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Abstract

In multiclass classification, the goal is to
learn how to predict a random label Y , val-
ued in Y = {1, . . . , K} with K ≥ 3,
based upon observing a r.v. X, taking its
values in Rq with q ≥ 1 say, by means of
a classification rule g : Rq → Y with min-
imum probability of error P{Y 6= g(X)}.
However, in a wide variety of situations, the
task targeted may be more ambitious, con-
sisting in sorting all the possible label values
y that may be assigned to X by decreasing
order of the posterior probability ηy(X) =
P{Y = y | X}. This article is devoted to
the analysis of this statistical learning prob-
lem, halfway between multiclass classification
and posterior probability estimation (regres-
sion) and referred to as label ranking here.
We highlight the fact that it can be viewed
as a specific variant of ranking median re-
gression (RMR), where, rather than observ-
ing a random permutation Σ assigned to the
input vector X and drawn from a Bradley-
Terry-Luce-Plackett model with conditional
preference vector (η1(X), . . . , ηK(X)), the
sole information available for training a la-
bel ranking rule is the label Y ranked on
top, namely Σ−1(1). Inspired by recent re-
sults in RMR, we prove that under appro-
priate noise conditions, the One-Versus-One
(OVO) approach to multiclassification yields,
as a by-product, an optimal ranking of the la-
bels with overwhelming probability. Beyond
theoretical guarantees, the relevance of the
approach to label ranking promoted in this
article is supported by experimental results.
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1 INTRODUCTION

In the standard formulation of the multiclass classifi-
cation problem, (X,Y ) is a random pair defined on a
probability space (Ω, F , P) with unknown joint prob-
ability distribution P , where Y is a label valued in
Y = {1, . . . , K} with K ≥ 3 and the r.v. X takes its
values in a possibly high-dimensional Euclidean space,
say Rq with q ≥ 1, and models some input information
that is expected to be useful to predict the output vari-
able Y . The objective pursued is to build from training
data D = {(X1, Y1), . . . , (Xn, Yn)}, supposed to be
independent copies of the generic pair (X,Y ), a (mea-
surable) classifier g : Rq → Y that nearly minimizes
the risk of misclassification

L(g) = P{Y 6= g(X)}. (1)

Let η(x) = (η1(x), . . . , ηK(x)) be the vector of pos-
terior probabilities: ηk(x) = P{Y = k | X = x}, for
x ∈ Rq and k ∈ {1, . . . , K}. For simplicity, we as-
sume here that the distribution of the r.v. η(X) is
continuous, so that the ηk(X)’s are pairwise distinct
with probability one. It is well-known that the mini-
mum risk is attained by the Bayes classifier

g∗(x) = arg max
k∈{1, ..., K}

ηk(x),

and is equal to

L∗ = L(g∗) = 1− E
[

max
1≤k≤K

ηk(X)

]
.

As the distribution P is unknown, a classifier must
be built from the training dataset and from the per-
spective of statistical learning theory, the Empirical
Risk Minimization (ERM) paradigm encourages us to

replace the risk (1) by a statistical estimate L̂n(g), typ-
ically the empirical version (1/n)

∑n
i=1 I{Yi 6= g(Xi)}

denoting by I{E} the indicator function of any event E ,
and consider solutions ĝn of the optimization problem

min
g∈G

L̂n(g), (2)

where the infimum is taken over a class G of classifier
candidates, with controlled complexity (e.g. of finite
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VC dimension), though supposed rich enough to yield
a small bias error infg∈G L(g)−L∗, i.e. to include a rea-
sonable approximation of the Bayes classifier g∗. The-
oretical results assessing the statistical performance of
empirical risk minimizers are very well documented in
the literature, see e.g. Devroye et al. (1996), and a
wide collection of algorithmic approaches has been de-
signed in order to solve possibly smoothed/convexified
and/or penalized versions of the minimization problem
(2). Denoting by SK the symmetric group of order
K (i.e. the group of permutations of {1, . . . , K}),
another natural statistical learning goal in this setup,
halfway between multiclass classification and estima-
tion of the posterior probability function η(x) and re-
ferred to as label ranking throughout the article, is
to learn, from the training data D, a ranking rule s,
i.e. a measurable mapping s : Rq → SK , such that
the permutation s(X) sorts, with ’high probability’, all
possible label values k in Y by decreasing order of the
posterior probability ηk(X), that is to say in the same
order as the permutation σ∗X defined by: ∀x ∈ Rq,

ησ∗−1
x (1) > ησ∗−1

x (2) > . . . > ησ∗−1
x (K). (3)

Equipped with this notation, observe that g∗(x) =
σ∗−1
x (1) for all x ∈ Rq. Given a loss function d :

SK ×SK → R+ (i.e. a symmetric measurable map-
ping s.t. d(σ, σ) = 0 for all σ ∈ SK), one may formu-
late label ranking as the problem of finding a ranking
rule s which minimizes the ranking risk

R(s)
def
= E [d (s(X), σ∗X)] . (4)

Except when K = 2 and in the case when the loss func-
tion d considered only measures the capacity of the
ranking rule to recover the label that is ranked first,
that is to say when d(σ, σ′) = I{σ−1(1) 6= σ′−1(1)}
(in this case, R(s) = P{g∗(X) 6= s(X)−1(1)}), the na-
ture of the label ranking problem significantly differs
from that of multiclass classification. There is no nat-
ural empirical counterpart of the risk (4) based on the
observations D, which makes the ERM strategy inap-
plicable in a straightforward fashion. It is the goal of
the present paper to show that the label ranking prob-
lem can be solved, under appropriate noise conditions,
by means of the One-Versus-One (OVO) approach to
multiclass classification. The learning strategy pro-
posed is directly inspired from recent advances in con-
sensus ranking and ranking median regression (RMR),
see Korba et al. (2017) and Clémençon et al. (2018).
In the RMR setup, assigned to the input random vec-
tor X, one considers an output r.v. Σ that takes its
values in the group SK (in recommending systems, Σ
may represent the preferences over a set of items in-
dexed by k ∈ {1, . . . , K} of a given user, whose profile
is described by the features X). The goal is to find a

ranking rule s that minimizes E[d(s(X), Σ)], that is
to say, for any x ∈ Rq, a consensus/median ranking
s(x) ∈ SK related to the conditional distribution of Σ
given X = x w.r.t. the metric d(., .). In this paper,
by means of a coupling technique we show that the
label ranking problem stated above can be viewed as
a variant of RMR where the output ranking is very
partially observed in the training stage, through the
label ranked first solely. Based on this analogy, the
main result of the article shows that the OVO method
permits to recover the optimal label ranking with high
probability, provided that noise conditions are fulfilled
for all binary classification subproblems. Incidentally,
the analysis carried out provides statistical guarantees
in the form of (possibly fast) learning rate bounds for
the OVO approach to multiclass classification under
the hypotheses stipulated. The theoretical results es-
tablished in this article are also empirically confirmed
by various numerical experiments.

The paper is organized as follows. In section 2, the
OVO methodology for multiclass classification is re-
called at length, together with recent results in RMR.
The main results of the article are stated in section
3: principally, a coupling result connecting label rank-
ing to RMR and statistical guarantees for the OVO
approach to label ranking in the form of nonasymp-
totic probability bounds. Numerical experiments are
displayed in section 4, while some concluding remarks
are collected in section 5. The proofs are deferred to
the Appendix section.

2 PRELIMINARIES

As a first go, we recall the OVO approach for defin-
ing a multiclass classifier from binary classifiers. Basic
hypotheses and results related to Ranking Median Re-
gression (RMR) are next briefly described.

2.1 From Binary to Multiclass Classification

A classifier g is entirely characterized by the collection
of subsets of the feature space X : (Sg(1), . . . , Sg(K)),
where Sg(k) = {x ∈ X : g(x) = k} for k ∈
{1, . . . , K}. Observe that the Sk’s are pairwise dis-
joint and their union is equal to Rq. Hence, they form
a partition of Rq, except that it may happen that a
certain subset Sk(g) is empty, i.e. a certain label k is
never predicted by g.

The OVO approach. Partitioning the feature space
Rq in more than two subsets may lead to practical dif-
ficulties and certain learning algorithms such as Sup-
port Vector Machines (SVM’s) are originally tailored
to the binary situation (i.e. to the case K = 2). In this
case, a natural way of extending such algorithms, usu-



Stephan Clémençon, Robin Vogel

ally referred to as the ’One-Versus-One’ approach to
multi-class classification is to run it K(K−1)/2 times,
for each binary subproblem, see e.g. Hastie and Tib-
shirani (1998), Moreira and Mayoraz (1998), Allwein
et al. (2000), Fürnkranz (2002) or Wu et al. (2004):
for any 1 ≤ k < l ≤ K, based on the fraction of the
training data with labels in {k, l} only,

Dk,l = {(Xi, Yi) : Yi ∈ {k, l}, i = 1, . . . , n} ,

the algorithm outputs a classification rule gk,l : Rq →
{−1, +1} with risk

Lk,l(gk,l)
def
= P{Yk,l 6= gk,l(X) | Y ∈ {k, l}},

where Yk,l = I{Y = l} − I{Y = k}, as small as possi-
ble and combine, for any possible input value x ∈ Rq,
the binary predictions gk,l(x) so as to produce a multi-
class classifier ḡ : Rq → {1, . . . , K} with minimum
risk L(ḡ). A possible fashion of combining the results
of the K(K − 1)/2 ’duels’ is to take as predicted label
which has won the largest number of duels (and stip-
ulate a rule for breaking possible ties). The rationale
behind this OVO approach lies in the fact that

g∗(x) = arg max
k∈{1, ..., K}

N∗k (x), (5)

where, for all (k, x) ∈ {1, . . . , K}×Rq, N∗k (x) denotes
the number of duels won by label k with optimal/Bayes
classifiers for all binary subproblems, namely

N∗k (x) =
∑
l<k

I{g∗l,k(x) = +1}+
∑
k<l

I{g∗k,l(x) = −1},

where g∗l,m(x) = 2I{ηm(x)/(ηm(x) + ηl(x)) > 1/2} − 1
is the minimizer of the risk Ll,m for l < m. The proof
is straightforward. Indeed, it suffices to observe that,
for all i ∈ {1, . . . , K}, N∗σ∗x(i) = K − i.

Remark 1 (One-Versus-All) An alternative to
the OVO approach in order to reduce multiclass clas-
sification to binary subproblems and apply the SVM
methodology consists in comparing each class to all of
the others in K two-class duels. A test point is clas-
sified as follows: the signed distances from each of the
K separating hyperplanes are computed, the winner be-
ing simply the class corresponding to the largest signed
distance. However, other rules have been proposed in
Vapnik (1998) and in Weston and Watkins (1999).

Label Ranking. As underlined in the Introduction
section, rather than learning to predict the likeliest
label given X, it may also be desirable to rank all
possible labels according to their conditional likeli-
hood. The goal is then to recover the permutation
σ∗X defined through (3). Practically, this boils down
to build a predictive rule s(x) from the training data

(X1, Y1), . . . , (Xn, Yn) that maps Rq to SK and min-
imizes the ranking risk (4), where d(., .) is an appro-
priate loss function defined on SK×SK . For instance,
one may consider I{σ 6= σ′} or the Hamming distance∑K
k=1 I{σ(k) 6= σ′(k)} to measure the dissimilarity be-

tween two permutations σ and σ′ in SK . Classic met-
rics on SK (see Deza and Huang (1998)) also provide
natural choices for the loss function, including

• the Kendall τ distance: ∀(σ, σ′) ∈ S2
K ,

dτ (σ, σ′) =
∑
i<j

I{(σ(i)−σ(j))·(σ′(i)−σ′(j)) < 0};

• the Spearman footrule: ∀(σ, σ′) ∈ S2
K ,

d1(σ, σ′) =
K∑
i=1

|σ(i)− σ′(i)| ;

• the Spearman ρ distance: ∀(σ, σ′) ∈ S2
K ,

d2(σ, σ′) =

K∑
i=1

(σ(i)− σ′(i))2.

As shall be explained below, the label ranking problem
can be viewed as a variant of the standard ranking
median regression problem.

2.2 Ranking Median Regression

This problem of minimizing (4) shares some similarity
with that referred to as ranking median regression in
Clémençon et al. (2018), also called label ranking some-
times, see e.g. Tsoumakas et al. (2009) and Vembu
and Gärtner (2010). In this supervised learning prob-
lem, the output associated with the input variable X
is a random vector Σ taking its values in SK (ex-
pressing the preferences on a set of items indexed by
k ∈ {1, . . . , K} of a user with a profile character-
ized by X drawn at random in a certain statistical
population) and the goal pursued is to learn from in-
dependent copies (X1,Σ1), . . . , (Xn,Σn) of the pair
(X,Σ) a (measurable) ranking rule s : X → SK that
nearly minimizes

R(s) = E[d(Σ, s(X))]. (6)

The name ranking median regression arises from the
fact that any rule mapping X to a median of Σ’s condi-
tional distribution givenX w.r.t. the metric/loss d (re-
fer to Korba et al. (2017) for a statistical learning for-
mulation of the consensus/median ranking problem)
is a minimizer of (6), see Proposition 5 in Clémençon
et al. (2018). In certain situations, the minimizer
of (6) is unique and a closed analytic form can be
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given for the latter, based on the pairwise probabili-
ties: pi,j(x) = P{Σ(i) < Σ(j) | X = x} := 1 − pj,i(x)
for 1 ≤ i < j ≤ K and x ∈ Rq.

Assumption 2 For all x ∈ Rq, we have: ∀(i, k, l) ∈
{1, . . . , K}3, pi,j(x) 6= 1/2 and

pi,j(x) > 1/2 and pj,k(x) > 1/2 ⇒ pi,k(x) > 1/2.
(7)

Indeed, when choosing the Kendall τ distance dτ as
loss function, it has been shown that, under Assump-
tion 2, referred to as strict stochastic transitivity, the
minimizer of (6) is almost-surely unique and given by:
∀k ∈ {1, . . . , K}, with probability one:

s∗X(k) = 1 +
∑
l 6=k

I{pk,l(X) < 1/2}. (8)

Remark 3 (Conditional BTLP model) A
Bradley-Terry-Luce-Plackett model for Σ’s con-
ditional distribution given X, PΣ|X , assumes
the existence of a hidden preference vector
w(X) = (w1(X), . . . , wK(X)), where wk(X) > 0
is interpreted as a preference score for item k of
a user with profile X, see e.g. Bradley and Terry
(1952), Luce (1959) or Plackett (1975). The con-
ditional distribution of Σ−1 given X can be defined
sequentially as follows: Σ−1(1) is distributed ac-
cording to a multinomial distribution of size 1
with support S1 = {1, . . . , K} and parameters
wk(X)/

∑
l wl(X) and, for k > 1, Σ−1(k) is dis-

tributed according to a multinomial distribution of size
1 with support Sk = S1 \ {Σ−1(1), . . . , Σ−1(k − 1)}
with parameters wl(X)/

∑
m∈Sk wm(X), l ∈ Sk.

The conditional pairwise probabilities are given by
pk,l(X) = wk(X)/(wk(X) + wl(X)) and one may
easily check that Assumption 2 is fulfilled as soon as
the wk(X)’s are pairwise distinct with probability one.
In this case, s∗(X) is the permutation that sorts the
wk(X)’s in decreasing order.

In Clémençon et al. (2018), certain situations where
empirical risk minimizers over classes of ranking rules
fulfilling appropriate complexity assumptions can be
proved to achieve fast learning rates (i.e. faster than
OP(1/

√
n)) have been investigated. More precisely, de-

noting by ess inf Z the essential infimum of any real
valued r.v. Z, the following ’noise condition’ related
to conditional pairwise probabilities was considered.

Assumption 4 We have:

H = ess inf min
i<j
|pi,j(X)− 1/2| > 0. (9)

Precisely, it is shown in Clémençon et al. (2018) (see
Proposition 7 therein) that, under Assumptions 2-4,

minimizers of the empirical version of (6) over a VC
major class of ranking rules with the Kendall τ dis-
tance as loss function achieves a learning rate bound
of order OP(1/n) (without the impact of model bias).
Since PX{s(X) 6= s∗X} ≤ (1/H) × (R(s) − R(s∗. )) (cf
Eq. (13) in Clémençon et al. (2018)), a bound for the
probability that the empirical risk minimizer differs
from the optimal ranking rule at a random point X
can be immediately derived.

3 LABEL RANKING

We now describe at length the connection between la-
bel ranking and RMR and state the main results of
the article.

3.1 Label Ranking as RMR

The major difference with label ranking in the multi-
class classification context lies in the fact that only the
partial information σ∗−1

X (1) is observable in presence of
noise, under the form of the random label Y assigned
to X (σ∗−1

X (1) being the mode of Y ’s conditional dis-
tribution given X), in order to mimic the optimal rule
σ∗X .

Lemma 5 Let (X,Y ) be a random pair on the prob-
ability space (Ω, F . P). One may extend the sam-
ple space so as to build a random variable Σ that
takes its values in SK and whose conditional distribu-
tion given X is a BTLP model with preference vector
η(X) = (η1(X), . . . , ηK(X)) such that

Y = Σ−1(1) with probability one. (10)

See the Appendix section for the technical proof. The
noteworthy fact that the probabilities related to the
optimal pairwise comparisons P{g∗k,l(X) = +1 | Y ∈
{k, l}} = ηk(X)/(ηk(X)+ηl(X)) are given by a BTLP
model has been pointed out in Hastie and Tibshirani
(1998). With the notations introduced in Lemma 5,
we have in addition

P {Σ(k) < Σ(l) | X} = ηk(X)/(ηk(X) + ηl(X)),

:= ηk,l(X).

Eq. (10) can be interpreted as follows: the label rank-
ing problem as defined in subsection 2.1 can be viewed
as a specific RMR problem under strict stochastic
transitivity (i.e. Assumption 2 is always fulfilled) with
incomplete observations(

X1, Σ−1
1 (1)

)
, . . . ,

(
Xn, Σ−1

n (1))
)
.

Due to the incomplete character of the training data,
one cannot recover the optimal ranking rule σ∗x by min-
imizing a statistical version of (6) of course. As an
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alternative, one may attempt to build directly an em-
pirical version of σ∗X based on the explicit form (8),
which only involves pairwise comparisons, in a similar
manner as in Korba et al. (2017) for consensus rank-
ing. Indeed, in the specific RMR problem under study,
Eq. (8) becomes

σ∗X(k) = 1 +
∑
l 6=k

I{g∗k,l(X) = −1}, (11)

for all k ∈ {1, . . . , K}. The OVO procedure pre-
cisely permits to construct such an empirical version.
As shall be shown by the subsequent analysis, in spite
of the very partial nature of the statistical informa-
tion at disposal, the OVO approach permits to recover
the optimal RMR rule σ∗X with high probability pro-
vided that (X, Σ) fulfills (a possibly weakened version
of) Assumption 4, combined with classic complexity
conditions. Using Korba et al. (2018) or Brinker and
Hüllermeier (2019), one can tackle RMR with partial
information, but lacks theoretical guarantees.

Remark 6 (On the noise condition) Attention
should be paid to the fact that, when applied to the
random pair (X,Σ) defined in Lemma 5, Assumption
4 simply means that the classic Massart’s noise condi-
tion is fulfilled for every binary classification subprob-
lem, see Massart and Nédélec (2006).

3.2 The OVO Approach to Label Ranking

Let G be a class of decision rules g : Rq → {−1, +1}.
As stated in subsection 2.1, the OVO approach to mul-
ticlass classification is implemented as follows. For all
k < l, compute a minimizer ĝk,l of the empirical risk

L̂k,l(g) =
1

nk + nl

∑
i: Yi∈{k, l}

I{g(Xi) 6= Yk,l,i} (12)

over class G, with Yk,l,i = I{Yi = l} − I{Yi = k} for
i ∈ {1, . . . , n} and the convention that 0/0 = 0. We
set ĝl,k = −ĝk,l for k < l by convention. Equipped

with these
(
K
2

)
classifiers, for any test (i.e. input and

unlabeled) observation X, the ĝk,l(X)’s define a com-
plete directed graph GX with the K labels as vertices:
∀k < l, l →X k if ĝk,l(X) = +1 and k →X l other-
wise. The analysis carried out in the next subsection
shows that under appropriate noise conditions, with
large probability, the random graph GX is acyclic,
meaning that the complete binary relation l →X k
is transitive (i.e. l → k and k →X m ⇒ l →X m), in
other words that the scoring function

ŝ(X)(k) = 1 +
∑
k 6=l

I {ĝk,l(X) = −1} ,

= 1 +
∑
k 6=l

I {k →X l} , for k ∈ {1, . . . , K} (13)

defines a permutation, which, in addition, coincides
with σ∗X , cf Eq. (11). The equivalence between the
transitivity of→X , the acyclicity of GX and the mem-
bership of ŝ(X) in SK is straightforward, details are
left to the reader (see e.g. the argument of Theorem 5’s
proof in Clémençon et al. (2018)). The quantity (13)
can be related to the Copeland score, see Copeland
(1951): the score ŝ(X)(k) of label k being equal to 1
plus the number of duels it has lost, while its Copeland
score CX(k) is its number of victories minus its num-
ber of defeats, so that

ŝ(X)(.) = (K + 1− CX(.)) /2. (14)

OVO Approach to Label Ranking

Inputs. Class G of classifier candi-
dates. Training classification dataset
D = {(X1, Y1), . . . , (Xn, Yn)}. Query
point x ∈ Rq.

1. (Binary classifiers.) For k < l, based on
Dk,l = {(Xi, Yi) : Yi ∈ {k, l}, i = 1, . . . , n},
compute the ERM solution to the binary classi-
fication problem:

ĝk,l = arg min
g∈G

L̂k,l(g).

2. (Scoring.) Compute the predictions ĝk,l(x) and
the score for the query point x:

ŝ(x)(k) = 1 +
∑
l6=k

I{ĝk,l(x) = −1}.

Output. Break arbitrarily possible ties in order
to get a prediction σ̂x in SK at x from ŝ(x).

Figure 1: Pseudo-code for ’OVO label ranking’

When GX is not transitive, or equivalently when
ŝ(X) /∈ SK , one may build a ranking σ̂X from the
scoring function (13) by breaking ties in an arbitrary
fashion, as proposed below for simplicity. Alternatives
could be considered of course. The issue of building a
ranking/permutation of the labels in {1, . . . , K} from
(13) can be connected with the feedback set problem
for directed graphs, see e.g. Di Battista et al. (1999):
for a directed graph, a minimal feedback arcset is a
set of edges of smallest cardinality such that a directed
acyclic graph is obtained when reversing the edges in
it. Refer to e.g. Festa et al. (1999) for algorithms.

3.3 Statistical Guarantees for Label Ranking

It is the purpose of the subsequent analysis to show
that, provided that the conditions listed below are
fulfilled, the ranking rule σ∗X can be fully recovered
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through the OVO approach previously described with
high probability. We denote by µ the marginal distri-
bution of the input variable X, by µk the conditional
distribution of X given Y = k and set pk = P{Y = k}
for k ∈ {1, . . . , K}.

Assumption 7 There exists α ∈ [0, 1] and B > 0
such that: for all k < l and t ≥ 0,

P {|2ηk,l(X)− 1| < t} ≤ Bt α
1−α .

Assumption 8 The class G is of finite VC dimension
V < +∞.

Assumption 9 There exists a constant ε > 0, s.t. for
all k 6= l in {1, . . . , K} and x ∈ X , ηk(x) +ηl(x) > ε.

Assumption 7 means that Assumption 4 is satisfied
by the random pair (X,Σ) defined in Lemma 5 in
the case α = 1 (notice incidentally that it is void
when α = 0) and reduces to the classic Mammen-
Tsybakov noise condition in the binary case K = 2, see
Mammen and Tsybakov (1999). The following result
provides nonasymptotic bounds for the ranking risk
RP (σ̂X) of the OVO ranking rule in the case where
the loss function is I{σ 6= σ′}, i.e. for the proba-
bility of error. Extension to any other loss function
d(., .) is straightforward, insofar as we obviously have
d(σ∗X , σ̂X) ≤ max(σ,σ′)∈S2

K
d(σ, σ′) × I{σ̂X 6= σ∗X}

with probability one.

Theorem 10 Suppose that Assumptions 7-9 are ful-
filled. Then, for all δ ∈ (0, 1), we have with probability
(w.p.) at least 1− δ: ∀n ≥ n0(δ, α, ε, B, V ),

P {σ̂X 6= σ∗X | D} ≤
β

ε

{(
K

2

)
rαn

(
δ(
K
2

))+
∑
k<l

2

(
inf
g∈G

Lk,l(g)− L∗k,l
)α}

,

where X denotes a r.v. drawn from µ, independent
from the training data D, L∗k,l = Lk,l(g

∗
k,l), β =

β(α,B) and with h := h(B, a, ε),

rn(δ) = 2 (1/(nh))
1

2−α ×[(
64C2V log n

) 1
2−α + (32 log(2/δ))

1
2−α
]
.

Refer to the Appendix section for the technical proof.

Remark 11 (On the noise condition (bis)) We
point out that the results of this paper can be straight-
forwardly extended to the situation where the noise ex-
ponent α may vary depending on the binary subproblem
considered. For the sake of simplicity only, here we re-
strict the analysis to the homogeneous setup described
by Assumption 7.

Hence, for the RMR problem related to the partially
observed BTLP model detailed in subsection 3.1, the
rate bound achieved by the OVO ranking rule in The-
orem 10 is of order OP(n−α/(2−α)), ignoring the bias
term and the logarithmic factors. In the case α = 1, it
is exactly the same rate as that attained by minimiz-
ers of the ranking risk in the standard RMR setup,
as stated in Proposition 7 in Korba et al. (2017).
Whereas situations where the OVO multi-class clas-
sification may possibly lead to ’inconsistencies’ (i.e.
where the binary relationship →X is not transitive)
have been exhibited many times in the literature, no
probability bound for the excess of classification risk of
the general OVO classifier, built from ERM applied to
all binary subproblems, is documented to the best our
knowledge. Hence, attention should be paid to the fact
that, as a by-product of the argument of Theorem 10’s
proof, generalization bounds for the OVO classifier

ḡ(X)
def
= σ̂−1

X (1).

can be established, as stated in Corollary 13 below.
More generally, the statistical performance of the label
ranking rule σ̂x produced by the method described in
subsection 3.2 can be assessed for other risks. For in-
stance, rather than just comparing the true label Y as-
signed to X to the label σ̂−1

X (1) ranked first, as in OVO
classification approach, one could consider `k(Y, σ̂X),
with `k(y, σ) = I{y /∈ {σ−1(1), . . . , σ−1(k)}} for
all (y, σ) ∈ {1, . . . , K} × SK , equal to 1 when Y
does not appear in the top k list and to 0 otherwise,
where k is fixed in {1, . . . , K}. For any ranking rule
s : Rq → SK , the corresponding risk is then

Wk(s) = E[`k(Y, s(X))]. (15)

Set W ∗k = minsWk(s), where the minimum is taken
over the set of all possible ranking rules s. As shown
in the Appendix section, the argument leading to The-
orem 10 can be adapted to prove a rate bound for the
risk excess of the OVO ranking rule σ∗. : x ∈ Rq 7→ σ∗x.

Proposition 12 Let k ∈ {1, . . . , K} be fixed. Then:

W ∗k = Wk(σ∗. ).

Suppose in addition that Assumptions 7-9 are fulfilled.
Then, for all δ ∈ (0, 1), we have w.p. ≥ 1− δ: ∀n ≥ 1,

Wk(σ̂.)−W ∗k ≤
β

ε

(
K

k

)
k(K − k)×(

rαn

(
δ(
K
2

))+ 2 ·max
m6=l

(
inf
g∈G

Ll,m(g)− L∗l,m
)α)

.

Since we have W1(s) = L(s(.)−1(1)) for any label rank-
ing rule s(x), in the case k = 1 the result above pro-
vides a generalization bound for the excess of misclas-
sification risk of the OVO classifier ḡ(x) = σ̂−1

x (1).
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Corollary 13 Suppose that Assumptions 7-9 are ful-
filled. Then, for all δ ∈ (0, 1), we have w.p. ≥ 1 − δ:
∀n ≥ n0(δ, α, ε, B, V ),

L(ḡ)− L∗ ≤ β

ε
K(K − 1)×(

rαn

(
δ(
K
2

))+ 2 ·max
k 6=l

(
inf
g∈G

Lk,l(g)− L∗k,l
)α)

.

4 EXPERIMENTAL RESULTS

This section first illustrates the results of Theorem 10
using simulated datasets, of which distributions sat-
isfy Assumption 7, for certain values of the noise pa-
rameter α, highlighting the impact/relevance of this
condition. In the experiments based on real data next
displayed, the OVO approach to top-k classification, cf
Eq. (15), is shown to surpass rankings relying on the
scores output by multiclass classification algorithms.
Due to space limitations, details and comments are
postponed to the Supplementary Material.

Synthetic data. In this toy illustrative example,
we consider X = [0, 1], K = 8 and learn a sim-
ple decision stump, i.e. a function of the form x 7→
2I {(x− s)ε ≥ 0} − 1 where s, ε are unknown parame-
ters. A representation of the ηk’s for all k ∈ {1, . . . ,K}
as well as the expected Kendall τ distance of OVO la-
bel ranking models for different values of n are given
in Fig. 2. For each value of n, the boxplot is com-
puted using 100 independent trials, representing dif-
ferent learning rates, for α = 0.2 and α = 0.8 namely.

0.0 0.5 1.0
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s
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(a) α = 0.2.
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E
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)]

(b) α = 0.8

Figure 2: Probability of each class on [0, 1] for α ∈
{0.2, 0.8} and boxplot of 100 independent estimations
of E [dτ (σ̂X , σ

∗
X)] as a function of n.

Real data. Regarding top-k performance, for two
popular datasets, MNIST and fashion-MNIST, the
OVO label ranking approach is benchmarked against
the rankings based on the probability estimates related
to a multiclass logistic regression in Table 1.

Table 1: Top-k performance. The time to fit the model
is given by the last column.

Dataset Model Top-1 Top-5 Fit time

MNIST
LogReg 0.924 0.995 50 min
OVO 0.943 0.997 40 min

Fashion LogReg 0.857 0.997 35 min
-MNIST OVO 0.863 0.997 60 min

5 CONCLUSION

In this paper, a statistical problem halfway between
multiclass classification and posterior probability es-
timation, referred to as label ranking here, is consid-
ered. The goal is to design a method to rank, for any
test observation X, all the labels y that can be possi-
bly assigned to it by decreasing order of magnitude of
the (unknown) posterior probability P{Y = y | X}.
Formulated as a specific ranking median regression
problem with incomplete observations, this problem
is shown to have a solution that takes the form of a
Copeland score, involving pairwise comparisons only.
Based on this crucial observation, it is proved that the
OVO procedure for multiclass classification permits to
build, from training classification/labelled data, the
optimal ranking with high probability, under appro-
priate hypotheses. This is also empirically supported
by numerical experiments. Remarkably, the analysis
carried out here incidentally provides a rate bound for
the OVO classifier.

APPENDIX - TECHNICAL DETAILS

Proof of Lemma 5

As a first go, define Σ−1(1) as Y . Next, given X and
Σ−1(1) = Y , draw Σ′ as a BTLP model on the set
I = {1, . . . , K} \ {Σ−1(1)} with preference param-
eters ηk(X), k ∈ I. For all r ∈ {1, . . . , K − 1},
set Σ−1(r + 1) = Σ′−1(r) and invert the permutation
(Σ−1(1), . . . , Σ−1(K)) to get a random permutation
Σ with the desired properties.

Proof of Theorem 10

Fix δ ∈ 0, 1 and let 1 ≤ k < l ≤ K. Assumption 7
implies that the Mammen-Tsybakov noise condition is
fulfilled for the binary classification problem related to
the pair (X,Y ) given that Y ∈ {k, l}. When Assump-
tions 8-9 are also satisfied, a possibly fast rate bound
for the risk excess of the empirical risk minimizer ĝk,l
can be established, as stated in the following lemma.

Lemma 14 Suppose that Assumptions 7-9 are ful-
filled. Let 1 ≤ k < l ≤ K. Then, for all δ ∈ (0, 1), we
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have w.p. ≥ 1− δ: ∀n ≥ 1,

Lk,l(ĝk,l)−L∗k,l ≤ 2

(
inf
g∈G

Lk,l(g)− L∗k,l
)

+rn(δ), (16)

where, for all n ≥ n0(δ, α, ε, B, V ) and δ ∈ (0, 1),

rn(δ) = 2 (1/(nh))
1

2−α ×[(
64C2V log n

) 1
2−α + (32 log(2/δ))

1
2−α
]
.

proof. The result is a slight variant of that proved
in P. Bartlett and Mendelson (2005) (see therein),
the sole difference lying in the fact that the empir-
ical risk (and, consequently, its minimizer as well)
is built from a random number of training observa-
tions (i.e. those with labels in {k, l}). Note that
h = ε3−2α(1 − α)1−ααα/B1−α. Details are given in
the Supplementary Material.

Observe that the probabilities appearing in this proof
are conditional probabilities given the training sam-
ple D and, as a consequence, must be considered as
random variables. However, to simplify notations,
we omit to write the conditioning w.r.t. D explic-
itly. Notice first that Assumption 7 implies that, with
β = B1−α/((1− α)

1−α
αα),

PX
{
ĝk,l(X) 6= g∗k,l(X) | Y ∈ {k, l}

}
≤

β
(
Lk,l(ĝk,l)− L∗k,l

)α
, (17)

with probability one. Observe in addition that

PX
{
ĝk,l(X) 6= g∗k,l(X) | Y ∈ {k, l}

}
=

EX
[
dµk,l
dµ

(X)× I
{
ĝk,l(X) 6= g∗k,l(X)

}]
, (18)

denoting by µk,l = (pkµk + plµl)/(pk + pl) the condi-
tional distribution of X given that Y ∈ {k, l}. Under
Assumption 9, we almost-surely have:

dµk,l
dµ

(X) ≥ ε

pk + pl
≥ ε.

Hence, from (17) and Lemma 14, we get that

ε

β
PX
{
ĝk,l(X) 6= g∗k,l(X)

}
≤

(
Lk,l(ĝk,l)− L∗k,l

)α ≤ 2

(
inf
g∈G

Lk,l(g)− L∗k,l
)α

+rαn(δ),

(19)

using Minkowski’s inequality. Since⋂
k<l

{
ĝk,l(X) = g∗k,l(X)

}
⊂ {σ∗X = σ̂X} ,

with probability one, combining the bound above with
the union bound, for all δ ∈ (0, 1), w.p. ≥ 1− δ:

PX {σ∗X 6= σ̂X} ≤
∑
k<l

PX
{
ĝk,l(X) 6= g∗k,l(X)

}
≤

β

ε

{(
K

2

)
rαn

(
δ(
K
2

))+
∑
k<l

2

(
inf
g∈G

Lk,l(g)− L∗k,l
)α}

.

Proof of Proposition 12

Let us first show that W ∗k = Wk(σ∗. ).

For any ranking rule s and all x ∈ Rq, we define

Topk(s(x)) = {s(X)−1(1), . . . , s(X)−1(k)},

and also set Top∗k(x) = Topk(σ∗x). Indeed, for any
ranking rule s, we can write

Wk(s) = E [E [`k(Y, s(X)) | X]] ,

and we almost-surely have

E [`k(Y, s(X)) | X] =

K∑
l=1

ηl(X)I{l /∈ Topk(s(X))}. (20)

As σ∗x is defined through (3), one easily sees that the
quantity (20) is minimum for any ranking rule s(x) s.t.

Topk(s(X)) = Top∗k(X). (21)

Hence, the collection of optimal ranking rules regard-
ing the risk (15) coincides with the set of ranking rules
such that (21) holds true with probability one. Ob-
serve that, with probability one,

I {Y /∈ Topk(s(X))} − I {Y /∈ Top∗k(X)} ≤
I {Top∗k(X) 6= Topk(s(X))} ,

for any ranking rule s(x), so that

Wk(s)−W ∗k ≤ PX {Topk(s(X)) 6= Top∗k(X)} .

In addition, notice that

Wk(σ̂X)−W ∗k ≤ PX {Top∗k(X) 6= Topk(σ̂X)} =∑
L⊂Y: #L=k

PX {Top∗k(X) = L, Top∗k(X) 6= Topk(σ̂X)} ,

≤
∑

L⊂Y: #L=k

∑
l∈L, m/∈L

PX
{
ĝl,m(X) 6= g∗l,m(X)

}
,

≤ β

ε

(
K

k

)
k(K − k)×(

rαn

(
δ(
K
2

))+ 2 ·max
m6=l

(
inf
g∈G

Ll,m(g)− L∗l,m
)α)

,

using (19).
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P. Massart and E. Nédélec. Risk bounds for statistical
learning. Annals of Statistics, 34(5), 2006.

M. Moreira and E. Mayoraz. Improved pairwise cou-
pling classification with correcting classifiers. In In
the Proceedings of ECML, 1998.

O. B. P. Bartlett and S. Mendelson. Localized
rademacher complexities. The Annals of Statistics,
33(1):497–1537, 2005.

R. L. Plackett. The analysis of permutations. Applied
Statistics, 2(24):193–202, 1975.

G. Tsoumakas, I. Katakis, and I. Vlahavas. Mining
multi-label data. In Data mining and knowledge dis-
covery handbook, pages 667–685. Springer, 2009.

A. van der Vaart and J. A. Wellner. Weak convergence
and empirical processes. 1996. ISBN 0-387-94640-3.
doi: 10.1007/978-1-4757-2545-2.

V. Vapnik. Statistical Learning Theory. Wiley, New
York, 1998.

S. Vembu and T. Gärtner. Label ranking algorithms:
A survey. In Preference learning, pages 45–64.
Springer, 2010.

J. Weston and C. Watkins. Multiclass support vector
machines. In Proceedings of ESANN99, D. Facto
Press, Brussels., 1999.

T. Wu, C. Lin, and R. Weng. Probability estimates
for multi-class classification by pairwise coupling.
Journal of Machine Learning Research, 5:975–1005,
2004.

H. Xiao, K. Rasul, and R. Vollgraf. Fashion-mnist:
a novel image dataset for benchmarking machine
learning algorithms. CoRR, abs/1708.07747, 2017.
URL http://arxiv.org/abs/1708.07747.

B. Zou, H. Zhang, and Z. Xu. Learning from uniformly
ergodic Markov chains, volume 25. 2009.

http://arxiv.org/abs/1708.07747


A Multiclass Classification Approach to Label Ranking

APPENDIX - SUPPLEMENTARY MATERIAL

5.1 Detailed proof of Lemma 14

As pointed out, the result is a slight variant of that proved in ((Boucheron et al., 2005, pages 342-346)). The
sole difference lies in the fact that fact that the empirical risk (and, consequently, its minimizer as well) is built
from a random number of training observations (i.e. those with labels in {k, l}). Here, we detail the proof for
completion.

The derivation of fast learning speeds for general classes of functions relies on a sensible use of Talagrand’s
inequality that exploits the upper bound on the variance of the loss provided by the noise condition, combined
with convergence bounds on Rademacher averages, see P. Bartlett and Mendelson ((2005)).

To begin with, we define classes of functions that mirror the ones used by Boucheron et al. ((2005)). Those
are specifically introduced for the problem of associating elements of the sample to the label k or l, with
k < l, (k, l) ∈ {1, . . . ,K}2 any pair of labels. Given a label y ∈ Y, it corresponds to solving binary classification
for yk,l = I{y = k} − I{y = l} for all of the concerned instances, i.e. those with labels k or l. For each binary
classifier g in G, we introduce the cost function ck,l and the proportion of concerned instances hk,l, such that,
for all x, y ∈ X × {1, . . . ,K},

ck,l(x, y) = I{g(x) 6= yk,l, y ∈ {k, l}} and hk,l(y) = I{y ∈ {k, l}}.

Denote by Fk,l the regret of each function ck,l, formally:

Fk,l :=
{
fk,l : x, y 7→ I{y ∈ {k, l}} ·

(
ck,l(x, y)− I{g∗k,l(x) 6= yk,l}

)
| g ∈ G

}
.

With P as the expectation over X,Y and Pn as the empirical measure, one can rewrite the risk Lk,l and empirical

risk L̂k,l as:

Lk,l(g) =
Pck,l
Phk,l

and L̂k,l(g) =
Pnck,l
Pnhk,l

.

Unlike ck,l the empirical mean Pnhk,l does not depend on an element of g ∈ G, thus minimizing L̂k,l is the
same problem as minimizing Pnck,l. The rest of the proof consists in using ((Boucheron et al., 2005, section
5.3.5 therein)) to derive an upper bound of Pf , with f ∈ Fk,l. Talagrand’s inequality is useful because of an
upper-bound on the variance of the elements in Fk,l.
Assumption 7 induces a control on the variance of the elements of Fk,l. ((Bousquet et al., 2004, page 202
therein)) reviewed equivalent formulations of the noise assumption, in the case of binary classification. One of
those formulations is similar to the following equation:

P
{
g(X) 6= g∗k,l(X)

}
≤ β(Lk,l(g)− L∗k,l)α, (22)

where β = B1−α

ε(1−α)1−ααα . The proof is the same as that of ((Bousquet et al., 2004, page 202 therein)), but is

followed by Assumption 9, see section 5.1.1 for more details.

Set β0 = β(pk + pl)
α, Equation (22) implies, for any f ∈ Fk,l, that, with T (f) =

√
β0 · (Pf)α/2:

Var(f) ≤ P
{
g(X) 6= g∗k,l(X)

}
≤ β(Lk,l(g)− L∗k,l)α = β(pk + pl)

α · (Pf)α = T 2(f). (23)

The function T (f) controls the variance of the elements in Fk,l, and is used to reweights its instances before
applying Talagrand’s inequality.

The complexity of the proposal family of functions is controlled using the notion of Rademacher average, as in
Boucheron et al. ((2005)). Let F be a class of functions, its Rademacher average Rn(F) is defined as:

Rn(F) := Eσ sup
f∈F

1

n

∣∣∣∣∣
n∑
i=1

σif(Xi, Yi)

∣∣∣∣∣.
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Introduce F∗k,l as the star-hull of Fk,l, i.e. F∗k,l = {αf : α ∈ [0, 1], f ∈ Fk,l}, we define two functions that
characterize the properties of the problem of interest, and are required to apply ((Boucheron et al., 2005,
Theorem 5.8 therein)):

w(r) = sup
f∈F∗k,l:Pf≤r

T (f) and ψ(r) = ERn{f ∈ F∗k,l : T (f) ≤ r}. (24)

Finally ((Boucheron et al., 2005, Theorem 5.8 therein)) implies that, for all δ > 0, with r∗0(δ) the solution of:

r = 4ψ(w(r)) + 2w(r)

√
2 log 2

δ

n
+

16 log 2
δ

3n
, (25)

we have that, with probability at least 1− δ,

Lk,l(ĝk,l)− L∗k,l ≤ 2

(
inf
g∈G

Lk,l(g)− L∗k,l
)

+
r∗0(δ)

pk + pl
.

Now, we can conclude by combining this result with properties of w and ψ, that originate from the noise
assumption and the control on the complexity of G, respectively. Assumption 8 states that the proposal class G
is of VC-dimension V . Permanence properties of VC-classes of functions, see ((van der Vaart and Wellner, 1996,
section 2.6.5 therein)), imply that Fk,l is also VC. It follows from P. Bartlett and Mendelson ((2005)) that:

ψ(r) ≤ Cr
√
V

n
log n.

Plugging this result into Equation (25) gives:

r∗0(δ) ≤ 2w(r∗0(δ))√
n

[
2C
√
V log n,+

√
2 log

2

δ

]
+

16 log 2
δ

3n
.

Combining it with the definition of w in (24) and the control on the variance laid forth in (23) yields:

r∗0(δ) ≤ [r∗0(δ)]
α/2 2

√
β0√
n

[
2C
√
V log n+

√
2 log

2

δ

]
+

16 log 2
δ

3n
. (26)

Equation (26) is a variational inequality, and an upper bound on the solution can be derived directly from ((Zou
et al., 2009, Lemma 2 therein)). It writes:

r∗0(δ) ≤ max

{(
16β0

n

) 1
2−α [

2C
√
V log n+

√
2 log(2/δ)

] 2
2−α

,
32 log(2/δ)

3n

}
.

Using the convexity of x 7→ x
2

2−α , the right-hand side of the above inequality can be upper-bounded, which leads
to:

r∗0(δ) ≤ 2 ·max

{(
16β0

n

) 1
2−α [(

4C2V log n
) 1

2−α + (2 log(2/δ))
1

2−α
]
,

32 log(2/δ)

3n

}
. (27)

Assumption 9 implies that (pk + pl)
−1 ≤ 1/ε. Introducing r∗(δ) = (pk + pl)

−1r∗0(δ), Equation (27) combined
with the definition of β0 implies:

r∗(δ) ≤ 2 ·max

{(
16β

ε2−2αn

) 1
2−α [(

4C2V log n
) 1

2−α + (2 log(2/δ))
1

2−α
]
,

32 log(2/δ)

3εn

}
. (28)

Introduce n0(δ, α, ε, B, V ) as the lowest n such that the first term in the maximum in Equation (28) dominates
the second term, it satisfies:

n
1−α
2−α
0

[(
4C2V log(n0)

) 1
2−α + (2 log(2/δ))

1
2−α
]
≥ 32 log(2/δ)

3 [16βεα]
1

2−α
. (29)
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and so does any n ≥ n0.

To conclude, we have proven that for any δ ∈ (0, 1), for any n ≥ n0(δ, α, ε, B, V ), we have that, with probability
greater than 1− δ,

Lk,l(ĝk,l)− L∗k,l ≤ 2

(
inf
g∈G

Lk,l(g)− L∗k,l
)

+ r∗(δ),

with

r∗(δ) = 2

(
16β

nε2−2α

) 1
2−α [(

4C2V log n
) 1

2−α + (2 log(2/δ))
1

2−α
]
. (30)

A simple upper bound on n0(δ, α, ε, B, V ):

The right-side terms of Equation (30) are not balanced. Indeed, as soon as n is high, the term in log(n) dominates
the other. That fact can be exploited to derive a convenient upper bound on n0(δ, α, ε, B, V ), since one cannot
directly solve eq. (29).

Assume that n ≥ (2/δ)
1

2C2V , then

n
1−α
2−α

[(
4C2V log(n)

) 1
2−α + (2 log(2/δ))

1
2−α
]
≥ 2

(
2n1−α log(2/δ)

) 1
2−α .

However, we have that:

2
(
2n1−α log(2/δ)

) 1
2−α ≥ 32 log(2/δ)

3 [16βεα]
1

2−α
,

if and only if:

n ≥ log(2/δ)

(
(16/3)2−α

32βεα

) 1
1−α

.

Hence, we have proven that:

n0(δ, α, ε, B, V ) ≤ max

{
(2/δ)

1
2C2V , log(2/δ)

(
(16/3)2−α

32βεα

) 1
1−α
}
.

5.1.1 On the equivalent noise condition

The proof is almost similar to that of ((Bousquet et al., 2004, page 202 therein)), and is recalled here. The excess
loss of a classifier can be written as follows:

Lk,l(g)− L∗k,l = E
[
|2ηk,l(X)− 1| · I

{
g(X) 6= g∗k,l(X)

}
| Y ∈ {k, l}

]
.

Using Markov’s inequality, for all t ≥ 0:

Lk,l(g)− L∗k,l ≥ t · E
[
I
{
g(X) 6= g∗k,l(X)

}
· I {|2ηk,l(X)− 1| ≥ t} | Y ∈ {k, l}

]
,

≥ t · P {|2ηk,l(X)− 1| ≥ t | Y ∈ {k, l}}
− t · E

[
I
{
g(X) = g∗k,l(X)

}
I {|2ηk,l(X)− 1| ≥ t} | Y ∈ {k, l}

]
.

Assumption 7 and I {|2ηk,l(X)− 1| ≥ t} ≤ 1 imply:

Lk,l(g)− L∗k,l ≥ t · (1−Bt
α

1−α )− t · P
{
g(X) = g∗k,l(X) | Y ∈ {k, l}

}
≥ t ·

(
P
{
g(X) 6= g∗k,l(X) | Y ∈ {k, l}

}
−Bt α

1−α
)
,
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Choosing

t =

 (1− α)P
{
g(X) 6= g∗k,l(X) | Y ∈ {k, l}

}
B

(1−α)/α

,

finally gives:

P
{
g(X) 6= g∗k,l(X) | Y ∈ {k, l}

}
≤ B1−α

(1− α)1−ααα
(Lk,l(g)− L∗k,l)α.

Which implies, using Assumption 9:

P
{
g(X) 6= g∗k,l(X)

}
≤ B1−α

ε(1− α)1−ααα
(Lk,l(g)− L∗k,l)α.

5.2 Experiments on simulated data

Introduce the function hα, which for any α ∈ [0, 1]:

hα(x) =
1

2
+

1

2
ε(x)|2x− 1|

1−α
α ,

where ε(x) = 2I {2x > 1} − 1. It has good properties with regard to the Mammen-Tsybakov noise condition
introduced in Boucheron et al. ((2005)). We define a warped version hα,x0

of this function hα such that:

hα,x0
(x) =

hα,x0 = hα

(
x

2x0

)
if x < x0,

hα,x0 = hα

(
1
2 + x−x0

2(1−x0)

)
if x ≥ x0.

We use this function to define the ηk’s by recursion, and assume that X ∼ U([0, 1]). Formally, define a depth

parameter D, the variable Y belong to K = 2D+1 classes. Let b
(d)
2 (k) describe the decomposition in base 2 of

the value k, i.e. k =
∑D
d=0 2b

(d)
2 (k), we set, with x(d,k) =

∑D
d=1 2−b

(d)
2 (k):

ηk(x) =

D∏
d=0

hα,x(d,k)
(x).

By varying the parameter α, one can set the classification problems to be more complicated or more easy. If α
is close to 1, the problems are very simple. If α is close to 0, the problems are more arduous.

0.0 0.5 1.0
x

0

1

η k
(x

)’
s

(a) Distribution for α = 0.2.
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x

0

1

η k
(x
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(b) Distribution for α = 0.8.
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4
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Figure 3: Cumulated histogram of the ηk’s over [0, 1].

To implement the procedure described in Figure 1, we learn decision stumps in [0, 1], i.e. we optimize over the
family of functions G = {gs,ε | s ∈ [0, 1], ε ∈ {−1,+1}}, where, for any x ∈ [0, 1]:

gs,ε(x) = 2I {(x− s)ε ≥ 0} − 1.
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(a) Dynamics for α = 0.2.
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(b) Dynamics for α = 0.8

Figure 4: Boxplot of 100 independent estimations of the proportion of predictions with cycles as a function of n.
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(a) Dynamics for α = 0.2.

102 104

n

0

1

P
{σ̂

X
6=
σ
∗ X
}

(b) Dynamics for α = 0.8

Figure 5: Boxplot of 100 independent estimations of P{σ̂X 6= σ∗X} as function of n.
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(a) Dynamics for α = 0.2.
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(b) Dynamics for α = 0.8

Figure 6: Boxplot of 100 independent estimations of E [dτ (σ̂X , σ
∗
X)] as function of n.

Figure 4, Figure 5 and Figure 6 represent boxplots obtained with 100 independent estimations on 1000 test points
of, respectively, the number of cycles in predicted permutations, the average miss probability for the problem of
predicting permutations P{σ̂X 6= σ∗X}, and the average Kendall distances between predictions and ground truths
E [dτ (σ̂X , σ

∗
X)], all as a function of the number of learning points n with

n ∈
⋃

i∈[[1,4]]

{10i, 3× 10i} ∪ {105}.

One sees that learning is fast when α is close to 1, as expected. Figure 6 shows that the average Kendall’s τ
distance decreases quickly when α is close to 1, as does the the proportion of cycle in predictions, see Figure 4. On
the other hand, due to the difficulty of predicting a complete permutation, the influence of the noise parameter
on the evolution of the probability of error when n grows is more subtle, see Figure 5.
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5.3 Experiments on real data

The MNIST dataset is composed of 28 × 28 grayscale images of digits and labels being the value of the digits.
In this experiment, we learn to predict the value of the digit between K = 10 classes corresponding to digits
between 0 and 9. The dataset contains 60, 000 images for training and 10, 000 images for testing, all equally
distributed within the classes. This dataset has been praised for its accessibility, but was recently criticised for
being too easy, which led to the introduction of the dataset Fashion-MNIST, see Xiao et al. ((2017)). It has the
same structure as MNIST, with regard to train and test splits, number of classes and and image size. It consists
in classifying types of clothing apparel, e.g. dress, coat and sandals, and is harder to classify than MNIST.

Our experiments aim to show that the OVO approach for top-k classification, cf Eq. (15), can surpass rankings
relying on the scores output by multiclass classification algorithms. For that matter, we evaluated the perfor-
mances of both approaches using a logistic regression to solve binary classification in the OVO case and multiclass
classification in the other. For that matter, we relied on the implementations provided by the python package
scikit-learn, specifically the LogisticRegressionCV class. The dimensionality of the data was reduced using
standard PCA with enough components to retain 95% of the variance for both datasets, which makes for 153
components for MNIST and 187 components for Fashion-MNIST.

Results are summarized in Table 1. They show that the OVO approach performs better than the logistic
regression for the top-1 accuracy, i.e. classification accuracy, as well as for the top-5 accuracy. While the OVO
approach requires us to train K(K−1)/2 = 45 models, those are trained with less data and output values. Both
approaches end up requiring a similar amount of time to be trained.


	INTRODUCTION
	PRELIMINARIES
	From Binary to Multiclass Classification
	Ranking Median Regression

	LABEL RANKING
	Label Ranking as RMR
	The OVO Approach to Label Ranking
	Statistical Guarantees for Label Ranking

	EXPERIMENTAL RESULTS
	CONCLUSION
	Detailed proof of Lemma 14
	On the equivalent noise condition

	Experiments on simulated data
	Experiments on real data


