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Duality in RKHSs with Infinite Dimensional Outputs:
Application to Robust Losses

Pierre Laforgue 1 Alex Lambert 1 Luc Brogat-Motte 1 Florence d’Alché-Buc 1

Abstract
Operator-Valued Kernels (OVKs) and associated
vector-valued Reproducing Kernel Hilbert Spaces
provide an elegant way to extend scalar kernel
methods when the output space is a Hilbert space.
Although primarily used in finite dimension for
problems like multi-task regression, the ability of
this framework to deal with infinite dimensional
output spaces unlocks many more applications,
such as functional regression, structured output
prediction, and structured data representation.
However, these sophisticated schemes crucially
rely on the kernel trick in the output space, so
that most of previous works have focused on the
square norm loss function, completely neglecting
robustness issues that may arise in such surrogate
problems. To overcome this limitation, this paper
develops a duality approach that allows to solve
OVK machines for a wide range of loss functions.
The infinite dimensional Lagrange multipliers are
handled through a Double Representer Theorem,
and algorithms for ε-insensitive losses and the
Huber loss are thoroughly detailed. Robustness
benefits are emphasized by a theoretical stability
analysis, as well as empirical improvements on
structured data applications.

1. Introduction
Due to increasingly available streaming and network data,
learning to predict complex objects such as structured
outputs or time series has attracted a great deal of attention
in machine learning. Extending the well known kernel
methods devoted to non-vectorial data (Hofmann et al.,
2008), several kernel-based approaches have emerged to
deal with complex output data. While Structural SVM
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and variants cope with discrete structures (Tsochantaridis
et al., 2005; Joachims et al., 2009) through structured
losses, Operator-Valued Kernels (OVKs) and vector-valued
Reproducing Kernel Hilbert Spaces (vv-RKHSs, Micchelli
and Pontil (2005); Carmeli et al. (2006; 2010)) provide a
unique framework to handle both functional and structured
outputs. Vv-RKHSs are classes of functions that map
an arbitrary input set X to some output Hilbert space Y
(Senkene and Tempel’man, 1973; Caponnetto et al., 2008).
Primarily used with finite dimensional outputs (Y “ Rp)
to solve multi-task regression (Micchelli and Pontil, 2005;
Baldassarre et al., 2012) and multiple class classification
(Dinuzzo et al., 2011), OVK methods have further been
exploited to handle outputs in infinite dimensional Hilbert
spaces. This has unlocked numerous applications, such as
functional regression (Kadri et al., 2010; 2016), structured
prediction (Brouard et al., 2011; Kadri et al., 2013), infinite
quantile regression (Brault et al., 2019), or structured data
representation learning (Laforgue et al., 2019). Nonetheless,
these sophisticated schemes often come along with a basic
loss function: the output space squared norm, neglecting
desirable properties such as parsimony and robustness.

In nonparametric modeling, model parsimony boils down
to data sparsity, e.g. reducing the number of training data
points on which the model relies to make a prediction. Such
a property is highly valuable (Hastie et al., 2015): not only
does it prevent overfitting but it also alleviates the inherent
computational load of optimization and prediction, allowing
to scale to larger datasets. Another appealing property of a
regression tool is robustness to outliers (Huber, 1964; Zhu
et al., 2008). Real data may suffer from incorrect feature
measurements and spurious annotations, leading to training
datasets contaminated with outliers. Then, minimizing the
squared loss is inappropriate as the least-squares estimates
behave poorly when the residuals distribution is not normal,
but rather heavy-tailed. In (scalar) kernel methods, these
two properties – data sparsity and robustness to outliers –
are imposed through the choice of appropriate losses. Data
sparsity is leveraged by using ε-insensitive losses, exploited
in the well known Support Vector Regression (Drucker et al.,
1997) while robust regression (Fung and Mangasarian, 2000)
can be obtained by minimizing the Huber loss function
(Huber, 1964). Driven by three emblematic learning tasks,
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structured prediction, functional regression, and structured
data representation, we propose a general duality framework
that enables sparse data regression and robust regression,
even when working in vv-RKHSs with infinite-dimensional
outputs. Although extensively used within scalar kernel
methods, very few attempts have been made to adapt duality
to vv-RKHSs. In Brouard et al. (2016b), dualization is
presented, but only used in the maximum margin regression
scenario. Sangnier et al. (2017) consider a wider class of
loss functions, including ε-insensitive losses to leverage
data sparsity, but only in the case of matrix-valued kernels
(Álvarez et al., 2012), for which the dual problem is finite
dimensional. For a general OVK however, the dual problem
is to be solved over Yn, and is intractable without additional
work when Y is infinite dimensional. We first notice that
the extensions of ε-insensitive losses and the Huber loss to
general Hilbert space are (still) expressed as convolutions
of simpler losses whose Fenchel-Legendre (FL) transforms
are known. Inspired by this remark, we identify general
conditions on the OVKs and FL transforms to establish a
Double Representer Theorem allowing to work with matrix
parameterized representations. In particular, a careful use
of the duality principle considerably broadens the range of
loss functions for which OVK solutions are computable.
The present work thus aims at developing a comprehensive
methodology to solve these dual problems.

The rest of the paper is organized as follows. In Section 2,
we introduce OVKs, recall the general formulation of dual
problems for OVK machines, and derive their solvable finite
dimensional reformulation. Section 3 is devoted to specific
instantiations of this problem for ε-insensitive losses and the
Huber loss, with algorithms duly explicited. In Section 4, we
apply our framework to induce sparsity and robustness into
structured prediction, functional regression, and structured
data representation. Proofs are postponed to the Appendix.

2. Learning in vv-RKHSs
After reminders on OVKs and vv-RKHS learning theory,
this section exposes the duality approach for the regularized
empirical risk minimization problem in vv-RKHSs. Two
strategies are then detailed to solve infinite dimensional dual
problems, either under an assumption on the kernel, or by
approximating the dual. In the following, Y is assumed to
be a separable Hilbert space.
Definition 1. An OVK is an applicationK : XˆX Ñ LpYq,
that satisfies the following two properties for all n P N˚:

1q @px, x1q P X ˆ X , Kpx, x1q “ Kpx1, xq#,

2q @ pxi, yiq
n
i“1 P pX ˆ Yqn,

n
ÿ

i,j“1

xyi,Kpxi, xjqyjyY ě 0,

with LpEq the set of bounded linear operators on vector
space E, and A# the adjoint of any operator A.

A simple example of OVK is the separable kernel.

Definition 2. K : X ˆ X Ñ LpYq is a separable kernel
iff there exist a scalar kernel k : X ˆ X Ñ R and a
positive semi-definite operator A P LpYq such that for all
px, x1q P X 2 it holds: Kpx, x1q “ kpx, x1qA.

Similarly to scalar-valued kernels, an OVK can be uniquely
associated to a functional space from X to Y : its vv-RKHS.

Theorem 1. Let K be an OVK, and for x P X , let
Kx : y ÞÑ Kxy P FpX ,Yq the linear operator such that:
@x1 P X , pKxyqpx1q “ Kpx1, xqy. Then, there is a unique
Hilbert space HK Ă FpX ,Yq the vv-RKHS associated to
K such that @x P X it holds:

(i) Kx spans the spaceHK (@y P Y : Kxy P HK)

(ii) Kx is bounded for the uniform norm

(iii) @f P HK, fpxq “ K#
x f (reproducing property)

Given a sample S “ tpxi, yiqni“1u P pX ˆ Yqn of n i.i.d.
realizations of a generic random variable pX,Y q, an OVK
K : X ˆX Ñ LpYq, a convex loss function ` : YˆY Ñ R,
and a regularization parameter Λ ą 0, the general form of
an OVK-based learning problem is to find ĥ that solves:

min
hPHK

1

n

n
ÿ

i“1

`phpxiq, yiq `
Λ

2
}h}2HK

. (1)

Similarly to scalar ones, a crucial tool in operator-valued
kernel methods is the Representer Theorem, ensuring that
ĥ actually pertains to a reduced subspace ofHK.

Theorem 2. (Theorem 4.2 in Micchelli and Pontil (2005))
There exists pα̂iqni“1 P Yn such that

ĥ “
1

Λn

n
ÿ

i“1

Kp¨, xiqα̂i.

Although Theorem 2 drastically downscales the search
domain (from HK to Yn), it gives no further information
about the pα̂iqni“1. One way to gain insight about these
coefficients is to perform Problem (1)’s dualization, with
the notation `i : y P Y ÞÑ `py, yiq for any i ď n.

Theorem 3. (Appendix B in Brouard et al. (2016b)) The
solution to Problem (1) is given by

ĥ “
1

Λn

n
ÿ

i“1

Kp¨, xiqα̂i, (2)

with pα̂iqni“1 P Yn the solutions to the dual problem

min
pαiqni“1PYn

n
ÿ

i“1

`‹i p´αiq `
1

2Λn

n
ÿ

i,j“1

xαi,Kpxi, xjqαjyY ,

(3)
where f‹ : α P Y ÞÑ supyPY xα, yyY ´ fpyq denotes the
Fenchel-Legendre transform of a function f : Y Ñ R.
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Refer to Appendix A.1 for Theorem 3’s proof, that has been
reproduced for self-containedness. Dualization brings in
additional information about the optimal coefficients (notice
nonetheless that Theorem 2 holds true for a much wider
class of problems). As it is, Problem (3) is however of
little interest, since the optimization must be performed
on the infinite dimensional space Yn. Depending on the
problem, we propose two solutions: either using a Double
Representer Theorem, or by approximating Problem (3).

Notation. If K is identity decomposable (i.e. K “ k IY ),
KX and KY denote the input and output gram matrices.
For any matrix M , Mi: represents its ith line, and }M}p,q
its `p,q row wise mixed norm, i.e. the `q norm of the `p
norms of its lines. χS denotes the characteristic function
of a set S, null on S and equal to `8 otherwise, f � g is
the infimal convolution of f and g (Bauschke et al., 2011),
pf � gqpxq “ infy fpyq ` gpx ´ yq. Finally, #S is the
cardinality of any set S, and } ¨ }op the operator norm.

2.1. The Double Representer Theorem

In order to make Problem (3) solvable, we need assumptions
on the loss and the kernel. Let Y denote spanpyi, i ď nq.
Assumptions 1 and 2 characterize admissible losses through
conditions on their Fenchel-Legendre (FL) transforms. They
are standard for kernel methods, and ensure computability
by stipulating that only dot products are involved.

Assumption 1. @i ď n, @pαY, αKq P Y ˆ YK, it holds
`‹i pα

Yq ď `‹i pα
Y ` αKq.

Assumption 2. @i ď n, DLi : Rn`n2

Ñ R such that for all
ω “ pωjqjďn P Rn, `‹i p´

řn
j“1 ωj yjq “ Lipω,K

Y q.

Regarding the OVK, the key point is Assumption 3. Roughly
speaking, Y is what we see and know about output space Y ,
while YK represents the part we ignore. What we need is an
OVK somewhat aligned with the outputs, in the sense that
the little we know about Y should be preserved through K.
As for Assumption 4, it helps simplifying the computations.

Assumption 3. @i, j ď n, Y is invariant by Kpxi, xjq, i.e.
@y P Y, y P Y ñ Kpxi, xjqy P Y.

Remark 1. It is important to notice that we do not need
Assumption 3 to hold true for every collection tyiuiďn P Yn.
It rather constitutes an a posteriori condition to ensure that
the kernel is aligned with the training sample at hand. IfY is
finite dimensional, one may hope that with sufficiently many
outputs, then Y spans Y , and every matrix-valued kernel
then fits. If Y is infinite dimensional, identity-decomposable
kernels are admissible (which despite simple expressions
may describe nontrivial dependences in infinite dimensional
spaces). Moreover, separable kernels with operators similar
to the empirical covariance

ř

i yi b yi (Kadri et al., 2013)
are also eligible, opening the door to ad-hoc and learned
kernels, see Appendix A.8 for further examples.

Assumption 4. There exist T ě 1, and for every t ď T
admissible scalar kernels kt : X ˆ X Ñ R as well as
positive semi-definite operators At P LpYq, such that for
all px, x1q P X 2 it holds: Kpx, x1q “ řT

t“1 ktpx, x
1qAt.

Under Assumption 4,KX
t andKY

t denote the matrices such
that rKX

t sij “ ktpxi, xjq, rKY
t sij “ xyi, AtyjyY . Notice

that it is by no means restrictive, since every shift-invariant
OVK can be approximated arbitrarily closely by kernels
satisfying Assumption 4. Furthermore, if for all t ď T , At
keeps Y invariant, then Assumption 3 is directly fulfilled.
Under these assumptions, Theorem 4 proves that the optimal
coefficients lie in Yn, ensuring the solutions computability.

Theorem 4. Let ` : Y ˆ Y Ñ R be a loss function
with Fenchel-Legendre transforms satisfying Assumptions 1
and 2, and K be an OVK verifying Assumption 3. Then, the
solution to Problem (1) is given by

ĥ “
1

Λn

n
ÿ

i,j“1

Kp¨, xiq ω̂ij yj , (4)

with Ω̂ “ rω̂ijs P Rnˆn the solution to the dual problem

min
ΩPRnˆn

n
ÿ

i“1

Li
`

Ωi:,K
Y
˘

`
1

2Λn
Tr

´

M̃JpΩb Ωq
¯

,

withM the n4 tensor such thatMijkl “ xyk,Kpxi, xjqylyY ,
and M̃ its rewriting as a n2 ˆ n2 block matrix. If kernel K
further satisfies Assumption 4, then tensor M simplifies to
Mijkl “

řT
t“1rK

X
t sijrK

Y
t skl, and the problem rewrites

min
ΩPRnˆn

n
ÿ

i“1

Li
`

Ωi:,K
Y
˘

`
1

2Λn

T
ÿ

t“1

Tr
`

KX
t ΩKY

t ΩJ
˘

.

(5)

See Appendix A.2 for the proof. This theorem can be seen
as a Double Representer Theorem, since both theorems
share analogous proofs and consequences: a search domain
reduction, respectively fromHK to Yn, and Yn to Rnˆn.

Remark 2. The Double Representer Theorem emphasizes
that only the knowledge of the n4 tensor M is required to
make OVK problems in infinite dimensional output spaces
computable. Although it might seem prohibitive at first sight,
one has to keep in mind that, like for scalar kernel methods,
a first n2 cost is needed to use (input) kernels with infinite
dimensional feature maps, while the second n2 cost allows
for handling infinite dimensional outputs. In the case of a
decomposable kernel, one has Mijkl “ KX

ijK
Y
kl. One only

needs two n2 matrices, recovering the scalar complexity.

We now present a non-exhaustive list of admissible losses
(one may refer to Appendix A.3 for the proof).

Proposition 1. The following losses have Fenchel-Legendre
transforms verifying Assumptions 1 and 2:
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• `ipyq “ fpxy, ziyq, zi P Y and f : R Ñ R con-
vex. This encompasses maximum-margin regression,
obtained with zi “ yi and fptq “ maxp0, 1´ tq.

• `pyq “ fp}y}q, f : R` Ñ R convex increasing s.t.
t ÞÑ f 1ptq

t is continuous over R`. This includes all
power functions λ

η }y}
η
Y for η ą 1 and λ ą 0.

• @λ ą 0, with Bλ the centered ball of radius λ,

‚ `pyq “ λ}y}, ‚ `pyq “ λ}y} logp}y}q,

‚ `pyq “ χBλpyq, ‚ `pyq “ λpexpp}y}q ´ 1q.

• `ipyq “ fpy ´ yiq, f‹ verifying Assumptions 1 and 2.

• Any infimal convolution involving functions satisfying
Assumptions 1 and 2. This encompasses ε-insensitive
losses (Sangnier et al., 2017), the Huber loss (Huber,
1964), and generally all Moreau or Pasch-Hausdorff
envelopes (Moreau, 1962; Bauschke et al., 2011).

2.2. Approximating the Dual Problem

If Assumption 3 is not satisfied, another way to get a finite
dimensional decomposition similar to that of Theorem 4
is to approximate the dual problem. This may be done by
restricting the dual variables to suitable finite dimensional
subsets of Y , if the following hypothesis on kernel K holds.

Assumption 5. The kernel K “ k ¨A is a separable OVK,
with A a compact operator.

Recalling that A is by design self adjoint and positive, its
compactness then allows for a spectral decomposition: there
exists an orthonormal basis pψjq8j“1 of Y , and some positive
pλjq

8
j“1, ordered in a non-increasing fashion and converging

to zero, such that A “
ř8

j“1 λjψj b ψj (Osborn, 1975).

Using such a basis, one can say that there exists pω̂iqni“1 P

`2pRqn such that @i ď n, α̂i “
ř8

j“1 ω̂ijψj . Since this
leads to an infinite size representation of the dual variables,
the idea is then to restrict the search space to the eigenspace
associated to the m largest eigenvalues of A, for some m ą

0. Let rYm denote spanptψjumj“1q, and S “ diagpλjqmj“1.
An approximated dual problem reads

min
pαiqni“1P

rYnm

n
ÿ

i“1

`‹i p´αiq`
1

2Λn

n
ÿ

i,j“1

xαi,Kpxi, xjqαjyY ,

(6)

We now state a condition similar to Assumption 2, which
makes the solution to Problem (6) computable.

Assumption 6. @i ď n, DLi : R2m Ñ R such that
@ ω “ pωjqjďm P Rm, `‹i p´

řm
j“1 ωj ψjq “ Lipω, Ri:q,

with R P Rnˆm the matrix such that Rij “ xyi, ψjyY .

Remark 3. Assumption 6 is similar to Assumption 2, except
that the output Gram matrix KY is replaced by matrix R
storing the dot products between the orthonormal family
tψju

m
j“1 and the outputs. In particular, all losses explicited

in Proposition 1 have FL transforms verifying Assumption 6.

Theorem 5. Let K be an OVK meeting Assumption 5
and ` : Y ˆ Y Ñ R be a loss function with FL transforms
satisfying Assumption 6. Then, Problem (6) is equivalent to

min
ΩPRnˆm

n
ÿ

i“1

Li pΩi:, Ri:q `
1

2Λn
Tr

`

KXΩSΩJ
˘

. (7)

Denoting by Ω̂ “ rω̂ijs P Rnˆm the solution to Problem (7),
the associated predictor is finally given by

ĥ “
1

Λn

n
ÿ

i“1

m
ÿ

j“1

kp¨, xiq λj ω̂ij ψj , (8)

Remark 4. The rationale behind the above approximation
is that under compactness of A, Equation (8) constitutes
a reasonable approximation of Equation (2). Notice that
Kadri et al. (2016) use a truncated spectral decomposition
of the operator to implement a functional version of Kernel
Ridge Regression, without resorting to dualization however.

3. Application to Robust Losses
We now instantiate Theorem 4’s dual problem for three loss
functions encouraging data sparsity and robustness. They
write as infimal convolutions, and are thus hardly tractable
in the primal. Their dual problems enjoy simple resolution
algorithms that are thoroughly detailed. A stability analysis
is also carried out to highlight the hyperparameters impact.

3.1. Complete Dual Resolution for Three Robust Losses

As a first go, we recall the important notion of ε-insensitive
losses. Following in the footsteps of Sangnier et al. (2017),
we extend them in a natural way from Rp to any Hilbert
space Y . To avoid additional notation, in this subsection `
denotes the loss taken w.r.t. one argument (previously `i).

Definition 3. Let ` : Y Ñ R` be a convex loss such that
`p0q “ 0, and ε ą 0. The ε-insensitive version of `, denoted
`ε, is defined by `εpyq “ p`�χBεqpyq, or again:

@y P Y, `εpyq “
#

0 if }y}Y ď ε

inf
}d}Yď1

`py ´ εdq otherwise .

In other terms, `εpyq is the smallest value of ` within the ball
of radius ε centered at y. As revealed by the next definition,
natural choices for ` yield extensions of celebrated scalar
loss functions to infinite dimensional Hilbert spaces.
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Definition 4. If ` “ }¨}Y , then } ¨}Y,ε “ maxp} ¨}Y´ε, 0q,
and the related problem is the natural extension of ε-SVR.

If ` “ } ¨ }2Y , then } ¨ }2Y,ε “ maxp} ¨ }Y ´ ε, 0q2, and the
related problem is called the ε-insensitive Ridge regression.

The third framework that nicely falls into our resolution
methodology is the Huber loss regression (Huber, 1964).
Tailored to induce robustness, the Huber loss function does
not feature convolution with χBε but rather between the first
two powers of the Hilbert norm (that used in Definition 4).

Definition 5. The Huber loss of parameter κ is given by
`H,κpyq “ pκ} ¨ }Y � 1

2} ¨ }
2
Yqpyq, or again:

@y P Y, `H,κpyq “
#

1
2}y}

2
Y if }y}Y ď κ

κ
`

}y}Y ´ κ
2

˘

otherwise
.

Due to its asymptotic behavior as } ¨ }Y , the Huber loss is
useful when the training data is heavy tailed or contains
outliers. Illustrations of Definitions 4 and 5’s loss functions
in one and two dimensions are available in Appendix B.
Interestingly, Problem (5) for these three losses – and an
identity decomposable kernel – admits a very nice writing,
allowing for an efficient resolution.

Theorem 6. If K “ k IY , the solutions to the ε-Ridge
regression, κ-Huber regression, and ε-SVR primal problems

pP1q min
hPHK

1

2n

n
ÿ

i“1

}hpxiq ´ yi}
2
Y,ε `

Λ

2
}h}2HK

,

pP2q min
hPHK

1

n

n
ÿ

i“1

`H,κphpxiq ´ yiq `
Λ

2
}h}2HK

,

pP3q min
hPHK

1

n

n
ÿ

i“1

}hpxiq ´ yi}Y,ε `
Λ

2
}h}2HK

,

are given by Equation (4), with Ω̂ “ ŴV ´1, and Ŵ the
solution to the respective finite dimensional dual problems

pD1q min
WPRnˆn

1

2
}AW ´B}

2
Fro ` ε }W }2,1,

pD2q min
WPRnˆn

1

2
}AW ´B}

2
Fro ,

s.t. }W }2,8 ď κ,

pD3q min
WPRnˆn

1

2
}AW ´B}

2
Fro ` ε }W }2,1,

s.t. }W }2,8 ď 1,

with V , A, B such that: V V J “ KY , AJA “ KX

Λn ` In
(or AJA “ KX{pΛnq for the ε-SVR), and AJB “ V .

Theorem 6’s proof is detailed in Appendix A.5. If K is not
identity decomposable, but only satisfies Assumption 4, the

dual problems do not admit compact writings such as those
of Theorem 6. Nonetheless, they are still easily solvable,
and the standard Ridge regression is recovered for ε “ 0 or
κ “ `8. This is discussed at length in the Appendix.

Problem pD1q is a Multi-Task Lasso problem (Obozinski
et al., 2010). It can be solved by Projected Gradient Descent
(PGD), that involves the Block Soft Thresholding operator
such that BSTpx, τq “ p1´ τ{}x}q` x. Problem pD2q
is a constrained least square problem, that also admits a
resolution through PGD, but with the Projection operator
such that Projpx, τq “ min pτ{}x}, 1qx. Finally, Problem
pD3q combines both non-smooth terms and consequently
both projection steps. Given a stepsize η, and T a number of
epoch, the algorithms are detailed in Algorithm 1. Note that
K̃’s Singular Value Decomposition is not necessary, since
the computations only involve AJA “ rK and AJB “ V .

Algorithm 1 Projected Gradient Descents (PGDs)
input : Gram matrices KX , KY , parameters Λ, ε, κ
init : rK “ 1

ΛnK
X ` In (or rK “ 1

ΛnK
X for ε-SVR),

KY “ V V J, W “ 0Rnˆn

for epoch from 1 to T do
// gradient step

W “W ´ ηp rKW ´ V q
// projection step

for row i from 1 to n do
Wi: “ BST pWi:, εq // if Ridge or SVR

Wi: “ Proj pWi:, κ or 1q // if Huber or SVR

return W

3.2. Approximate Dual Resolution with Huber Loss

In this section we solve Problem (6) for the Huber loss and
Y “ L2rΘ, µs, with Θ a compact set endowed with measure
µ. A classical choice of OVK is thenK “ kX ¨Tk, kX being
a scalar kernel over the inputs, and Tk the integral operator
associated to a scalar kernel k : ΘˆΘ Ñ R defined for all
g P L2rΘ, µs by Tkg “

ş

Θ
kp¨, θqgpθqdµpθq. Continuity of

k grants compactness of Tk, allowing for the methodology
presented in Section 2.2. In the following, pλj , ψjqmj“1

denotes the eigendecomposition of Tk, which is dependent
both in k and µ, and can be obtained by solving a differential
equation derived from the eigenvalue problem. However,
given that the optimal kernel k is unknown, one can choose a
Hilbertian basis tψju8j“1 of L2rΘ, µs and a non-increasing
summable sequence pλjq8j“1 P R˚` to construct the kernel
k, which gives direct access to Tk’s eigendecomposition.

Theorem 7. For an OVK K “ kX Tk, an approximate
solution to the Huber loss regression problem

min
hPHK

1

n

n
ÿ

i“1

`H,κphpxiq ´ yiq `
Λ

2
}h}2HK

,
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is given by Equation (8), with Ω̂ the solution to the following
constrained quadratic problem (with R as in Assumption 6),
that can be tackled by PGD in the spirit of Algorithm 1:

min
ΩPRnˆm

Tr

ˆ

1

2
ΩΩJ `

1

2Λn
KXΩSΩJ ´ ΩRJ

˙

,

s.t. }Ω}2,8 ď κ.
(9)

Remark 5. When κ is large, one recovers the unconstrained
Ridge regression problem, whose solution enjoys a closed
form expression, and for which a resolution method based
on an approximation of the inverse of the integral operator
Tk was presented in Kadri et al. (2016).

3.3. Stability Analysis

Algorithm stability is a notion introduced by Bousquet and
Elisseeff (2002). It links the stability of an algorithm, i.e.
how removing a training observation impacts the algorithm
output, to the algorithm generalization capacity, i.e. how
far the empirical risk of the algorithm output is to its true
risk. The rationale behind this approach is that standard
analyses of Empirical Risk Minimization rely on a crude
approximation consisting in bounding the empirical process
suphPH |R̂nphq ´Rphq|. Indeed, considering a supremum
over the whole hypothesis set seems very pessimistic, as
decision functions with high discrepancy |R̂nphq ´Rphq|
would hopefully not be selected by the algorithm. However,
the limitation of stability approaches lies in that algorithms
performances are never compared to an optimal solution h˚.
Nevertheless, their capacity to deal with OVK machines
without making the trace-class assumption (as opposed to
Rademacher-based strategies, see e.g. Maurer and Pontil
(2016)) make them particularly well suited to our setting. In
the footsteps of Audiffren and Kadri (2013), we now derive
stability bounds for our algorithms, which are all the more
relevant as they make explicit the role of hyperparameters.
For any algorithm A, hApSq and hApSziq denote the decision
functions output by the algorithm, respectively trained on
samples S and Szi “ Sztpxi, yiqu. Notice that symmetry
among observations in Problem (1) cancels the impact of i.
Formally, algorithm stability states as follows.

Definition 6. (Bousquet and Elisseeff, 2002) Algorithm A
has stability β if for any sample S , and any i ď #S , it holds:
suppx,yqPXˆY |`phApSqpxq, yq ´ `phApSziqpxq, yq| ď β.

Assumption 7. There exists M ą 0 such that for any
sample S and any realization px, yq P X ˆ Y of pX,Y q
it holds: `phApSqpxq, yq ďM .

Theorem 8. (Bousquet and Elisseeff, 2002) Let A be an
algorithm with stability β and loss function satisfying
Assumption 7. Then, for any n ě 1 and δ Ps0, 1r it holds
with probability at least 1´ δ:

RphApSqq ď R̂nphApSqq ` 2β ` p4nβ `Mq

c

lnp1{δq

2n
.

Stability for OVK machines such as in Problem (1) may be
derived from the following two assumptions.

Assumption 8. There exists γ ą 0 such that for any input
observation x P X it holds: }Kpx, xq}op ď γ2.

Assumption 9. There exists C ą 0 such that for any point
px, yq P X ˆ Y , any sample S, and any i ď #S, it holds:
|`phSpxq, yq ´ `phSzipxq, yq| ď C}hSpxq ´ hSzipxq}Y .

Theorem 9. (Audiffren and Kadri, 2013) If Assumptions 8
and 9 hold, then the algorithm returning the solution to
Problem (1) has β stability with β ď C2γ2{pΛnq.

In order to get generalization bounds, we shall now derive
constants M and C of Assumptions 7 and 9 respectively.
This is usually done under the following assumption.

Assumption 10. There exists MY ą 0 such that for any
realization y P Y of Y it holds: }y}Y ďMY .

Remark 6. It should be noticed that in structured prediction
or structured data representation this assumption is directly
fulfilled with MY “ 1. Indeed, outputs (and potentially
inputs) are actually some yi “ φpziq, with φ the canonical
feature map associated to a scalar kernel, so that it suffices
to choose a normalized kernel to satisfy Assumption 10.

Theorem 10. Under Assumption 10, algorithms previously
described satisfy Assumptions 7 and 9 with constants M
and C as detailed in Figure 1.

4. Applications and Numerical Experiments
In this section, we discuss some applications unlocked by
vv-RKHSs with infinite dimensional outputs. In particular,
structured prediction, structured representation learning, and
functional regression are formally described, and numerical
experiments highlight the benefits of the losses introduced.

4.1. Application to Structured Output Prediction

Assume one is interested in learning a predictive decision
rule f from a set X to a complex structured space Z . To
bypass the absence of norm on Z , one may design a (scalar)
kernel k onZ , whose canonical feature map φ : z ÞÑ kp¨, zq
transforms any element of Z into an element of the (scalar)
RKHS associated to k, denoted Y (“ Hk). Learning a
predictive model f from X to Z boils down to learning
a surrogate vector-valued model h from X to Y , which is
searched for in the vv-RKHSHK associated to an OVK K
by solving the following regularized empirical problem.

ĥ “ argmin
hPHK

1

n

n
ÿ

i“1

`phpxiq, φpziqq `
Λ

2
}h}2HK

. (10)

Once ĥ is learned, the predictions inZ are produced through
a pre-image problem fpxq “ argmin zPZ `pφpzq, ĥpxqq.
This approach called Input Output Kernel Regression has
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Figure 1. Algorithms Constants Figure 2. Output Kernel Regression

been studied in several works (Brouard et al., 2011; Kadri
et al., 2013). As an instance of the general Output Kernel
Regression scheme of Figure 2, it belongs to the family
of Surrogate Approaches for structured prediction (see e.g.
Ciliberto et al. (2016)). While previous works have focused
on identity decomposable kernels only, with the squared loss
or hinge loss (Brouard et al., 2016b), our general framework
allows for many more losses. The use of an ε-insensitive
loss in Problem (10), in particular, seems adequate as it is
a surrogate task, and inducing small mistakes that do not
harm the inverse problem, while improving generalization,
sounds as a suitable compromise. We thus advocate to solve
structured prediction in vv-RKHSs by using losses more
sophisticated than the squared norm. In the following, the
variants of IOKR are called accordingly to the loss they
minimize: ε-SV-IOKR, ε-Ridge-IOKR, and Huber-IOKR.

YEAST dataset. Although our approach’s main strength
of is to predict infinite dimensional outputs, we start with
a simpler standard structured prediction dataset composed
of 14-dimensional outputs (the so-called YEAST dataset
Finley and Joachims (2008)) described in the Supplements,
on which comparisons and interpretations are easier. We
have collected results from Finley and Joachims (2008) and
Belanger and McCallum (2016), and benchmarked our three
algorithms. Hyperparameters Λ, ε, κ have been selected
among geometrical grids by cross-validation on the train
dataset solely, and performances evaluated on the same test
set as the above publications. Results in terms of Hamming
error are reported in Figure 6, with significant improvements
for the ε-Ridge-IOKR and Huber-IOKR. Furthermore, in
order to highlight the interactions between our two ways
of regularizing, i.e. the RKHS norm and the ε-insensitivity,
we have plotted the ε-Ridge-IOKR Mean Square Errors
(the Hamming before clamping) and solution sparsity with
respect to Λ for ε varying from 1e-5 to 1.5 (Figures 3 and 4):
Λ and ε seem to act as competitive regularizations. When
Λ is small, the regularization in ε is efficient, as solution
with the best MSE is obtained for ε around 0.6. Conversely,
when Λ is big, no sparsity is induced, and having a high
ε induces too much regularization. Similar graphs for the
ε-SVR and κ-Huber are available in the Supplements, that
highlight the superiority of the approaches for a wide range
of hyperparameters. A linear output kernel was used, such
that solving the inverse problem boils down to clamping.

Metabolite dataset. Regarding the infinite dimensional
outputs, we have considered the metabolite identification
problem (Schymanski et al., 2017), in which one aims at
predicting molecules from their mass spectra. For this task,
Ridge-IOKR is the state-of-the-art approach, corresponding
to our ε-Ridge-IOKR with ε “ 0. Given the high number of
constraints, Structured SVMs are not tractable as confirmed
by our tests using the Pystruct lib implementation (Müller
and Behnke, 2014). This was already noticed in Belanger
and McCallum (2016) (14 is the maximum output dimension
on which SSVMs were tested), and the implementation we
tried indeed yielded very poor results despite prolonged
training (5%, 31%, 45% top-k errors). We thus investigated
the advantages of substituting the standard Ridge Regression
for its ε-insensitive version or a Huber regression. Outputs
(i.e. metabolites) are embedded in an infinite dimensional
Hilbert space through a Tanimoto-Gaussian kernel with 0.72
bandwidth. The dataset, presented in the Supplements and
described at length in Brouard et al. (2016a), is composed of
6974 mass spectra, while algorithms are compared through
the top-k accuracies, k “ 1, 10, 20. Two Λ’s have been
picked for their interesting behavior: one that yields the best
performance for Ridge-IOKR, and the second that gives the
best overall scores (hyperparameters ε and κ being chosen
to produce the best scores each time). Again, results of
Table 1 show improvements due to robust losses that are all
the more important as the norm regularization is low, with
an improvement on the best overall score.

Table 1. Top 1 / 10 / 20 test accuracies (%)
Λ 1e-6 1e-4

RIDGE-IOKR 35.7 | 79.9 | 86.6 38.1 | 82.0 | 88.9
ε-RIDGE-IOKR 37.1 | 81.7 | 88.3 36.3 | 81.2 | 87.9
HUBER-IOKR 38.3 | 82.2 | 89.1 37.7 | 81.9 | 88.8

4.2. Structured Representation Learning

Extracting vectorial representations from structured inputs
is another task that can be tackled in vv-RKHSs (Laforgue
et al., 2019). This is a relevant approach in many cases:
when complex data are uniquely available under the form
of a similarity matrix for instance, for preserving privacy, or
when deep neural networks fail to tackle structured objects
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as raw data. Embedding data into a Hilbert space makes
sense. Then, composing functions in vv-RKHSs results in
a Kernel Autoencoder (KAE, Figure 5) that outputs finite
codes by minimizing the (regularized) discrepancy:

1

2n

n
ÿ

i“1

}φpxiq ´ f2 ˝ f1pφpxiqq}
2
Y `Λ Regpf1, f2q. (11)

Again, this reconstruction loss is not the real goal, but rather
a proxy to make the internal representation meaningful.
Therefore, all incentives to use ε-insensitive losses or the
Huber loss still apply. The inferred ε-KAE and Huber-KAE,
obtained by changing the loss function in Problem (11),
are optimized as follows: the first layer coefficients are
updated by Gradient Descent, while the second ones are
reparametrized into W2 and updated through PGD (instead
of KRR closed form for standard KAEs). This has been
applied to a drug dataset, introduced in Su et al. (2010)
as an extract from the NCI-Cancer database. As shown
in Figure 7, the ε-insensitivity improves the generalization
while inducing sparsity. The ε-insensitive framework is thus
particularly promising in the context of Autoencoders.

4.3. Function-to-Function Regression

Regression with both inputs and outputs of functional nature
is a challenging problem at the crossroads of Functional
Data Analysis (Ramsay and Silverman, 2007) and Machine
Learning (Kadri et al., 2016). While Functional Linear

Modeling is the most common approach to address function-
to-function regression, nonparametric approaches based on
vv-RKHSs have emerged, that rely on the minimization of
a squared loss. However, robustness to abnormal functions
is particularly meaningful in a field where data come from
sensors and are used to monitor physical assets. To the best
of our knowledge, robust regression has only been tackled
in the context of Functional Linear Models (Kalogridis and
Van Aelst, 2019). We propose here to highlight the relevance
of OVK machines learned with a Huber loss by solving
Problem (9) for various levels κ.

Lip acceleration from EMG dataset. We consider the
problem of predicting lip acceleration among time from
electromyography (EMG) signals (Ramsay and Silverman,
2007). The dataset consists of 32 records of the lower lip
trajectory over 641 timestamps, and the associated EMG
records, augmented with 4 outliers to assess the robustness
of our approach. Usefulness of minimizing the Huber loss
is illustrated in Figure 8 by computing the Leave-One-Out
(LOO) error associated to each model for various values
of m. For each m, as κ grows larger than a threshold,
the constraint on }Ω}2,8 becomes void and we recover the
Ridge Regression solution. The kernel chosen is given by
kX px1, x2q “

ş1

0
exp p|x1pθq ´ x2pθq|qdθ, with pψjqmj“1

being the harmonic basis in sine and cosine of L2r0, 1s, and
pλjq

m
j“1 “ p1{pj ` 1q2qmj“1.
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4.4. Related Work

Another application of the presented results, both theoretical
and computational, is the generalization of the loss trick, see
e.g. Ciliberto et al. (2016). In the context of Output Kernel
Regression, the latter stipulates that for suitable losses, the
decoding expresses in terms of loss evaluations. The work
by Luise et al. (2019) has extended this trick to penalization
schemes different from the natural vv-RKHS norm. Our
findings, and the double expansion in particular, suggest
that the loss trick can still be used with other surrogate loss
functions than the squared norm, opening the door to a wide
range of applications.

5. Conclusion
This work presents a versatile framework based on duality
to learn OVK machines with infinite dimensional outputs.
The case of convolved losses (e.g. ε-insensitive, Huber) is
thoroughly tackled, from algorithmic procedures to stability
analysis. This offers novel ways to enforce sparsity and
robustness when learning within vv-RKHSs, opening an
avenue for new applications on structured and functional
data (e.g. anomaly detection, robust prediction). Future
research directions could feature a calibration study of these
novel surrogate approaches, or the introduction of kernel
approximations such as random Fourier features, that would
benefit our framework twice: both in input and in output.
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Authors would like to thank Olivier Fercoq for his insightful
discussions and helpful comments.

REFERENCES
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The Supplementary Material is organized as follows. Appendix A collects the technical proofs of the core article’s results.
Appendix B provides illustrations of the main loss functions considered (ε-insensitive Ridge and SVR, κ-Huber) in 1 and 2
dimensions. Appendix C gathers additional details about the experimental protocols and the code furnished.

A. Technical Proofs
A.1. Proof of Theorem 3

First, notice that the primal problem

min
hPHK

1

n

n
ÿ

i“1

`phpxiq, yiq `
Λ

2
}h}2HK

can be rewritten

min
hPHK

n
ÿ

i“1

`ipuiq `
Λn

2
}h}2HK

,

s.t. ui “ hpxiq @i ď n.

Therefore, with the notation u “ puiqiďn and α “ pαiqiďn, the Lagrangian writes

L ph,u,αq “
n
ÿ

i“1

`ipuiq `
Λn

2
}h}2HK

`

n
ÿ

i“1

xαi, ui ´ hpxiqyY ,

“

n
ÿ

i“1

`ipuiq `
Λn

2
}h}2HK

`

n
ÿ

i“1

xαi, uiyY ´
n
ÿ

i“1

xKp¨, xiqαi, hyHK
.

Differentiating with respect to h and using the definition of the Fenchel-Legendre transform, one gets

gpαq “ inf
hPHK,uPYn

L ph,u,αq,

“

n
ÿ

i“1

inf
uiPY

 

`ipuiq ` xαi, uiyY
(

` inf
hPHK

#

Λn

2
}h}2HK

´

n
ÿ

i“1

xKp¨, xiqαi, hyHK

+

,

“

n
ÿ

i“1

´`‹i p´αiq ´
1

2Λn

n
ÿ

i,j“1

xαi,Kpxi, xjqαjyY ,

together with the equality ĥ “
1

Λn

n
ÿ

i“1

Kp¨, xiqαi. The conclusion follows immediately.

A.2. Proof of Theorem 4

As a reminder, our goal is to compute the solutions to the following problem:

ĥ P argmin
hPHK

1

n

n
ÿ

i“1

`phpxiq, yiq `
Λ

2
}h}2HK

.

Using Theorem 3, one gets that ĥ “ 1
Λn

řn
i“1Kp¨, xiqα̂i, with the pα̂iqiďn satisfying:

pα̂iq
n
i“1 P argmin

pαiqni“1PYn

n
ÿ

i“1

`‹i p´αiq `
1

2Λn

n
ÿ

i,j“1

xαi,Kpxi, xjqαjyY .

However, this optimization problem cannot be solved in a straightforward manner, as Y is in general infinite dimensional.
Nevertheless, it is possible to bypass this difficulty by noticing that the optimal pα̂iqiďn actually lie in Yn. To show this, we
decompose each coefficient as α̂i “ αY

i ` α
K
i , with pαY

i qiďn, pα
K
i qiďn P Y

n
ˆYK

n
. Then, noticing that non-null pαKi qiďn

necessarily increase the objective, we can conclude that the optimal pα̂iqiďn have no components among YK, or equivalently
pertain to Y. Indeed, by virtue of Assumptions 1 and 3, it holds:
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n
ÿ

i“1

`‹i p´α
Y
i q `

1

2Λn

n
ÿ

i,j“1

@

αY
i ,Kpxi, xjqαY

j

D

Y ď
n
ÿ

i“1

`‹i p´α
Y
i ´ α

K
i q `

1

2Λn

n
ÿ

i,j“1

@

αY
i ` α

K
i ,Kpxi, xjqpαY

j ` α
K
j q
D

Y .

If the inequality about `‹i follows directly Assumption 1, that about Kpxi, xjq can be obtained by Assumption 3 as follows:

n
ÿ

i,j“1

@

αY
i ` α

K
i ,Kpxi, xjqpαY

j ` α
K
j q
D

Y

“

n
ÿ

i,j“1

@

αY
i ,Kpxi, xjqαY

j q
D

Y ` 2
n
ÿ

i,j“1

@

αKi ,Kpxi, xjqαY
j

D

Y `
n
ÿ

i,j“1

@

αKi ,Kpxi, xjqαKj
D

Y ,

“

n
ÿ

i,j“1

@

αY
i ,Kpxi, xjqαY

j q
D

Y `
n
ÿ

i,j“1

@

αKi ,Kpxi, xjqαKj
D

Y ,

ě

n
ÿ

i,j“1

@

αY
i ,Kpxi, xjqαY

j q
D

Y ,

where we have used successively Assumption 3 and the positiveness of K. So there exists Ω “ rωijs1ďi,jďn P Rnˆn such
that for all i ď n, α̂i “

ř

j ωij yj . This proof technique is very similar in spirit to that of the Representer Theorem, and
yields an analogous result, the reduction of the search space to a smaller vector space, as discussed at length in the main text.
The dual optimization problem thus rewrites:

min
ΩPRnˆn

n
ÿ

i“1

`‹i

˜

´

n
ÿ

j“1

ωij yj

¸

`
1

2Λn

n
ÿ

i,j“1

C

n
ÿ

k“1

ωik yk,Kpxi, xjq
n
ÿ

l“1

ωjl yl

G

Y

min
ΩPRnˆn

n
ÿ

i“1

Li
`

pωijqjďn,K
Y
˘

`
1

2Λn

n
ÿ

i,j,k,l“1

ωik ωjl

C

yk,
T
ÿ

t“1

ktpxi, xjqAtyl

G

Y
,

min
ΩPRnˆn

n
ÿ

i“1

Li
`

Ωi:,K
Y
˘

`
1

2Λn
Tr

´

M̃JpΩb Ωq
¯

, (12)

with M the n ˆ n ˆ n ˆ n tensor such that Mijkl “ xyk,Kpxi, xjqylyY , and M̃ its rewriting as a n2 ˆ n2 block matrix
such that its pi, jq block is the nˆ n matrix with elements M̃ pi,jq

st “ xyj ,Kpxi, xsqytyY .

The second term is quadratic in Ω, and consequently convex. As for the Li’s, they are basically rewritings of the Fenchel-
Legendre transforms `‹i ’s that ensure the computability of the problem (they only depend on KY , which is known).
Regarding their convexity, we know by definition that the `‹i ’s are convex. Composing by a linear function preserving the
convexity, we know that each Li is convex with respect to Ωi:, and therefore with respect to Ω.

Thus, we have first converted the infinite dimensional primal problem inHK into an infinite dimensional dual problem in
Yn, which in turn is reduced to a convex optimization procedure over Rnˆn, that only involves computable quantities.

If K satisfies Assumption 4, the tensor M simplifies to

Mijkl “ xyk,Kpxi, xjqylyY “
T
ÿ

t“1

ktpxi, xjq xyk, AtylyY “
T
ÿ

t“1

rKX
t sijrK

Y
t skl,

and the problem rewrites

min
ΩPRnˆn

n
ÿ

i“1

Li
`

Ωi:,K
Y
˘

`
1

2Λn

T
ÿ

t“1

Tr
`

KX
t ΩKY

t ΩJ
˘

.

Remark 7. The second term of Problem (12) can be easily optimized. Indeed, let M̃ be a block matrix such that
M̃
pi,jq
st “ M̃

ps,tq
ij for all i, j, s, t ď n. Notice that M̃ as defined earlier satisfies this condition as a direct consequence of the

OVK symmetry property. Then it holds:
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BTr
´

M̃JpΩb Ωq
¯

Bωst
“ 2Tr

´

M̃ ps,tqJΩ
¯

.

Indeed, notice that Tr
´

M̃JpΩb Ωq
¯

“
řn
i,j“1 ωijTr

´

M̃ pi,jqJΩ
¯

and use the symmetry assumption. In the particular

case of a decomposable kernel, it holds that M̃ pi,jq “ KX
i: K

Y
j:
J so that

BTr
´

M̃JpΩb Ωq
¯

Bωst
“ 2Tr

´

M̃ ps,tqJΩ
¯

“ 2
n
ÿ

i,j“1

”

KX
s: K

Y
t:

J
ı

ij
ωij “ 2

n
ÿ

ij“1

KX
siK

Y
tjωij “ 2

“

KXΩKY
‰

st
,

and one recovers the gradients established in Equation (15).

A.3. Proof of Proposition 1

The proof technique is the same for all losses: first explicit the FL transforms `‹i , then use simple arguments to verify
Assumptions 1 and 2. For instance, any increasing function of }α} automatically satisfy the assumptions.

• Assume that ` is such that there is f : R Ñ R convex, @i ď n, Dzi P Y, `ipyq “ fpxy, ziyq. Then `‹i : Y Ñ R
writes `‹i pαq “ supyPY xα, yy ´ fpxy, ziyq. If α is not collinear to zi, this quantity is obviously `8. Otherwise,
assume that α “ λzi. The FL transform rewrites: `‹i pαq “ supt λt ´ fptq “ f‹pλq “ f‹p˘}α}{}zi}q. Finally,

`‹i pαq “ χspanpziqpαq ` f
‹

´

˘
}α}
}zi}

¯

. If α R Y , then a fortiori α R spanpziq, so `‹i pα
Y ` αKq “ `8 ě `‹i pα

Y q for all

pαY , αKq P Y ˆY K. For all i ď n, `‹i satisfy Assumption 1. As for Assumption 2, if α “
řn
i“1 ciyi, then χspanpziqpαq

only depends on the pciqiďn Indeed, assume that zi P Y writes
ř

j bjyj . Then χspanpziqpαq is equal to 0 if there exists
λ P R such that cj “ λbj for all j ď n, and to `8 otherwise. The second term of `‹i depending only on }α}, it directly
satisfies Assumption 2. This concludes the proof.

• Assume that ` is such that there is f : R` Ñ R convex increasing, with f 1ptq
t continuous over R`, `pyq “ fp}y}q.

Although this loss may seem useless at the first sight since ` does not depend on yi, it should not be forgotten that the
composition with y ÞÑ y ´ yi does not affect the validation of Assumptions 1 and 2 (see below). One has: `‹pαq “
supyPY xα, yy ´ fp}y}q. Differentiating w.r.t. y, one gets: α “ f 1p}y}q

}y} y, which is always well define as t ÞÑ f 1ptq
t is

continuous over R`. Reverting the equality, it holds: y “ f 1´1
p}α}q
}α} α, and `‹pαq “ }α}f 1´1

p}α}q´f ˝f 1
´1
p}α}q. This

expression depending only on }α}, Assumption 2 is automatically satisfied. Let us now investigate the monotonicity
of `‹ w.r.t. }α}. Let g : R` Ñ R such that gptq “ tf 1

´1
ptq ´ f ˝ f 1

´1
ptq. Then g1ptq “ f 1

´1
ptq ě 0. Indeed, as

f 1 : R` Ñ R` is always positive due to the monotonicity of f , so is f 1´1. This final remark guarantees that `‹ is
increasing with }α}. It is then direct that `‹ fulfills Assumption 1.

• Assume that `pyq “ λ}y}. It holds `‹pαq “ χBλpαq. So `‹ is increasing w.r.t. }α}: it fulfills Assumptions 1 and 2.

• Assume that `pyq “ χBλpyq. It holds `‹pαq “ λ}α}. The monotonicity argument also applies.

• Assume that `pyq “ λ}y} logp}y}q. It can be shown that `‹pαq “ λe
}α}
λ ´1. The same argument as above applies.

• Assume that `pyq “ λpexpp}y}q ´ 1q. It can be shown that `‹pαq “ It}α} ě λu ¨
´

}α} log
´

}α}
λe

¯

` λ
¯

. Again, the
FL transform is an increasing function of }α}: it satisfies Assumptions 1 and 2.

• Assume that `ipyq “ fpy ´ yiq, with f such that f‹ fulfills Assumptions 1 and 2. Then `‹i pαq “ supyPY xα, yy ´
fpy ´ yiq “ f‹pαq ` xα, yiy. If f‹ satisfies Assumptions 1 and 2, then so does `‹i . This remark is very important, as it
gives more sense to loss function based on }y} only, since they can be applied to y ´ yi now.

• Assume that there exists f, g satisfying Assumptions 1 and 2 such that `ipyq “ pf � gqpyq, where � denotes the
infimal convolution, i.e. pf � gqpyq “ infx fpxq ` gpy ´ xq. Standard arguments about FL transforms state that
pf � gq‹ “ f‹ ` g‹, so that if both f and g satisfy Assumptions 1 and 2, so does f � g. This last example allows to
deal with ε-insensitive losses for instance (convolution of a loss and χBε ), the Huber loss (convolution of }.} and }.}2),
or more generally all Moreau envelopes (convolution of a loss and 1

2}.}
2).
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A.4. Proof of Theorem 5

The proof of Theorem 5 is straightforward: since the dual space rYm is of finite dimension m, the dual variable can be
written as a linear combination of the tψjumj“1 to get Problem (7).

A.5. Proof of Theorem 6

A.5.1. ε-RIDGE – FROM PROBLEM pP1q TO pD1q

Applying Theorem 3 together with the Fenchel-Legendre transforms detailed in the proof of Proposition 1, a dual to the
ε-Ridge regression primal problem is:

min
pαiqni“1PYn

1

2

n
ÿ

i“1

}αi}
2
Y ´

n
ÿ

i“1

xαi, yiyY ` ε
n
ÿ

i“1

}αi}Y `
1

2Λn

n
ÿ

i,j“1

xαi,Kpxi, xjqαjyY ,

min
pαiqni“1PYn

1

2

n
ÿ

i,j“1

B

αi,

ˆ

δijIY `
1

Λn
Kpxi, xjq

˙

αj

F

Y
´

n
ÿ

i“1

xαi, yiyY ` ε
n
ÿ

i“1

}αi}Y .

By virtue of Theorem 4, we known that the optimal pαiqni“1 P Yn are in Yn. After the reparametrization αi “
ř

j ωij yj ,
the problem rewrites:

min
ΩPRnˆn

1

2
Tr

´

K̃ΩKY ΩJ
¯

´Tr
`

KY Ω
˘

` ε
n
ÿ

i“1

b

rΩKY ΩJsii, (13)

with Ω, K̃, KY the nˆ n matrices such that rΩsij “ ωij , K̃ “ 1
ΛnK

X ` In, and rKY sij “ xyi, yjyY .

Now, let KY “ UΣUJ “
`

UΣ1{2
˘ `

UΣ1{2
˘J
“ V V J be the SVD of KY , and let W “ ΩV . Notice that KY is positive

semi-definite, and can be made positive definite if necessary, so that V is full rank, and optimizing with respect to W is
strictly equivalent to minimizing with respect to Ω. With this change of variable, Problem (13) rewrites:

min
WPRnˆn

1

2
Tr

´

K̃WWJ
¯

´Tr
`

V JW
˘

` ε}W }2,1, (14)

with }W }2,1 “
ř

i }Wi:}2 the row-wise `2,1 mixed norm of matrix W . With K̃ “ AJA the SVD of K̃, and B such
that AJB “ V , one can add the constant term 1

2TrpA
J´1

V V JA´1q “ 1
2TrpBB

Jq to the objective without changing
Problem (14). One finally gets the Multi-Task Lasso problem:

min
WPRnˆn

1

2
}AW ´B}2Fro ` ε}W }2,1.

We also emphasize that we recover the solution to the standard Ridge regression when ε “ 0. Indeed, coming back to
Problem (13) and differentiating with respect to Ω, one gets:

K̃Ω̂KY ´KY “ 0 ðñ Ω̂ “ K̃´1,

which is exactly the standard kernel Ridge regression solution, see e.g. Brouard et al. (2016b).

Furthermore, notice that when K is not identity decomposable, but only satisfies Assumption 4, then Problem (14) cannot
be factorized that easily. Nonetheless, it admits a simple resolution, as detailed in the following lines. After the Ω
reparametrization, the problem writes

min
ΩPRnˆn

1

2
TrpΩKY ΩJq ´Tr

`

KY Ω
˘

` ε
n
ÿ

i“1

b

rΩKY ΩJsi,i `
1

2Λn

T
ÿ

t“1

TrpKX
t ΩKY

t ΩJq,

min
WPRnˆn

1

2
TrpWWJq `

1

2Λn

T
ÿ

t“1

TrpKX
t WK̃Y

t W
Jq ´Tr

`

V JW
˘

` ε}W }2,1,
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with KY “ V V J, W “ ΩV , K̃Y
t “ V ´1KY

t pV
Jq´1. Due to the different quadratic terms, this problem cannot be

summed up as a Multi-Task Lasso like before. However, it may still be solved, e.g. by proximal gradient descent. Indeed,
the gradient of the smooth term (i.e. all but the `2,1 mixed norm) reads

W `
1

Λn

T
ÿ

t“1

KX
t WK̃Y

t ´ V, (15)

while the proximal operator of the `2,1 mixed norm is

proxε } ¨ }2,1pW q “

¨

˝

|

proxε } ¨ }2pWi:q

|

˛

‚“

¨

˚

˝

|
´

1´ ε
}Wi:}2

¯

`
Wi:

|

˛

‹

‚

“

¨

˝

|

BSTpWi:, εq
|

˛

‚.

Hence, even in the more involved case of an OVK satisfying only Assumption 4, we have designed an efficient algorithm to
compute the solutions to the dual problem.

A.5.2. κ-HUBER – FROM PROBLEM pP2q TO pD2q

Basic manipulations give the Fenchel-Legendre transforms of the Huber loss:

´

y ÞÑ `H,κpy ´ yiq
¯‹

pαq “

ˆ

κ} ¨ }Y �
1

2
} ¨ }2Y

˙‹

pαq ` xα, yiyY ,

“ pκ} ¨ }Yq
‹
pαq `

ˆ

1

2
} ¨ }2Y

˙‹

pαq ` xα, yiyY ,

“ χBκpαq `
1

2
}α}2Y ` xα, yiyY .

Following the same lines as for as for the ε-Ridge regression, the dual problem writes

min
pαiqni“1PYn

1

2

n
ÿ

i,j“1

B

αi,

ˆ

δijIY `
1

Λn
Kpxi, xjq

˙

αj

F

Y
´

n
ÿ

i“1

xαi, yiyY `
n
ÿ

i“1

χκp}αi}Yq,

or again after the reparametrization in Ω

min
ΩPRnˆn

1

2
Tr

´

K̃ΩKY ΩJ
¯

´Tr
`

KY Ω
˘

s.t.
b

rΩKY ΩJsii ď κ @i ď n

The same change of variable permits to conclude.

When K is not identity decomposable, but only satisfies Assumption 4, the problem rewrites

min
WPRnˆn

1

2
TrpWWJq `

1

2Λn

T
ÿ

t“1

TrpKX
t WK̃Y

t W
Jq ´Tr

`

V JW
˘

,

s.t. }Wi:}2 ď κ @i ď n,

Again, the gradient term is given by Equation (15), while the projection is similar to the identity decomposable case. The
only change thus occurs in the gradient step of Algorithm 1, with a replacement by the above formula.

Notice that if κ tends to infinity, the problem is unconstrained, and one also recovers the standard Ridge regression solution.

A.5.3. ε-SVR – FROM PROBLEM pP3q TO pD3q

The proof is similar to the above derivations except that the term
ř

i }αi}
2
Y does not appear in the dual, hence the change of

matrix K̃. Instead, the dual problem features both the `2,1 penalization and the `2,8 constraint.
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A.6. Proof of Theorem 7

The proof is similar to Appendix A.5.2, with the finite representation coming from Theorem 5.

A.7. Proof of Theorem 10

In this section, we detail the derivation of constants in Figure 1.

A.7.1. ε-SVR

Using that the null function is part of the vv-RKHS, it holds

Λ

2
}hApSq}

2
HK

ď R̂nphApSqq ď R̂np0HKq ďMY ´ ε, or again }hApSq}HK ď

c

2

Λ
pMY ´ εq.

Furthermore, the reproducing property and Assumption 8 give that for any x P X and any h P HK it holds

}hpxq}2 “
@

Kp¨, xqKp¨, xq#h, h
D

HK
ď
›

›Kp¨, xqKp¨, xq#
›

›

op }h}
2
HK

ď }Kpx, xq}op }h}
2
HK

ď γ2}h}2HK
.

Therefore, one gets that for any realization px, yq P X ˆ Y of pX,Y q it holds

`phApSqpxq, yq “ maxp}y ´ hApSqpxq}Y ´ ε, 0q ďMy ´ ε` }hApSqpxq}Y ď
a

MY ´ ε

˜

γ

c

2

Λ
`
a

MY ´ ε

¸

.

This gives M . As for C, one has

`phApSqpxq, yq ´ `phApSziqpxq, yq “ maxp}y ´ hApSqpxq}Y ´ ε, 0q ´maxp}y ´ hApSziqpxq}Y ´ ε, 0q.

If both norms are smaller than ε, then any value of C fits. If both norms are greater than ε, the difference reads

}y ´ hApSqpxq}Y ´ }y ´ hApSziqpxq}Y ď }hApSqpxq ´ hApSziqpxq}Y .

If only one norm is greater than ε (we write it only for hApSq as it is symmetrical), the difference may be rewritten

}y ´ hApSqpxq}Y ´ ε ď }y ´ hApSqpxq}Y ´ }y ´ hApSziqpxq}Y ď }hApSqpxq ´ hApSziqpxq}Y .

Hence we get C “ 1.

A.7.2. ε-RIDGE

Using the same reasoning as for the ε-SVR, one has

}hApSq}HK ď

c

2

Λ
pMY ´ εq and }hApSziq}HK ď

c

2

Λ
pMY ´ εq. (16)

Therefore, for any realization px, yq P X ˆ Y of pX,Y q it holds

`phApSqpxq, yq “ maxp}y ´ hApSqpxq} ´ ε, 0q
2 ď p}y}Y ´ ε` }hApSqpxq}Yq

2 ď pMY ´ εq
2

ˆ

1`
2
?

2γ
?

Λ
`

2γ2

Λ

˙

.

As for C, one has

`phApSqpxq, yq ´ `phApSziqpxq, yq “ maxp}y ´ hApSqpxq}Y ´ ε, 0q
2 ´maxp}y ´ hApSziqpxq}Y ´ ε, 0q

2.

If both norms are smaller than ε, any C fits. If both are larger than ε, using Equation (16) the difference becomes
`

}y ´ hApSqpxq}Y ` }y ´ hApSziqpxq}Y ´ 2ε
˘ `

}y ´ hApSqpxq}Y ´ }y ´ hApSziqpxq}Y
˘

,

ď 2pMY ´ εq

ˆ

1`
γ
?

2
?

Λ

˙

}hApSqpxq ´ hApSziqpxq}Y .
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If only one norm is greater than ε (again, the analysis is symmetrical), the difference may be rewritten

`

}y ´ hApSqpxq}Y ´ ε
˘2
ď
`

}y ´ hApSqpxq}Y ´ }y ´ hApSziqpxq}Y
˘2
ď }hApSqpxq ´ hApSziqpxq}

2
Y ,

ď
`

}hApSqpxq}Y ` }hApSziqpxq}Y
˘

}hApSqpxq ´ hApSziqpxq}Y ,

ď 2pMY ´ εq
γ
?

2
?

Λ
}hApSqpxq ´ hApSziqpxq}Y .

In every case C “ 2pMY ´ εq
`

1` γ
?

2{
?

Λ
˘

works, hence the conclusion.

A.7.3. κ-HUBER

Using the same techniques, one gets

}hApSq}HK ď

c

2κ

Λ

´

MY ´
κ

2

¯

and }hApSziq}HK ď

c

2κ

Λ

´

MY ´
κ

2

¯

,

and for any realization px, yq P X ˆ Y of pX,Y q

`phApSqpxq, yq ď κ

c

MY ´
κ

2

ˆ

γ
?

2κ
?

Λ
`

c

MY ´
κ

2

˙

.

If both norms are greater than κ, the difference `phApSqpxq, yq ´ `phApSziqpxq, yq writes

κ
´

}hApSqpxq ´ y}Y ´
κ

2

¯

´ κ
´

}hApSziqpxq ´ y}Y ´
κ

2

¯

ď κ}hApSqpxq ´ hApSziqpxq}Y .

If only one norm is greater than κ, one may upperbound the difference using the previous writing

κ
´

}hApSqpxq ´ y}Y ´
κ

2

¯

´
1

2
}hApSziqpxq ´ y}

2
Y ď κ

´

}hApSqpxq ´ y}Y ´
κ

2

¯

´ κ
´

}hApSziqpxq ´ y}Y ´
κ

2

¯

.

If both are smaller than κ, the difference becomes

1

2
}hApSqpxq ´ y}

2
Y ´

1

2
}hApSziqpxq ´ y}

2
Y ,

“
1

2

`

}hApSqpxq ´ y}Y ` }hApSziqpxq ´ y}Y
˘ `

}hApSqpxq ´ y}Y ´ }hApSziqpxq ´ y}Y
˘

,

ď κ}hApSqpxq ´ hApSziqpxq}Y ,

so that C “ κ.

A.8. Further Admissible Kernels for Assumption 3

In the continuation of Remark 1, we now exhibit several types of OVK that satisfy Assumption 3.

Proposition 2. The following Operator-Valued Kernels satisfy Assumption 3:

(i) @s, t P X 2, Kps, tq “ ř

i kips, tq yi b yi, with ki positive semi-definite (p.s.d.) scalar kernels for all i ď n.

(ii) @s, t P X 2, Kps, tq “ ř

i µi kps, tq yi b yi, with k a p.s.d. scalar kernel and µi ě 0 for all i ď n.

(iii) @s, t P X 2, Kps, tq “ ř

i kps, xiqkpt, xiq yi b yi,

(iv) @s, t P X 2, Kps, tq “ ř

i,j kijps, tq pyi ` yjq b pyi ` yjq, with kij p.s.d. scalar kernels for all i, j ď n.

(v) @s, t P X 2, Kps, tq “ ř

i,j µij kps, tq pyi ` yjq b pyi ` yjq, with k a p.s.d. scalar kernel and µij ě 0.

(vi) @s, t P X 2, Kps, tq “ ř

i,j kps, xi, xjqkpt, xi, xjq pyi ` yjq b pyi ` yjq.
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Proof.

piq For all psk, zkqkďn P pX ˆ Yqn, it holds:
ř

k,l xzk,Kpsk, slqzkyY “
ř

i

ř

k,l kips, tq xzk, yiyY xzl, yiyY , which is

positive by the positiveness of the scalar kernels ki’s. Notice that piiq and piiiq are then particular cases of piq.

piiq is an application of piq, as a kernel remains p.s.d. through positive multiplication. Observe that this kernel is separable.

piiiq is also a direct application of piq, kernel k1 : s, t ÞÑ kps, xiqkpt, xiq being indeed p.s.d. for all function k and point xi.

pivq is proved similarly to piq. The arguments used for piiq and piiiq also makes pvq and pviq direct applications of pivq.

Finally, notice that for pivq, pvq and pviq, any linear combination pνiyi ` νjyjq b pνiyi ` νjyjq, with 0 ď νi ď 1 for all
i ď n, could have been used instead of pyi ` yjq b pyi ` yjq.

B. Loss Functions Illustrations
In this section, we provide illustrations of the loss functions we used to promote sparsity and robustness. This includes
ε-insensitive losses (Definitions 3 and 4, Figures 9 and 10) and the κ-Huber loss (Definition 5, Figure 11). First introduced
for real outputs, their formulations as infimal convolutions allows for a generalization to any Hilbert space, either of finite
dimension (as in Sangnier et al. (2017)) or not, which is the general case addressed in the present paper. The ε-insensitive
loss functions promote sparsity, as reflected in the corresponding dual problems (see Theorem 6, Problems pD1q and pD3q
therein) and the empirical results (Figures 12 and 13). On the other hand, losses whose slopes asymptotically behave as
|| ¨ ||Y instead of || ¨ ||2Y (such as the κ-Huber or the ε-SVR loss) encourage robustness through a resistance to outliers. Indeed,
under such a setting, residuals of high norm contribute less to the gradient and have a minor influence on the model output.
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Figure 9. Standard and ε-insensitive versions of the SVR loss in 1 and 2 dimensions (ε “ 2).
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Figure 10. Standard and ε-insensitive versions of the square loss in 1 and 2 dimensions (ε “ 1.5).
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Figure 11. Standard square loss and Huber loss in 1 and 2 dimensions (κ “ 0.8).

C. Numerical Experiments and Code
C.1. Provided Code

The Python code used to generate the plots and tables of the article is provided. The README file in the code folder contains
instructions for quickly reproducing (part of) the plots. All implemented methods may be run on other datasets/problems.

C.2. Detailed Protocols

C.2.1. STRUCTURED PREDICTION

YEAST Dataset Description. YEAST1 is a publicly available multi-label classification dataset used as a benchmark in
several structured prediction articles. We compared our approach, with the same train/test decomposition, to those presented
in Elisseeff and Weston (2002), Finley and Joachims (2008) and Belanger and McCallum (2016). The size of the training
set is 1500, the test set is of size 917. The problem consists in predicting the functional classes of a gene. The inputs are
micro-array expression data (representing the genes) of dimension p “ 103. The outputs are multi-label vectors of size
d “ 14 representing the possible functional classes of the genes. The average number of labels is 4.2. These 14 functional
classes correspond to the first level of a tree that structures a much bigger set of possible functional classes.

Experimental protocol: Comparison with other methods. In Figure 6, we reported the Hamming error on the test set
obtained by each method. The results obtained by SSVM and SPENS are extracted from Finley and Joachims (2008) and
Belanger and McCallum (2016). For our approach and its three variants (ε-KRR, κ-Huber, ε-SVR), each hyper-parameter
(Λ, ε, or κ) has been selected by estimating the Mean Squared Error (MSE) through a 5-fold cross-validation computed on
the training set. We used an input Gaussian kernel with a fixed bandwidth equal to 1.

Experimental protocol: Cross-Effect of ε and Λ on sparsity and MSE. In order to measure the effect of the different
hyperparameters and study their interrelations, we have computed the 5-fold cross-validation MSE and sparsity/saturation
for several values of Λ and ε/κ. The input kernel is still Gaussian with bandwidth 1. The results are plotted in Figures 3
and 4 for the ε-KRR, and in Figures 13 and 14 for the ε-SVR and κ-Huber. In Figure 4, we have measured sparsity through
the number of training data which are discarded, i.e. not used in the finite representation of the ε-KRR model. The κ-Huber
saturation is assessed in a similar fashion: it corresponds to the number of training data whose associated coefficient saturates
the norm constraint (see Theorem 6, Problem pD2q therein). Simplified versions of these graphs may be quickly reproduced
using the code attached (see README file).

Metabolite identification dataset description. We next tested our method on a harder problem: that of metabolite
identification (Brouard et al., 2016a). The goal is to predict a metabolite (small molecule) thanks to its mass spectrum.
The difficulty comes from the reduced size of the training set (n “ 6974) compared to the high dimension of the outputs
(d “ 7593). Input Output Kernel Regression (IOKR, see Brouard et al. (2016a;b)) with a Tanimoto-Gaussian kernel is state
of the art on this problem.

1https://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
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Experimental protocol. We investigate the advantages of substituting the Ridge Regression for the ε-KRR, κ-Huber, and
ε-SVR. Outputs are embedded in an infinite dimensional space through the use of the Tanimoto-Gaussian kernel (with
bandwidth γ “ 0.72). We compare the different algorithms’ performances on a set of 6974 mass spectra through the top-k
accuracies for k P t1, 10, 20u. We give the average 5-fold top-k accuracies (Table 1). The 5 folds have been chosen such
that a metabolite does not appear in two different folds (zero-shot learning setting).

C.2.2. STRUCTURED REPRESENTATION LEARNING

Dataset Description. Robust structured representation learning was tested on a drug dataset, introduced in Su et al. (2010),
and extracted from the NCI-Cancer database. This dataset features a set of molecules that are represented through a Gram
matrix of size 2303ˆ 2303 obtained with a Tanimoto kernel. Tanimoto kernels (see Ralaivola et al. (2005) for details) are a
common way to compare labeled graphs by means of a bag-of-sequences approach.

Experimental protocol: Robust KAE. We computed the mean 5-fold cross-validation Mean Squared Error. The first layer
uses a linear kernel. But since inputs (and outputs) are kernelized – only the 2303 ˆ 2303 Gram matrix is provided for
learning –, the first layer may also be seen as a function from the associated Tanimoto-RKHS, applied to the molecules. The
second layer uses a Gaussian kernel. The regularization parameters for the two layers have been fixed to Λ “ 1e´ 6, and
the inner dimension has been set to p “ 200. In Figure 7 is plotted the MSE and the sparsity (discarded training data) for
several values of ε in order to assess the effect of the regularization. We used an existing source code from Laforgue et al.
(2019)2, that has been adapted to our needs. The IOKR resolution part, materialized by the compute N L function therein,
has been replaced by the compute Omega function of the IOKR plus class in the attached code.

C.2.3. ROBUST FUNCTION-TO-FUNCTION REGRESSION

Dataset Description. The task at hand consists in predicting lip acceleration from electromyography (EMG) signals of the
corresponding muscle (Ramsay and Silverman, 2007). The dataset3 includes 32 samples of time series obtained by recording
a subject saying “say bob again”, that are noted pxi, yiq32

i“1. Each time series is of length 64. To assess the performance of
our method in presence of outliers, we created 4 outliers by picking randomly some pxiq4i“1 and adding to the dataset the
samples pxi,´1.2 ˚ yiq

4
i“1.

Experimental protocol. As the number of samples is small, one can use the Leave One Out (LOO) generalization
error as a measure of the model performance. We first used it with plain Ridge Regression (Kadri et al., 2016) to
select the best hyperparameter Λ. Then, we tested robustness by computing the LOO generalization error of a model
output by solving Problem (9) for various κ (see Figure 8, that may also be reproduced from the attached code). For
the tψjumj“1 we used the sine and cosine basis of L2pr0, 1sq, i.e. @l ď m

2 and θ P r0, 1s, ψ2lpθq “
?

2 cosp2πlθq and
ψ2l`1pθq “

?
2 sinp2πlθq. The number of basis function was set to m “ 16, so that we get the first 8 cosines and sines of

the basis. The chosen associated eigenvalues are λ2l “ λ2l`1 “
1

p1`jq2 . We used as an input kernel the integral Laplacian

kX px1, x2q “
ş1

0
exp p´7|x1pθq ´ x2pθq|qdθ.

C.3. Additional Figures

We now provide analogues to Figures 3 and 4 for the ε-SVR and κ-Huber. The ε-Ridge graphs are first recalled. Notice that
simplified versions of these plots may be easily reproduced from the attached code.

The ε-KRR (Figure 12) appears as a natural regularized version of the plain KRR. For small values of Λ, the regularization
effect of the ε induces a smaller MSE. This phenomenon is achieved for a wide range of Λ and ε, and coincides with an
important sparsity. The counterpart is that no value of ε clearly allows to outperform the standard KRR for its optimal Λ.
The ε-KRR may rather be used as an implicit regularization preventing from a cross-validation on Λ.

The ε-SVR (Figure 13) shares analogous characteristics for the small Λ regime. However, it further produces predictors with
smaller MSE than the best KRR one. This furthermore coincides with a peak in the sparsity.

The κ-Huber (Figure 14) has a quite different behavior. When Λ tends to 0, the constraint (see Problem pD2q) is vacuous
for all κ, and one asymptotically recovers the standard KRR. The optimal Λ now changes with κ, and better performances
than the KRR for the best Λ are regularly attained.

2github.com/plaforgue/kae
3http://www.stats.ox.ac.uk/ silverma/fdacasebook/lipemg.html

https://github.com/plaforgue/kae
http://www.stats.ox.ac.uk/~silverma/fdacasebook/lipemg.html
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Figure 12. MSE and Sparsity w.r.t. Λ for different ε for the ε-KRR on the YEAST dataset.
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Figure 13. MSE and Sparsity w.r.t. Λ for different ε for the ε-SVR on the YEAST dataset.
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Figure 14. MSE and Saturation w.r.t. Λ for different κ for the κ-Huber on the YEAST dataset.
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