical formulas, this becomes a test for
satisfiability. By grounding the constraints with the constants from the candi-
date fact pool, the problem is reduced to an instance of the MazSat problem.
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Moreover, since each individual formula has a weight (see above), the task is
to compute a Weighted MazSat solution. Although this is a classical NP-hard
problem, there are good approximation techniques and there are ways of cus-
tomizing them to this specific task of knowledge cleaning [43, 61]. In the example,
assume that the weight for the Grammy fact is much higher than the weight for
the Physics Nobel Prize and the weights for the three constraints are identical.
Then, the best solution is to accept the facts about the Grammy and Literature
Nobel Prize while dropping the assertion about the Physics Nobel Prize.

Probabilistic Graphical Models: The above line of thought has been very
fruitful for knowledge cleaning and comes in a variety of ways: MaxSat reasoning
is one approach, integer linear programming another one, and there are also
powerful probabilistic inference methods along these lines. The latter include
especially probabilistic graphical models, where random variables for accepting
or refuting fact candidates are coupled through logical constraints [14,30]. In
this setting, the MAP inference (MAP = maximum a posteriori) is equivalent
to solving a weighted MaxSat problem. Approximation algorithms include SAT
solvers, Monte Carlo sampling, variational calculus and more. Applications to
knowledge harvesting have been developed, among others, by [7,52, 57,61, 74,
75]. Constraints have also been leveraged for estimating the confidence in specific
extractions and for training fact extraction methods (see, e.g., [41]).

Beyond Triples: Methods of this kind can be further extended to go beyond
binary relations. An important use case is temporal knowledge where facts need
to be annotated with timepoints or timespans when they are valid [37,63, 71].
For example, properly interpreting a fact such as BobDylan spouse0f SaraDylan
requires the corresponding time scope [Nov-1965, June-1977]. So strictly speak-
ing, we are looking at a ternary relation here: spouse0f: person X person X time.
This is a special case of higher-arity relations, often but not only in combination
with entities of type event. Knowledge harvesting methods, as outlined above,
can be further extended to this end (see, e.g., [32]).

2.2.5 Other Approaches

A potential concern about the above methods is their limitation to pre-
specified predicates. For example, we can harvest composers of songs or artists
who covered songs only after a human curator provides the relevant predicates
with type signatures: composedMusic: musician X song and coveredMusic: musi-
cian X song. On the other hand, facts on song lyrics being about specific people
cannot be harvested unless we explicitly model such a predicate. Therefore, we
refer to the presented methods as model-driven knowledge harvesting.

Open IE: The paradigm of Open Information Extraction (Open IE) [3,12,39]
offers unsupervised harvesting of fact triples in an open-ended manner, without
any modeling effort. Using linguistic patterns, Open IE collects all kinds of triples
where S, P and O are meaningful phrases, typically noun phrases for S and O
and verbal phrases for P. These are not canonicalized; so outputs could be:
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”Dylan’s Hurricane” ”covers the story of” ”the black boxer Carter”
”Hurricane” ”is a protest song about” ”racist victim Carter”
”Sara” ”is a love song about” ”Dylan’s wife”

”the love song Sara” ”is about” ”his ex-wife Sara Dylan”

Such output requires disambiguating the S and O arguments of the phrase-
level triples, which is typically an entity-linking task [56] against an existing
KB of entities. Canonicalizing the P components, on the other hand, is an open
challenge as the space of possible predicates is unknown in this open-ended
setting. Research along these lines, based on clustering techniques, includes [20].

Deep Learning: With recent breakthroughs in deep learning [33], an intriguing
thought could be to bypass the explicit construction of a KB, and rather use
end-to-end learning on a per-task basis (e.g., question answering or describing
videos). However, this raises caveats. First, it would require huge amounts of
labeled training data which are often unavailable. Second, this expensive training
would have to be repeated for every new task. Third, machine learning outputs
(i.e., predictions, recommendations, answers or even decisions) are not easily
explainable to human users. Explicit KB’s, on the other hand, are a reusable
asset for many tasks, they can inform and constrain the learning of models, and
they support user-comprehensible explanations.

2.3 Knowledge Evolution and Quality

Change is the only constant in knowledge. Attribute values of entities (e.g., city
populations) and relationships between entities (e.g., the CEO of a company
or a person’s spouse) change over time. Moreover, new entities of interest are
created all the time and need to be added to the KB (e.g., new songs, sports
matches, babies of celebrities). Also, existing entities may be irrelevant for a
KB at some point, but become prominent at a later point. Typical examples are
when a “garage band” or “garage company” becomes succesful. If Wikipedia had
already existed in 1976, it would probably have dismissed Apple for insufficient
notability.

Temporal Knowledge: So KB’s must be continuously updated. This requires
keeping wversions of facts, along with their temporal validity scopes. We already
discussed methods for harvesting temporal knowledge in Section 2.2.4. Some of
the major KB’s have rigorously followed this principle (e.g., [25]).

Active Knowledge: For some kinds of highly dynamic and specialized knowl-
edge, explicitly capturing fact versions is not practically feasible. For example,
the chart positions of a song and the box office counts of a movie change so
rapidly that it is hardly meaningful to materialize such facts in the KB. Instead,
a preferable way is to keep links to specialized databases and to Web services
that return up-to-date values on demand [51].

Emerging Entities: A specific aspect of dynamic knowledge is to cope with
newly emerging entities. When discovering entity names in input sources (text,
Web tables, etc.), we first aim to disambiguate them onto the already known
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entities in the KB. However, even if there is a good match in the KB, it is not
necessarily the proper interpretation. For example, when the documentary movie
“Amy” was first mentioned a few years ago, it would have been tempting to link
the name to the soul singer Amy Winehouse. However, although the movie is
about the singer’s life, the two entities must not be confused. To rectify this
situation, each observed name should always be potentially associated with an
additional virtual candidate: none of the known entities [26]. When the evidence
for the name denoting an out-of-KB entity is stronger than for a known entity,
we capture the name as a new entity, along with its context. After a while, we
will thus obtain a repository of recently emerging entity names. Then, clustering
techniques can be used to group the names, and knowledge curators can be
asked to confirm these canoncialized groups. Finally, the confirmed entities can
be registered in the KB. To keep the effort for the curation step as low as possible,
new entity candidates should be presented with informative context [27].

On-the-fly Knowledge Bases: A specific case for out-of-KB entities is con-
structing ad-hoc KB’s on the fly. Suppose a new corpus of documents becomes
available, for example, the Panama Papers or a batch of articles on a hot politi-
cal or health topic, such as the UK Brexit or Zika infections. Then we should be
able to automatically build a domain- and corpus-specific KB overnight, to sup-
port journalists and analysts in exploring the topic and analyzing particularly
interesting issues.

Knowledge Curation: As a KB is continuously updated and keeps growing, it
is virtually inevitable that errors sneak in and degrade the KB quality. Versioning
of facts helps to control the maintenance process, but may also lead to conflicting
versions. For example, when a new name for the CEO for a company is detected
by harvesting fresh online sources, should this be added as a new fact or is it,
perhaps, evidence that the previous fact in the KB was incorrect? One case leads
to a new version, the other should result in overwriting the prior version. Even
worse, an error may be detected only post-hoc, days or weeks after a new version
was added and became interlinked with other facts.

Thus, quality assurance requires a fundamental solution. Fact cleaning, as
discussed in Section 2.2.4 is an important element, and so is versioning. However,
more is needed for a comprehensive approach. Today, very large KB’s resort to
manual curation, by having human volunteers (e.g., in an online community like
Wikidata) or paid workers (in a commercial KB) checking newly added or altered
facts. Such a crowdsourcing solution can be orchestrated in various ways, with
the goal of optimizing the benefit/cost ratio (e.g., [29]).

Fact Checking: An alternative or complement to human curators is to harness
the sources of evidence for doubtful facts in a more principled manner. This
may entail actively searching for evidence or counter-evidence about facts, as
a continuous background process. A typical approach is to consider a small
number of alternative O values for given S and P of a fact, such as birthplaces for
Steve Jobs: San Francisco vs. Cupertino vs. Kyoto. Then statistics derived from
Internet sources (i.e., databases, Web sites, news, etc.) can guide the analysis
and assessment of candidates towards finding the truth (see [36] for a survey).
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This form of knowledge corroboration or knowledge fusion aggregates the
observation confidence from different sources, where sources are weighted by
their trustworthiness. Therefore, reasoning on truth (of statements) and trust (of
sources) are often intertwined. Not surprisingly, joint inference methods, based
on probabilistic models, have been pursued to this end (e.g., [16, 42, 48, 49]).

3 Challenges

Notwithstanding the great advances of knowledge harvesting over the last decade,
there are major challenges left open — raising the bar for what computers should
know. In the following, we discuss a few strategic challenges, pointing out op-
portunities for future research.

3.1 Knowledge Base Coverage

No matter how large a KB can grow, it will never be fully complete. The gaps,
relative to an ideal KB, take different forms as discussed next.

Locally Incomplete Knowledge: This form of incompleteness can be formally
characterized by referring to SPO triples that are in the KB and triples that
should ideally be included but are missing. The most obvious case is when some
O values are absent for a given S and P value — for example, when the KB
contains some movies of a director but not all of them. Another case is when
for a given P value, we have O values for some S but not all of them — for
example, knowing spouses of some people but not knowing any spouses for other
married people. The challenge here is not just to fill these gaps, but to realize
when and where gaps exist. Reasoning over locally closed worlds is one recent
approach [22]. More research is needed to equip KB’s with self-reflection abilities
to automatically detect their own gaps.

Long-tail Entities and Classes: There are many lesser known musicians,
regional politicians and good but not exactly famous scientists. How can we
identify these long-tail entities in the Internet, and harvest facts about them?
Long-tail classes pose a similar problem: even with hundred thousands of classes
in some KB’s, one could always add more interesting ones. For example, what
if we want to capture classes like YogaPractitioners or BobDylanFans (both of
which would have Steve Jobs as a member)? Where in the class taxonomy should
these classes be placed, and how can we find their instances?

Missing Facts: KB’s have largely been constructed in an opportunistic manner,
tapping into Wikipedia and its semi-structured data elements. If something is not
explicitly said in Wikipedia or stated only in sophisticated form in the article’s
text, most KB’s will miss it. This has resulted in high coverage of elementary
facts like birthdates, marriages, albums of musicians, etc., but has neglected a
diversity of salient facts that stand out to a human but are not easily captured
by a machine. For example, what is notable about Bob Dylan’s album Blonde on
Blonde? KB'’s offer the release date, the list of songs, etc. To a human, however,
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salient properties are, for example, that this was one of the first albums on
which Dylan “went electric” (using electric instruments — irritating many of
his folk music fans), and that its song “Sad Eyed Lady of the Lowlands” is
about Dylan’s wife Sara. The song was later covered by Joan Baez, who had a
romantic relationship with Bob Dylan in the early 1960s and with Steve Jobs
in the early 1980s. Her song “Diamonds and Rust” is about Bob Dylan. None
of this is captured by any KB; most do not even have the proper predicates like
romanceWith or songIsAbout.

3.2 Commonsense, Rules and Socio-Cultural Knowledge

Automatically constructed KB’s have mostly focused on harvesting encyclopedic
fact knowledge. However, for semantic search and other intelligent applications
(e.g., conversational bots in social media), machines need a broader understand-
ing of the world: properties of everyday objects, human activities, plausibility
invariants and more. This overriding goal calls for various research directions.

Commonsense: One objective is to distill commonsense from Internet sources.
This is about properties of objects like size, color, shape, parts or substance of
which an object is made of, etc., and knowledge on which objects are used for
which activities as well as when and where certain activities typically happen.
For example, a rock concert involves musicians, instruments — almost always
including drums and guitars, speakers, a microphone for the singer; the typical
location is a stage, and so on. This background knowledge is beneficial for the
interpretation of user questions, and also for retrieving images and videos when
queries refer to abstractions or emotions that cannot be directly matched by cap-
tions, tags or other text. Today’s search engines perform poorly on queries such
as “exhausted band at hippie concert” (where users may want to find footage
of concerts by the Grateful Dead or the Doors). Recent work on acquiring com-
monsense includes ConceptNet [58] and WebChild [64]; research with the specific
focus of organizing knowledge on human activities includes [65]. There is, how-
ever, still a long way to go for computers to learn what every child knows.

Visual Knowledge: Commonsense knowledge is often more expressed in visual
form than in textual sources; for example, think of colors, shapes and sizes of
objects. This observation entails the dual goals of i) tapping visual contents like
images and videos for acquiring knowledge and ii) constructing a KB about visual
properties. Along the latter lines, ImageNet [13] is the most notable endeavor,
which has populated a large fraction of WordNet classes with images. The NEIL
project [8] has a gone a step further by extracting visual relationships between
objects. WebChild has acquired different kinds of part-whole knowledge, at large
scale, from combining textual and visual cues [66]. This is an instantiation of the
general challenge of jointly distilling knowledge from vision and language (e.g.,
from movie scenes and their narratives [54]).

Rules: Another key element for advancing the intelligent behavior of machines
is to capture invariants over certain kinds of facts, in the form of logical rules.
For example, a rule about scientists and their advisors could state that the
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advisor be on the faculty of the scientist’s alma mater — as of the time when
the scientist graduated. Similarly to the role of constraints in fact cleaning (see
Section 2.2.4), rules can have exceptions. But regardless of their soft nature, rules
can be a great asset to answer more queries and to infer additional facts for KB
completion. For example, a person who has or had a position on the government
of a certain country, is most likely a citizen of that country. To acquire this kind
of intensional knowledge, rule mining methods have been applied to large KB’s
[21]. However, the state of the art has major limitations: rules are restricted
in their logical form to Horn clauses or at least clauses. This disallows rules
with existential quantifiers or with disjunctions in the rule head; for example,
expressing that every human person has a mother and that every human is male
or female, would be beyond the current scope. An alternative approach to KB
completion, which bypasses logical representations, is to start with a tensor of
SPO triples and use matrix or tensor factorization methods to predict additional
triples (similarly to recommender systems) [45]. However, the derivation of new
facts is not easily explainable with such methods.

Commonsense rules were already in the focus of the seminal Cyc project [35],
but Cyc relied on human experts to manually specify logical axioms. A major
challenge with automatic rule mining arises from the open world assumption that
underlies KB’s and the bias in observations from Internet sources. For example,
if a KB does not contain any person who has won two different Nobel prizes,
this should not imply a functionality constraint or cardinality constraint. In
fact, Marie Curie is a counterexample anyway, but some KB’s may have only
a partial list of her awards. Likewise, a KB may have a restricted view on the
wealth of entrepreneurs: for example, all founders of IT companies have become
billionaires. This can be caused by the bias in the KB construction (e.g., by
harvesting only successful entrepreneurs from Wikipedia), and should not entail
a rule in the open world.

Socio-Cultural Knowledge: Another dimension where today’s KB’s have a
huge gap is the socio-cultural context of facts or rules. Consider statements on
people making discoveries and inventions. On first glance, one would expect that
these are objective and universally agreed upon. On second thought, however,
it becomes clear that it depends on the background and viewpoint of users. For
example, most people in the US would say that the computer was invented by
Eckert and Mauchley, whereas a German would give the credit to Konrad Zuse
and a British may point out Alan Turing (or perhaps Charles Babbage). This
depends not just on geographical context; for example, teenagers may widely
think of Steve Jobs as the (re-) inventor of the (mobile) computer. For common-
sense knowledge, it is even more critical to capture socio-cultural contexts. For
example, shaking hands when people meet is the usual way of welcoming some-
one only in parts of the world. In other regions, people often hug or kiss each
other (e.g., in France), or make gestures with both hands (e.g., in Thailand).
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4 Conclusion

Knowledge harvesting has made great impact in enabling the automatic con-
struction of large knowledge bases, sometimes called knowledge graphs. These
have become essential assets in search and analytics over Internet contents and
enterprise data. In addition to reviewing the underlying methodological achieve-
ments, this article has pointed out open challenges towards the next level of
machine knowledge.

The success of deep learning, to enable smart computer behavior by training
on raw data, may open up new perspectives on knowledge harvesting as well. Do
computers need this kind of explicit knowledge representation at all, or is task-
specific end-to-end learning in a sub-symbolic manner sufficient? We believe that
machine knowledge and machine learning are complementary assets: the more
you know the better you learn, and better learning enables acquiring more and
deeper knowledge. A final challenge and research opportunity is to explore this
potential synergy.
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