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ABSTRACT
Due to a high heterogeneity in pose and size and to a limited number
of available data, segmentation of pediatric images is challenging for
deep learning methods. In this work, we propose a new CNN archi-
tecture that is pose and scale invariant thanks to the use of Spatial
Transformer Network (STN). Our architecture is composed of three
sequential modules that are estimated together during training: (i) a
regression module to estimate a similarity matrix to normalize the
input image to a reference one; (ii) a differentiable module to find
the region of interest to segment; (iii) a segmentation module, based
on the popular UNet architecture, to delineate the object. Unlike
the original UNet, which strives to learn a complex mapping, in-
cluding pose and scale variations, from a finite training dataset, our
segmentation module learns a simpler mapping focusing on images
with normalized pose and size. Furthermore, the use of an automatic
bounding box detection through STN allows saving time and espe-
cially memory, while keeping similar performance. We test the pro-
posed method in kidney and renal tumor segmentation on abdominal
pediatric CT scanners. Results indicate that the estimated STN ho-
mogenization of size and pose accelerates the segmentation (25h),
compared to standard data-augmentation (33h), while obtaining a
similar quality for the kidney (88.01% of Dice score) and improving
the renal tumor delineation (from 85.52% to 87.12%).

Index Terms— pediatric, segmentation, kidney, renal tumor,
STN, data augmentation, pose size normalization

1. INTRODUCTION

Developing machine learning algorithms, and especially deep learn-
ing ones, for segmenting pediatric images is a challenging task.
First, pediatric data-sets contain subjects going from few days of
age to 16 years, showing therefore anatomical structures highly
heterogeneous in terms of size. Furthermore, due to the fact that
children do not always stand still during the acquisition [1], pedi-
atric images also present a high variability in terms of pose and
movements artifacts. Figure 1 (left) illustrates these problems.

Moreover, pediatric databases are limited in number of im-
ages [3] and therefore usual deep learning strategies might fail or
not give good results [4]. Direct inference or Transfer learning from
networks trained on adults might fail for the differences between
the two populations, especially in terms of relative size between
organs and variability among subjects [5]. Some authors proposed
to use an ad-hoc data-augmentation, as in [6], to take into account

Fig. 1. Left: Differences in size and pose in two of our pediatric data-
sets. First row: MR sagittal brain images. Second row: CT axial ab-
dominal images. Right: Differences between MICCAI KiTS19 [2]
adults images (first row) and our pediatric abdominal images (second
row). Kidneys are in green and tumors in yellow.

the differences between adults and children. However, this usually
takes time and it is not always possible or easy to recreate all the
sources of variations (e.g. relative size between organs and tumors)
in the data-augmentation process.

For all these reasons, we propose to take a different perspective
with respect to the usual data-augmentation strategy. Instead of aug-
menting the number of training images to cover the entire data distri-
bution, we propose to reduce the data variability through an homog-
enization in terms of size and pose. In order to do that, we first learn
an optimal similarity transformation to a clinically relevant reference
subject. Then, to accelerate the segmentation, we also learn to crop
the region of interest (ROI) as a square patch which is used as input
image for the final segmentation network instead than the original
(bigger) image. We propose a new architecture composed of three
neural networks: a first Spatial Transfomer Network (STN) [7] that
deals with homogenization of pose and size; a second STN that crops
the homogenized image in the region of interest (ROI); and finally a
segmentation network, built as a nnUNet [8], in which the cropped
homogenized image is given as input and the output is then restored
to its original pose and size, and uncropped, using the inverse of
the two transformation matrices previously computed. This original
combination allows to deal with small and heterogenous datasets,
which is the main contribution of this work. In this work, we focus
on kidney and renal tumor segmentation on abdominal CT scanners
which show high differences in tumor development between adults
and children (Figure 1 on the right). Section 2 summarizes the state
of the art in the segmentation of these structures. In Section 3, we
describe our pediatric dataset. In section 4 the proposed method is
detailed, and then, in Section 5, results on 2D images are discussed.



2. STATE OF THE ART

According to [9], the 3D extensions of U-Net [10] are the most used
Deep Learning architectures for the segmentation of medical images,
providing the best results. However, to achieve high performance
with 3D CNN, large datasets are needed [4], and currently most of
the pediatric datasets do not contain enough images. To overcome
this limitation, transfer learning techniques from adults to children
have been proposed [6, 11], but they usually require an ad-hoc and
time-consuming data augmentation to take into account the anatom-
ical variations between children and adults. For these reasons, 2D
networks are usually chosen for pediatric datasets with less than 100
subjects. While the literature is poor on the specific problem of 2D
pediatric kidney and renal cancer segmentation, recent works on 2D
adult images are worth to be mentioned [2, 12]. No-newUNet [8],
a framework implementing both 2D and 3D U-Net [10], is the net-
work that manages to obtain the best results, thanks to the use of
an important data augmentation. When working with pediatric im-
ages, the high variability in size and pose makes the distribution of
data more heterogeneous compared to adult datasets. This entails a
higher number of possible transformations in the data augmentation
and therefore a more important computational time. In [13], the au-
thors propose to augment the convolutional kernels (instead of train-
ing data) by transforming them with several rotations. This allows
the network to learn feature maps associated with different rotated
versions of the input image in a single pass. However, variations in
size could not be taken into account.

With a different perspective, we propose to learn a single and
specific similarity transformation per image instead of computing
many during training. Each image is thus normalized in pose and
size with respect to a reference image (relevant for clinicians). This
simplifies the task for the segmentation network and avoids the com-
putation of many time consuming transformations during the data
augmentation.

3. DATABASE

We worked on a pediatric dataset of abdominal-visceral CT images
from 80 patients, with early arterial contrast injection. All patients
presented a renal tumor and images were acquired pre-operatively.
The age ranges from 3 years old to 16, with an average of 2 years
old. Slices have a low pixel size (0.35 - 0.95 mm) with a size of
512×512 pixels. Reference segmentations were performed by man-
ual annotation under the supervision of medical experts. These ex-
ams were performed in the course of the normal care pathway of
the patient and were studied retrospectively after anonymization. In
the experiments, we also use the open access database KiTS19 [2],
which collects 210 adults with renal tumor. All images are labeled
by clinicians and acquired with the same medical technique of ac-
quisition as ours. Even pixel size is comparable (0.65 - 0.95 mm).

4. METHODS

Pre-Processing All images are preprocessed using the tool “pre-
processing” of nnUNet [8]. The pre-processing consists of: (i) a
non-zero region cropping, (ii) a resampling of the images to have
the same pixel size, (iii) a clipping of the intensity values to the 0.5
and 99.5 percentile of the foreground voxels, and (iv) a Z-scoring
normalization.

Architecture The framework is presented in Figure 2. We now
present the three networks in detail.

STN to homogenize pose and size At first a Spatial Transfomer
Network (STN) deals with homogenization, transforming all images
to be as similar as possible in size and pose to a chosen one (STN1

in Figure 2). The reference image was chosen among patients aged
2 years, who represent the average in the database, and among them
a patient with the best pose was chosen, according to the doctors’ di-
rectives. This STN is composed of a localization network, composed
of an encoder with two stacked convolutional blocks with MaxPool-
ing and ReLU, which reduces the image by a factor of 4, and 2 fully
convolutional layers. This regresses five values (1 value for angle,
2 for scaling and 2 for translation), defining the similarity matrix θ1

which is then applied to a grid in which the starting image is interpo-
lated thanks to a sampler. The input of the STN is composed of the
original image concatenated with its “foreground mask”, a binary
mask representing the abdomen and easily computed as the largest
connected component. The network is optimized using a Soft Dice
loss function LSTN1 between the homogenized output “foreground
mask” and the “foreground mask” of the reference image:

LSTN1 = SoftDice(θ1I, T ) = SoftDice(H,T ) = 2|H∩T |
|H|2+|T |2 · 100 (1)

where I is the input “foreground mask”, θ1 is the predicted matrix,
H is the homogenized output “foreground mask” and T is the refer-
ence “foreground mask”.

STN for ROI cropping Then, there a second STN crops the ho-
mogenized image in the region of interest (ROI), where the struc-
tures to be segmented are present (STN2 in Figure 2). This network
is the same as the previous one but it regresses 4 values, correspond-
ing to the vertices of the bounding box, that are used to construct
a scaling and translation matrix θ2 for cropping. A target matrix
and the associated target bounding box are automatically calculated
using the minimum and maximum non-zero values of the reference
segmentation. However, the bounding box is forced to be a square
and the minimum crop size is considered to be a quarter of the orig-
inal image. This allows not deforming the image too much. We
underline that in our method the user can choose whether to keep
the image in its original size, halve it or reduce it to a quarter (min-
imum size of the patches coming out of the STN). This allows, as
mentioned in Section 1, reducing time and memory requested for
the segmentation network. The second STN for the cropping is
trained using the loss function LSTN2 , defined as the sum of a L1

loss (mean absolute error) between the cropped output image and the
target crop, and a L2 loss (mean squared error) between the “scal-
ing and translation” output matrix and the “scaling and translation”
target matrix:

LSTN2 = 1
N

∑N
n=1 ‖HCn − TCn‖2 +

√
1
N

∑N
n=1

∥∥∥∥(θ2n − θTn)∥∥∥∥2
2

(2)

whereH is the homogenized input, θ2 is the predicted matrix,HC is
the cropped output, θT is the target matrix, TC is the target crop and
N is the batch size. This combination was proved experimentally
efficient, probably due to the robustness of the L1 norm to outliers.

U-Net for segmentation At the end of our framework a U-Net
takes as input for the segmentation the cropped homogenized image
and the output is then restored to its original pose and size, and un-
cropped, using the inverse of the two transformation matrices previ-
ously calculated. The U-Net is constructed using the tool “planes” of



Fig. 2. Schema of our proposed framework (see Section 4 for details).

nnUNet, which suggests the best configuration and hyperparameters
based on the input images. Each level is composed of two blocks,
where the second differs between encoder and decoder part.

• 1st block: 2D convolutional layer (kernel = 3, stride = 1, zero-
padding = 1), batch normalization and ReLU;

• 2nd block encoder: equal to first block except for stride = 2 to
downsample the image by the same factor;

• 2nd block decoder: equal to the first block except for 2D trans-
posed convolution layer instead of the classic convolution;

• output block: equal to the first block except for Softmax as acti-
vaction function.

The depth of the network is up to a bottleneck defined so to have a
8 × 8 image and skip connections are used up to the 32×32 image
level. The number of features is doubled with each downsampling
in the encoder and halved during upsampling in the decoder. Our
U-Net is optimized as in the nnUNet training using a loss function
LUNet defined as the sum of cross entropy CE and Soft Dice loss,
both between prediction and reference segmentation.

LUNet =
∑N

n=0
1
2n

(
CE(θ1

−1
(θ2
−1
Pn), G) + SoftDice(θ1

−1
(θ2
−1
Pn), G)

)
(3)

where P is the prediction, G is the reference segmentation and n is
the level of the prediction (considering the output layer of the net-
work as 0 level). We use the Deep Supervision technique [14] up to
the level N , where there is the last skip connection.

Training For STNs the best solution has been experimentally
identified as a training of one STN after the other for 50 epochs
using a Stochastic Gradient Descent (SGD) optimizer with a learn-
ing rate of 0.01. The U-Net is trained for at least 50 epochs with
a subsequent early-stopping condition, using a SGD with a starting
learning rate of 0.01 with a poly learning rate policy [15], a Nesterov
momentum of 0.99 and a weight decay of 3× 10−5, as nnUNet. We
used 15036 2D images for training and 3760 for validation, using
an oversampling technique to have at least one third of the images
containing the kidney and one third with tumor. 15 subjects for a
total of 5310 slices are used as test set.

5. RESULTS AND DISCUSSION

In our first experiment, we used the 3D no-newUNet [8] trained on
adults, winner of the KiTS19 challenge [2], directly on the children
images (same weights), and then using transfer learning (fine tun-
ing of the weights). The results, evaluated using the Dice Score in
Table 1, show that only when we fine-tune most of the weights the
results become satisfactory. This confirms the important differences
between adults and children images, as shown in Figure 1.

The next step was to test the size and pose homogenization
STN1 network on our pediatric database. We chose a 2D network

Table 1. Results (mean and standard deviation of Dice score) using
weights of 3D nnUNet trained on adults KiTS database [2].

Technique Dice Score Kidney Dice Score Tumor
Direct Inference (weights frozen) 20.83 (35.55) 18.29 (35.73)
Fine-Tuning (first 2 blocks encoder and last 2 decoder) 53.38 (25.84) 51.05 (31.76)
Fine-Tuning (entire decoder) 81.75 (7.18) 75.79 (23.24)
Fine-Tuning (entire network) 84.99 (6.38) 81.08 (23.01)

since results based on a 3D network were not satisfactory due to
the limited number of images available. At first, tests were carried
out with the images resized to 128×128. Then tests were made
with the original size 512×512. The results for both tests are shown
in Table 2. The baseline is the original nnUNet, with and without
the use of random data augmentation on-the-fly. The results show
that the use of the STN1 to homogenize pose and size outperforms
(increase of the mean and decrease of the standard deviation) both
the transfer learning 3D results (Table 1) and the baseline with data
augmentation for the tumor segmentation task, while showing com-
parable results for the kidney segmentation, especially on 512×512
images. The slightly greater results in kidney segmentation are
probably due to the use of a mirroring during data augmentation, not
reproducible by our method.

Table 2. Results (mean and standard deviation of Dice score and
total traning time) on our pediatric database adding the proposed
STNs to the baseline nnUNet (without data augmentation).

Image 128x128 with Batch Size of 32
Architecture Training Time Dice Score Kidney Dice Score Tumor
nnUNet 1h35 83.66 (7.88) 69.52 (24.61)
nnUNet (+ data augmentation) 2h15 88.99 (3.71) 74.18 (22.07)
STN pose-size + nnUNet 1h45 86.75 (6.47) 77.31 (27.36)

Image 512x512 with Batch Size of 12
Architecture Training Time Dice Score Kidney Dice Score Tumor
nnUNet 22h 88.07 (5.61) 78.14 (26.19)
nnUNet (+ data augmentation) 33h 88.91 (5.08) 85.52 (24.65)
STN pose-size + nnUNet 25h 88.01 (6.25) 87.12 (23.39)

In our case, the combination of the two STNs does not lead to
improvements in performance compared to using STN1 alone, but
it leads to a gain in time and requested memory as shown in Table 3
while maintaining high performance. This is due to the fact that the
UNet has a smaller image as input. The drop in performance depends
on the renal tumor size, and consequently on the size of the ROI,
which varies from [128×128] to [380×380]. This means that, when
reducing the input size of the UNet to [256×256] or [128×128], we
actually downsample the ROI thus loosing important information, as
shown in the last row of Figure 3. Nevertheless, we believe that the
proposed differentiable module to localize ROIs may be important
for other datasets with smaller structures to segment compared to
the size of the image (e.g. adults, see Figure 1), or when training
time and memory are limited.

In Figure 3, results of the proposed network are illustrated step-



Table 3. Results (mean and standard deviation of Dice score and
total traning time) on our pediatric database reducing the size of the
input image for nnUNet (memory allocated column refers only to
nnUNet, STNs occupy less than 4Gb of RAM in the GPU also with
512×512 inputs). Note that each network is trained individually

Architecture Input size
UNet

Training
Time

Memory
allocated

Dice score
kidney

Dice score
tumor

nnUNet 512×512 22h 10.05Gb 88.07 (5.61) 78.14 (26.19)
nnUNet (+ data aug.) 512×512 33h 10.05Gb 88.91 (5.08) 85.52 (24.65)
STNp-s + STNcrop + nnUNet 512×512 28h 10.05Gb 88.84 (7.79) 84.25 (31.15)
STNp-s + STNcrop + nnUNet 256×256 19h30 3.52Gb 86.71 (19.36) 84.15 (30.11)

by-step on images 512×512. In the first four rows, we do not change
the input size of the UNet, whereas in the last row we reduce it to
256×256. This results in a less detailed image and thus a drop in
performance.

Fig. 3. Qualitative results of our method illustrated step-by-step. All
input images are 512×512. In the last line, the cropped image is
downsampled to 256×256 and it can be noticed that the boundaries
between tumor and renal cavities are lost.

6. CONCLUSION

In this work, we propose to use a Spatial Transformer Network as
a method to reduce data variability on pediatric images through an
homogenization of size and pose, improving performances and com-
putational time with respect to standard data augmentation. More-
over, the use of a second STN to crop images around the structures to
segment can save even more computational time and memory, while
maintaining high performance. Future work aims to combine the
two STNs into a single one and extend it to 3D (when a sufficient
number of images will be available).
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