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ABSTRACT

Neural style transfer, allowing to apply the artistic style of one im-
age to another, has become one of the most widely showcased com-
puter vision applications shortly after its introduction. In contrast,
related tasks in the music audio domain remained, until recently,
largely untackled. While several style conversion methods tailored
to musical signals have been proposed, most lack the ‘one-shot’ ca-
pability of classical image style transfer algorithms. On the other
hand, the results of existing one-shot audio style transfer methods
on musical inputs are not as compelling. In this work, we are specif-
ically interested in the problem of one-shot timbre transfer. We
present a novel method for this task, based on an extension of the
vector-quantized variational autoencoder (VQ-VAE), along with a
simple self-supervised learning strategy designed to obtain disentan-
gled representations of timbre and pitch. We evaluate the method
using a set of objective metrics and show that it is able to outperform
selected baselines.

Index Terms— Style transfer, music, timbre, self-supervised
learning, deep learning

1. INTRODUCTION

© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works. DOI: 10.1109/ICASSP39728.2021.9414235

Neural style transfer techniques, originally proposed for images [1,
2], allow applying the ‘artistic style’ of one image to another. Re-
cently, there has been increased interest in developing similar meth-
ods for music, and promising works in this domain have begun to
emerge. Especially compelling are results achieved by several recent
works on timbre conversion [3, 4, 5, 6], leading to entertaining appli-
cations.1 However, a common property of these deep learning-based
methods is that they require training for each individual target instru-
ment. Consequently, the set of target instruments available in these
systems is typically small, as adding new ones is a time-consuming
process which depends on the availability of clean training data.

In the present work, we instead propose to tackle a more general
task, which we refer to as one-shot timbre transfer.2 Borrowing the
terminology of image style transfer, our goal is to transfer the tim-
bre of a style input onto a content input while preserving the pitch
content of the latter. To this end, we develop a single generic model
capable of encoding pitch and timbre separately and then combining
their representations to produce the desired output.

Unlike many previous music style transformation works (e.g.
[7, 5, 8, 9]), we neither assume the training data to be paired or oth-

This work was supported by the European Union’s Horizon 2020 re-
search and innovation programme under the Marie Skłodowska-Curie grant
agreement No. 765068 (MIP-Frontiers).

1https://g.co/tonetransfer
2Similarly to [7], we supplement the somewhat ambiguous term ‘timbre

transfer’ with the attribute ‘one-shot’ to specify that we aim to imitate the
timbre of one single example presented at test time.
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Fig. 1. A high-level depiction of the proposed method. We extract
pairs of segments from audio files and use them for self-supervised
learning of a VQ-VAE with an additional style encoder. The con-
tent representation c1, . . . , cL is discrete, the style representation s
is continuous.

erwise annotated, nor do we rely on existing models or algorithms
to create artificial annotations (e.g. pitch contours or timbre-related
descriptors). This leads to the need for data-driven disentanglement
of the pitch and timbre representations learned by the model. In this
work, we propose to perform this disentanglement using a combi-
nation of discrete representation learning (via an extension of the
vector-quantized variational autoencoder, or VQ-VAE [10]), self-
supervised learning, and data augmentation.

Our contributions can be summarized as follows:
• We present the first neural model for one-shot instrument tim-

bre transfer. The model operates via mutually disentangled
pitch and timbre representations, learned in a self-supervised
manner without the need for annotations.

• We train and test our model on a dataset where each recording
contains a single, possibly polyphonic instrument. Using a
set of newly proposed objective metrics, we show that the
method constitutes a viable solution to the task, and is able to
compete with baselines from the literature. We also provide
audio examples for perceptual comparison by the reader.3

• Since our approach to disentanglement is largely data-driven,
it should be extensible to other music transformation tasks,
such as arrangement or composition style transfer.

• Our source code is available online.4

2. RELATED WORK

Prior work on our topic is rather limited. To our knowledge, most
existing works that fall under our definition of one-shot music tim-
bre transfer [11, 12, 13] are based on non-negative matrix factoriza-
tion (NMF) combined with musaicing [14] (a form of concatenative
synthesis). Other works on audio style transfer [15, 16] adapt the
original image style transfer algorithm [1] to audio, but focus on

3https://adasp.telecom-paris.fr/s/ss-vq-vae
4https://github.com/cifkao/ss-vq-vae
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‘sound textures’ rather than timbre. In particular, the style represen-
tation used in these works is heavily pitch-dependent, which makes
it unsuitable for representing musical timbre. Finally, [9] focuses on
singing voice conversion, adopting vocoder-based techniques devel-
oped for speech.

Speaking more generally of timbre or style conversion, several
methods were recently proposed for musical audio [3, 4, 5, 6]. While
these approaches achieve remarkable output quality, they cannot be
considered one-shot as they only allow for conversion to the (small)
set of styles present in the training data. Moreover, unlike our meth-
ods, they require training a separate decoder for each target style; in
particular, [3] report unsuccessful attempts to train a single decoder
conditioned on the identity of the target instrument.

Other recent works [17, 18, 19, 20] are related to ours in that
they also learn a continuous timbre representation which allows for
audio generation, but are limited to the simple case of isolated notes.

3. BACKGROUND

3.1. Vector-quantized autoencoder (VQ-VAE)

The VQ-VAE [10] is an autoencoder with a discrete latent repre-
sentation. It consists of an encoder, which maps the input x to a
sequence z of discrete codes from a codebook, and a decoder, which
tries to map z back to x. Using discrete latent codes places a limit
on the amount of information that they can encode. The authors suc-
cessfully exploit this property to achieve voice conversion. In this
work, we follow a similar path to achieve music style transfer.

Formally, the encoder first outputs a sequence E(x) ∈ RL×D

of D-dimensional feature vectors, which are then passed through a
quantization (discretization) operation Q which selects the nearest
vector from a discrete embedding space (codebook) e ∈ RK×D:

zi = Q(Ei(x)) = argmin
ej ,1≤j≤K

∥∥Ei(x)− ej
∥∥. (1)

The model is trained to minimize a reconstruction error Lae be-
tween the input x and the output of the decoder D(Q(E(x))). The
backpropagation of its gradient through the discretization bottleneck
Q to the encoder is enabled via straight-through estimation, where
the gradient with respect to Q(E(x)) received from the decoder is
instead assigned to E(x). To ensure the alignment of the codebook
e and the encoder outputs E(x), two other terms appear in the VQ-
VAE objective – the codebook loss and the commitment loss:

Lcbk =
∥∥sg[Q(E(x))

]
− E(x)

∥∥2
, (2)

Lcmt =
∥∥Q(E(x))− sg

[
E(x)

]∥∥2
. (3)

Here sg[·] stands for the ‘stop-gradient’ operator, defined as iden-
tity in the forward computation, but blocking the backpropagation
of gradients. The two losses are therefore identical in value, but
the first only affects (i.e. has non-zero partial derivatives w.r.t.) the
codebook e (via Q), while the second only affects the encoder E. A
weighting hyperparameter β is applied to Lcmt in the total loss:

L = Lae + Lcbk + βLcmt (4)

3.2. Self-supervised learning

Self-supervised learning is a technique for learning representations
of unlabeled data. The basic principle is to expose the inner struc-
ture of the data – by splitting each example into parts or by applying
simple transformations to it – and then exploit this structure to define

an artificial task (sometimes called the pretext task) to which super-
vised learning can be applied. Notable examples include predicting
context (e.g. the neighboring words in a sentence [21] or a missing
patch in an image [22]), the original orientation of a rotated image
[23] or the ‘arrow of time’ in a (possibly reversed) video [24]. In this
work, we extract pairs of excerpts from audio files and rely on them
to learn a style representation as detailed in the following section.

4. METHOD

Given the goal of mapping two inputs – the content input x and the
style input y – to an output, it is natural to define an encoder-decoder
model with two encoders (one for each input) and a single decoder. It
remains to describe how to train this model, and in particular, how to
ensure the mutual disentanglement of the style and content features.
Our proposal, illustrated in Fig. 1, rests on two key points:

(i) We use a discrete representation c1, . . . , cL for content and
train the model to reconstruct the content input, x; hence, the
content encoder together with the decoder form a VQ-VAE.
This is motivated by the success of the VQ-VAE on voice
conversion as mentioned in Section 3.1.

(ii) The output of our style encoder is a single continuous-valued
embedding vector s. To ensure that the style encoder only en-
codes style (i.e. to make it content-independent), we employ
a simple self-supervised learning strategy where we feed a
different input y to the style encoder such that x and y are
different segments of the same audio recording (with some
data augmentation applied; see Section 4.1 for details).

These choices are complementary to each other, as we will now see.
Firstly, (i) necessarily means that the content encoder will drop

some information from the content representation c. Since this alone
does not guarantee that only content information will be preserved,
(ii) is introduced to guide the encoder to do so. Our reasoning is
that providing a separate style representation, not constrained by the
discretization bottleneck, should make it unnecessary to also encode
style information in c.

Secondly, it can be expected that in a trained model, only infor-
mation useful for reconstructing x will influence the output. Hence,
due to (ii) and provided that x and y do not share any content in-
formation, we expect s to only encode style. Also note that the dis-
cretization bottleneck in (i) is key for learning a useful style repre-
sentation s: without it, y may be completely ignored by the model.

Once trained, the model is used for inference simply by feeding
the content input and the style input to the respective encoders.

4.1. Data

Our self-supervised learning strategy consists in training on pairs of
segments x, y where each such pair comes from a single recording.
The underlying assumption is that such x and y have the same style
(timbre) but different content. We combine data from two different
sources, chosen to easily satisfy this assumption:

1. LMD. The ‘full’ version of the Lakh MIDI Dataset5 [25]
(LMD-full), containing 178 k MIDI files (about a year’s
worth of music in a symbolic representation). We pick a ran-
dom non-drum part from each file, sample two 8-second seg-
ments of this part and render them as audio using a sample-
based synthesizer (FluidSynth), with the SoundFont picked
randomly out of 3 options.6

5https://colinraffel.com/projects/lmd/
6Fluid R3 GM, TimGM6mb, and Arachno SoundFont; see [26]
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2. RT. A set of audio tracks from PG Music;7 specifically, the
1526 RealTracks included with Band-in-a-Box UltraPAK
2018. Each RealTrack (RT) is a collection of studio record-
ings of a single instrument playing either an accompaniment
part or a solo in a single style. We extract pairs of short seg-
ments totalling up to 20min per RT, and clip each segment
to 8 s after performing data augmentation (see below).

We perform two kinds of data augmentation. Firstly, we trans-
pose each segment from LMD up or down by a random interval (up
to 5 semitones) prior to synthesis; this ensures that the two segments
in each pair have different content, but does not affect their timbre.

Secondly, we apply a set of random timbre-altering transforma-
tions to increase the diversity of the data:

• (LMD only.) Randomly changing the MIDI program (instru-
ment) to a different one from the same broad family of in-
struments (keyboards & guitars; basses; winds & strings; . . . )
prior to synthesis.

• (RT only.) Audio resampling, resulting in joint time-stretch-
ing and transposition by up to ±4 semitones.

• 0–4 audio effects, drawn from reverb, overdrive, phaser, and
tremolo, with randomly sampled parameters.

An identical set of transformations is applied to both examples in
each pair to ensure that their timbres do not depart from each other.

After this procedure, we end up with 209 k training pairs (119 k
from LMD8 and 90 k from RT).

4.2. Model and training details

We represent the audio signal as a log-scale magnitude STFT (short-
time Fourier transform) spectrogram with a hop size of 1/32 s and
1025 frequency bins. To obtain the output audio, we invert the STFT
using the Griffin–Lim algorithm [27].

The model architecture is depicted in Fig. 2. The encoders treat
the spectrogram as a 1D sequence with 1025 channels and process
it using a series of 1D convolutional layers which serve to down-
sample it (i.e. reduce its temporal resolution). The last layer of the
style encoder is a GRU (gated recurrent unit [28]) layer, whose final
state s (a 1024-dimensional vector) is used as the style representa-
tion. This vector s is then fed to the 1st and the 4th decoder layer by
concatenating it with the preceding layer’s outputs at each time step.

The decoder consists of 1D transposed convolutional layers
which upsample the feature sequence back to the original resolu-
tion. GRU layers are inserted to combine the content and style
representations in a context-aware fashion.

We train the model using Adam [29] to minimize the VQ-VAE
loss from Eq. (4), defining the reconstruction loss Lae as the mean
squared error between x and x̂. We train for 32 epochs, taking about
20 hours in total on a Tesla V100 GPU.

5. EXPERIMENTS

As in previous music style transformation work [31, 7], we wish to
evaluate our method on two criteria: (a) content preservation and (b)
style fit. In timbre transfer, these should express (a) how much of the
pitch content of the content input is retained in the output, and (b)
how well the output fits the target timbre. To this end, we propose

7https://www.pgmusic.com
8The final number is lower than the number of files in LMD due to corrupt

MIDI files and parts with insufficiently many notes being discarded.
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Fig. 2. The model architecture. All convolutions are 1D, with the
kernel size and stride shown. All layers have 1024 channels, except
for the last two (conv> & GRU), which have 1025 (the number of
frequency bins). All layers except for the input layers and the VQ
are preceded by batch normalization and a Leaky ReLU activation
[30]. conv> stands for transposed convolution.

the following objective metrics for measuring pitch and timbre dis-
similarity, respectively, between an output and a reference recording:

(a) Pitch: We extract pitch contours from both recordings using
a multi-pitch version of the MELODIA algorithm [32] imple-
mented in the Essentia library [33]. We round the pitches to
the nearest semitone and express the mismatch between the
two pitch sets A,B at each time step as the Jaccard distance:

dJ(A,B) = 1− |A ∩B||A ∪B|

We report the mean value of this quantity over time.
(b) Timbre: Mel-frequency cepstral coefficients (MFCCs) 2–13

are generally considered to be a good approximate timbre rep-
resentation [34]. Since they are computed on a per-frame ba-
sis, we train a triplet network [35] on top of them to aggregate
them over time and output a single dissimilarity score. More
details can be found on the supplementary website.3

We compare our method to 2 trivial baselines and 2 baselines from
the literature:

• CP-CONTENT: Copies the content input to the output.
• CP-STYLE: Copies the style input to the output.
• U+L: The algorithm of Ulyanov and Lebedev [15] (not

specifically designed for timbre transfer), consisting in opti-
mizing the output spectrogram for a content loss and a style
loss. We tune the ratio of the weights of the two losses on
a small synthetic validation set to minimize the log-spectral
distance (LSD) to the ground truth (see Section 5.1).

• Musaicing: A freely available implementation9 of the mu-
saicing algorithm of Driedger et al. [11].

9https://github.com/ctralie/LetItBee/
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Artificial Real

System LSDT TimbreT PitchT TimbreS PitchC

CP-CONTENT 14.62 0.3713 0.5365 0.4957
CP-STYLE 20.36 0.2681 0.8729 0.9099

U+L [15] 14.50 0.3483 0.5441 0.4792 0.1315
Musaicing [11] 14.51 0.2933 0.6445 0.2319 0.6297
This work 12.16 0.2063 0.5500 0.2278 0.6197

Table 1. Evaluation results. Distances marked S, C, and T are com-
puted w.r.t. the style input, the content input, and the synthetic target,
respectively. Results that are trivially 0 are omitted.

5.1. Artificial benchmark

First, we evaluate our method on a synthetic dataset generated from
MIDI files. Although such data is not completely realistic, it en-
ables conducting a completely objective benchmark by comparing
the outputs to a synthetic ground truth.

We generate the data from the Lakh MIDI Dataset (LMD) sim-
ilarly as in Section 4.1, but using a set of files held out from the
training set, and with no data augmentation. We use the Timbres Of
Heaven SoundFont (see [26]), not used for the training set.

We randomly draw 721 content–style input pairs and generate a
corresponding ground-truth target for each pair by synthesizing the
content input using the instrument of the style input. More details
are given on the supplementary website.3

Both the pitch and timbre distance are measured with respect to
the ground-truth target. Additionally, we measure an overall distance
to the target as the root-mean-square error computed on dB-scale
mel spectrograms; this is known as the log-spectral distance or LSD.

5.2. ‘Real data’ benchmark

We create a more realistic test set based on the ‘Mixing Secrets’ au-
dio library [36], containing over 400 multi-track recordings from
various (mostly popular music) genres. After filtering out multi-
instrument, vocal and unpitched percussion tracks, we extract 690
content-style input pairs similarly as in Section 5.1. As no ground
truth is available in this dataset, we compute the pitch and timbre
metrics with respect to the content and style input, respectively.

5.3. Results

The results of both benchmarks are shown in Table 1. First, our sys-
tem outperforms all baselines on LSD and the timbre metric. The
difference to the CP-CONTENT baseline is negative in more than
75% of examples on both of these metrics and in both benchmarks.
Hence, viewing our system as a timbre transformation applied to the
content input, we can conclude that, informally speaking, the trans-
formation is at least partly successful in more than 75% of cases.
We may also notice that the result of CP-STYLE on timbre is, some-
what counter-intuitively, outperformed by our system. This may be
a sign that the timbre metric is still somewhat influenced by pitch.

Turning to the pitch distance metric, we note that its values seem
rather high (> 0.5 on a scale from 0 to 1). However, most of this er-
ror should be attributed to the pitch tracking algorithm rather than to
the systems themselves. This is documented by the fact that the pitch
distance of CP-CONTENT to the ground-truth target is 0.54 instead
of 0. Another useful value to look at is the result of CP-STYLE: as
the style input is selected randomly, its pitch distance value should

be high, and is indeed close to 0.9. Using these two points of ref-
erence, we observe that our system’s result is much closer to the
former than to the latter in both benchmarks, which is the desired
outcome. Moreover, it outperforms the musaicing baseline in both
cases, albeit only slightly on real inputs.

6. DISCUSSION

Our subjective observations upon examining the outputs3 mostly
match the objective evaluation. We find that, although the sound
quality of our outputs is not nearly perfect, their timbre typically
does sound much closer to the style input than to the content input.
(Low synthesis quality and various artifacts are somewhat expected,
as they are a common occurrence with the Griffin-Lim algorithm, as
well as decoders based on transposed convolutions [37]. However,
synthesis quality is not the main focus of this preliminary work.)

The pitch of the content input is generally well preserved in the
output, yet faster notes and polyphony seem to pose a problem. We
believe this is caused by a low capacity of the discrete content rep-
resentation. Even though a codebook size of 2048 seems more than
sufficient in theory, we found that on both of our test sets combined,
only 81 of the codebook vectors are actually used in practice. This
means, for example, that at a tempo of 120BPM, only 25.4 bits of
information can be encoded per beat. This ‘codebook collapse’ [38]
is a known issue with VQ-VAEs.

We also observe that our method works better on target instru-
ments with a temporally ‘stable’ sound, e.g. piano; this might also
explain why our method achieves better evaluation results on syn-
thetic inputs (generated using samples) than on real ones, which are
less predictable. A likely culprit is our use of a deterministic model,
which cannot possibly capture the acoustic variability of instruments
like saxophone or violin while being able to convert from an instru-
ment that lacks this variability. This could be remedied by replacing
our decoder with a probabilistic one which models a fully expressive
conditional distribution, such as WaveNet [39].

The musaicing baseline, which uses fragments from the style in-
put to construct the output, generally matches the target timbre very
precisely, but is often less musically correct than ours. For example,
note onsets tend to lack clear attacks; pitch errors and spurious notes
occur, especially when the style input is non-monophonic or fast.

Finally, let us comment on the U+L baseline. Although its re-
sults on pitch are excellent, this is caused by the fact that the style
weight obtained by tuning is very low (about 100 times lower than
the content weight), causing the algorithm to behave much like CP-
CONTENT. This is also reflected by the timbre metric. Experiment-
ing with higher weights, we notice that the algorithm is able to trans-
fer fragments of the style input to the output, but cannot transpose
(pitch-shift) them to match the content input.

7. CONCLUSION

We have proposed a novel approach to one-shot timbre transfer,
based on an extension of the VQ-VAE, along with a simple self-
supervised learning strategy. Our results demonstrate that the
method constitutes a viable approach to the timbre transfer task
and is able to outperform baselines from the literature.

The most important shortcoming of our method seems to be the
use of a deterministic decoder. We believe that a more expressive
decoder such as WaveNet should allow improving the performance
especially on instruments with great temporal variability, and per-
haps enable extensions to more challenging style transfer tasks, such
as arrangement or composition style transfer.
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