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Narrow River Extraction from SAR Images
Using Exogenous Information

Nicolas Gasnier, Student Member, IEEE, Loı̈c Denis, Roger Fjørtoft, Member, IEEE, Frédéric Liège and Florence
Tupin, Senior Member, IEEE

Résumé—Monitoring of rivers is of major scientific and
societal importance, due to the crucial resource they provide to
human activities and the threats caused by flood events. Rapid
revisit Synthetic Aperture Radar (SAR) sensors such as Sentinel-
1 or the future Surface Water and Ocean Topography (SWOT)
mission are indispensable tools to achieve all-weather monitoring
of water bodies at the global scale. Unfortunately, at the spatial
resolution of these sensors, the extraction of narrow rivers is
extremely difficult without resorting to exogenous knowledge.
This paper introduces an innovative river segmentation method
from SAR images using a priori databases such as the Global
River Widths from Landsat (GRWL). First, a recently proposed
linear structure detector is used to produce a map of likely line
structures. Then, a limited number of nodes along the prior river
centerline are extracted from the exogenous database, and used
to reconstruct the full river centerline from the detection map.
Finally, an innovative conditional random field approach is used
to delineate accurately the river extent around its centerline.
The proposed method has been tested on several Sentinel-1
images and on simulated SWOT data. Both visual and qualitative
evaluations demonstrate its efficiency.

Index Terms—conditional random field, graph cut, hydrology,
river extraction, segmentation, Synthetic Aperture Radar

I. INTRODUCTION

IN THE last five years, two major research works have pro-
vided comprehensive worldwide maps of continental water

surfaces : the Global Surface Water (GSW) masks of Pekel
et al. [1] and Global River Widths from Landsat (GRWL)
of Allen and Pavelsky [2]). They are based on multi-spectral
Landsat optical images over decades. Such optical satellite
sensors are not well suited for real-time monitoring of water
bodies, as they lack the all-weather capability of Synthetic
Aperture Radar (SAR) sensors such as Sentinel-1 that can
observe through clouds. The Ka-band Radar Interferometer
(KaRIn) of the future Surface Water and Ocean Topography
(SWOT) mission [3], scheduled for launch in 2022, is an
interferometric SAR system that is able to measure water
elevation as well. Thanks also to their short revisit time, these
freely available SAR data are expected to play a crucial role in
river monitoring in the coming years. However, SAR images
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have specific characteristics that make their direct exploitation
difficult. In addition to their limited number of information
channels, these images are corrupted by strong multiplicative
speckle noise and affected by artifacts that can make their
exploitation for water detection difficult. Robust and efficient
methods to detect narrow rivers in such images are therefore
needed.

Most of the methods previously developed for river de-
tection do not use exogenous information, except for some
approaches using digital earth models to account for slope
in water detection both with SAR and optical images [4].
Multiple generic water detection algorithms, not specific to
rivers, have already been proposed for example by Liu and
Jezek [5] or Cazals et al. [6], which applies thresholding on a
filtered SAR image, or the baseline method for operational
water detection in SWOT images of Lobry et al. [7] that
uses Markov Random Fields (MRF). Other methods use active
contour approaches such as level sets [8]. These methods use
strong regularization priors to avoid speckle-induced false de-
tection, which impairs the detection of narrow rivers. Specific
approaches for river detection have also been proposed such as
the one developed by Cao et al. [9] for SWOT images. Valero
[10] proposes an approach based on mathematical morphology
for road detection in high-resolution images. This approach
has been adapted for rivers and automated using machine
learning by Klemenjak et al. [11]. Sghaier et al. [12] combines
it with structural feature sets. Other approaches based on active
contours have also been used, such as [13].

The detection of narrow rivers in SAR images with a limited
false detection rate is very difficult without using any exoge-
nous information. Indeed, beyond usual issues associated with
speckle noise and low contrast, river detection is particularly
complex because roads, terrain slope, and various artifacts
can create structures resembling rivers such as in Fig. 1.
Distinguishing rivers from other visually similar structures
such as the large road in Fig. 1(a) or the topography artifact in
Fig. 1(b) can be very difficult or even impossible when using
only the information available in the image, especially when
the contrast of an actual river can be very low (as in Fig. 1(b)).
To prevent false detection, prior information about the location
and the direction of known rivers can be useful. It allows
distinguishing linear structures corresponding to a known river
from other visually similar linear features. For example, rough
waypoints from exogenous data can give information about the
course of the river that has to be detected.

In this context, the aforementioned GRWL database pro-
vides, on a global scale, information that can be included
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FIGURE 1. Crop of (a) a Sentinel-1 image from Des Moines, and (b) a
simulated SWOT image (Saline), presented in Section III. Both images contain
linear structures that correspond to actual rivers and linear structures that
correspond to other structures : a large road for (a) and terrain slope layover
effects for (b). Image (b) also shows a river section with very low contrast.

within new approaches for river detection from SAR images.
Before such global databases became available, the use of
exogenous information was difficult and often required manual
preparation of input and semi-automated approaches, such as
[14], [15] for optical images. In contrast, GRWL contains a
centerline for each river that provides information about the
course of the river. If this database centerline did perfectly
correspond to the actual river centerline in the image after
projection to the image coordinates, its use would be straight-
forward and only the third step of the proposed method would
be needed. Unfortunately, direct use of the prior centerline of
a river provided by the database to detect and segment the
river in a SAR image remains problematic. Indeed, there are
three main reasons why there can be a discrepancy between
the database centerline projection in the image and the actual
river :

1) The actual position and shape of the river can evolve
over time [16], especially for meandering rivers [17].
Such changes can be very quick in case of major
flood events or earthquakes, or when caused by human
activity. Rivers can also undergo seasonal changes that
the database does not take into account.

2) There can be a positional error caused by the projec-
tion of the database centerline into the radar image.
For Sentinel-1 Ground Range Detected images, it can
be induced by the GRD image construction or ortho-
rectification process (inaccurate digital elevation model,
or errors in the water level). For SWOT images, as
the water detection is done in radar geometry and
before water height extraction, shifts could come from
a difference between the prior water level used for the
projection of the centerline and the actual water level.
The near-nadir geometry of SWOT is very sensitive to
this, as even a relatively small difference in elevation can
lead to a major shift in position in the range direction
as illustrated in Fig. 2.

FIGURE 2. Illustration of the displacement between the database centerline
projected in radar geometry (red dotted line) and the river observed in a
simulated SWOT image (where water is bright and land is dark). Such a
displacement can be caused by variations in water elevation and inaccuracies
in the digital elevation model used for projection : a few meters difference
between actual and prior elevation can lead to shifts of hundreds of meters
in ground range.

3) There may be some errors in the database itself, espe-
cially in areas with complex topology or dense vegeta-
tion.

This brings the need for an approach that can exploit the
exogenous information provided by GRWL’s river centerlines
while being robust to discrepancies between the projection
of these centerlines and the true river in the image. We
therefore propose a robust approach that uses the database
centerlines as a source of approximate waypoints that can be
used in combination with the image to retrieve the actual river
centerline. This centerline can then be used to accurately detect
the river extent while avoiding confusion with other linear
structures.

The main contribution of this paper is to propose a new
river detection approach for SAR images, guided by prior
information on the approximate river location. It can be
provided by a database such as GRWL that features several
information layers including the river centerline for most rivers
wider than 30 m, with better completeness for rivers above
90 m. The robustness and efficiency of the proposed method
are illustrated by several examples for both Sentinel-1 and
simulated SWOT data. The paper is organized as follows : The
method is presented in Section II, the results are presented and
discussed in Section III, and conclusions and future work are
detailed in Section IV.
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II. PROPOSED FRAMEWORK

A. Overview

As mentioned in the introduction, our goal is to provide
a novel framework for river extraction in SAR images using
a database of rivers to overcome the limitations of detection
based only on a SAR image. The method needs to be robust
to differences between the observed river location and shape
and those in the database. To achieve this, we propose a three-
step framework summarized in Fig. 3. The first step consists
in applying a line detector to the SAR image, as described
in the next section. Its response gives the likelihood of the
presence of a locally linear structure at each pixel of the image,
irrespective of the nature of the linear structure (river, road,
artifact, ...). The second step uses the Dijkstra algorithm [18]
to find the least-cost curvilinear path between two nodes of
the prior river database through a cost array derived from the
response of the linear structure detector. These first two steps
lead to an estimation of the actual river centerline in the image
that is robust to speckle noise and low water/land contrast,
and to inaccuracies in the shape and position of the prior
centerline projected in radar geometry.The third step consists
in segmenting the river reach around the extracted centerline
to accurately delineate the river extent (width). An innovative
conditional random field (CRF) approach is proposed for this
purpose.

B. Detection of linear structures in the SAR image

The first step of our approach computes a map that indicates
the likelihood of the presence of a linear structure at each
pixel of the image. In our context, a linear structure can be
defined as a set of contiguous pixels in a long and thin layout
(width of a few pixels) whose radar reflectivity (brightness) is
significantly different from that of the background [19]. The
relevant linear structures can be dark, as for most sensors such
as Sentinel-1 or RADARSAT, or bright for near-nadir sensors
such as KaRIn on the future SWOT satellite. The detection
of lines on SAR images can be very difficult because of the
strong, multiplicative speckle noise and the low contrast of
some rivers. Therefore, methods developed for optical images
[20]–[24] cannot be directly applied to SAR images, even
after log-transformation to make the speckle additive. Methods
specific to SAR images have been proposed in the past by
Hellwich et al. [25], who use both intensity and coherence
images, and by Tupin et al. [26] who combine the results of
two detectors : one based on ratios in a neighborhood, the
other based on cross-correlation. More recently, the authors
have developed a line detector that improved the detection
performance compared to [26] and has been described and
tested in [19].

As explained in [19], this detector is based on a generalized
likelihood ratio test (GLRT) and evaluates at each pixel k the
likelihood ratio between two hypotheses on a small square
patch I�(k) of size (2N + 1) × (2N + 1) centered on the
considered pixel k :

— H0 : Absence of any linear structure (homogeneous
area)

— H1 : Presence of a linear structure

The GLRT at pixel k can be written

GLRT(k) =
p(Ĩ(k)|H1, P̂ (k), θ̂(k))

p(Ĩ(k)|H0, R̂(k))
. (1)

Ĩ(k) is a vector obtained by concatenating the log-
transformed intensities of every pixels of the patch I�(k).

For both hypotheses, the likelihood depends on unknown
parameters that can be estimated by maximum likelihood.
Under the H0 hypothesis, the only parameter is the
homogeneous reflectivity R(k) over the patch I�(k), whose
estimator is R̂(k). Under the H1 hypothesis, there are two
parameters : the orientation of the line θ(k) and the estimated
profile P (k), which is a vector containing the intensities
along the direction perpendicular to the line. With our model,
this profile is symmetric and its extreme value is located in
its center (see Fig. 4).

The GLRT presented in equation (1) can be simplified by
considering a Gaussian approximation of the log-transformed
speckle [27] which leads to the quadratic expression

p(Ĩ|R̃µ) ' f(Ĩ) =
1

σ
√

2π
e
− 1

2

(
Ĩ−R̃µ
σ

)2

(2)

where σ =
√
ψ(1, L), R̃µ = R̃ − log(L) + ψ(L), ψ is the

polygamma function (or digamma when used with a single
parameter), and L is the equivalent number of looks (ENL) of
the image.

This Gaussian simplification yields a closed-form estimation
and permits fast computation. The approximation can be
considered fairly accurate for multilook images such as SWOT
High Rate (HR) coherent power (L=4) or Sentinel-1 Ground
Range Detected (GRD) High Definition data (L=4.4). Under
these hypotheses, the log-reflectivity of the patch under the
homogeneous hypothesis H0 can be estimated as the empirical
mean of the log-transformed intensities Ĩ(k) of the patch
I�(k).

In the following, 1 is a vector of ones with the same
dimension as I(k) (the number of pixels in a patch). Under
H0, we use a uniform patch R̃µ(k)1 with the Gaussian
approximation. Under H1, the estimated patch r̂(θ̂(k), k) is
computed from the estimated orientation θ̂(k) and profile
P̂ (k, θ̂(k)) under H1. This way, we get a quadratic expression
for the log-transformed GLRT (3). The GLRT boils down to
the difference between the reconstruction errors E0(k) and
E1(k), as presented for one pixel k in Fig. 4 :

log(GLRT(k)) =
1

2
||Ĩ(k)− r̂(k)(θ̂)||2

− 1

2
||Ĩ(k)− R̃µ(k)1||2

log(GLRT(k)) = E0(k)− E1(k).

(3)

A more efficient way to compute this GLRT is also presen-
ted in [19] and used in our framework. It allows computing
the GLRT value at all pixels using Fourier transforms. The
detection map can then be improved by combining different
scales, in a [Smin, Smax] range. This allows for the detection
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FIGURE 3. Global overview of the proposed method : the first step consists in computing the linear structure detector response, used in the second step with
the nodes from the a priori database to retrieve the centerline. The river is then segmented around the centerline using a CRF approach in the third step.

FIGURE 4. General presentation of the linear structures detection performed
on the log-transformed images. Example for a patch centered in k and for
dark linear structure detection.

of lines larger than a patch and avoids using large patches
that would be computationally expensive. An example of the
response of the linear structures detector, combining the results
for different scales is presented in Fig. 5.

C. Accurate centerline determination using least-cost path
algorithm

The second step of the algorithm is to retrieve the actual
centerline of the river reach using both the response of the
linear structures detector and prior information on the river
position. The external database that we use (GRWL) provides
for each river reach (about 10 km long) nodes that are 200 m
apart along the centerline. From this approximate centerline,
at least two approaches can be considered to obtain the actual
centerline :

— To apply an active contour approach such as snake [28]
on the entire centerline using the detector response

— To consider only some nodes in the centerline and to
compute the minimum cost path between pairs of nodes
on a cost image derived from the detector response.

A major issue with the snakes approach for this application
is its sensitivity to the initialization and to the parameters that
determine the evolution of the active contour. A preliminary
study showed the difficulty to choose the right parameters and
the lack of stability of the results. The proposed method is
based on a minimum path between a subset of nodes of the
centerlines using Dijkstra’s algorithm. A similar method has
been proposed by Dillabaugh et al. [15] for optical images,
with user-specified start and end points. An overview of this
second step of the proposed method is given by Fig. 9.

We define the cost C(x, y) at every pixel (x, y) based on
the line detector response D(x, y) as

C(x, y) = [1−D(x, y)/Dmax]Npow (4)

with Dmax the maximum value of the detector response on
the whole image and Npow a tuning parameter. Npow adjusts
the cost of crossing a pixel whose detector response is not
maximal. It has to be high enough to penalize short paths that
cut through a meander but not too high either to prevent the
risk of being diverted by a road with a strong line detector
response or having numerical computational issues. In the
situation where one or both nodes are outside of the river, and
provided Npow is high enough, the least-cost path is expected
to go from one node to the other through the river via the
minimum cost path, as presented in blue between nodes B1
and B2 in Fig. 6. This approach is robust to situations where
the a priori nodes are far away from the actual river (due to
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FIGURE 5. Simulated SWOT image and linear structure detector response,
combining the results for scales 1, 1/2 and 1/3. The response is displayed
with inverted gray scale for better visualization.

changes in the actual river or to projection errors). This has
been assessed using nodes with a very exaggerated shift from
the true position (over 1 km) in Fig. 6 (and for other Sentinel-1
images in the supplementary materials). We see that the center
part of the river segment is here correctly detected, but that
close to node B1 an erroneous path has been chosen. This
generally occurs in the presence of strong noise or when there
are other linear structures in the area.

To cope with this issue and in order to retrieve the entire
centerline, we propose to use overlapping pairs of nodes as
extremities for the minimum cost path search. Recall that
GRWL has a node every 200 m, whereas the pairs of points
that we use are in the order of 1 to 10 km apart. By combining
the results for each pair of nodes (for example, the green, blue,
and magenta lines in Fig. 7), we obtain the estimated centerline
for the whole reach plus one off-river branch between the
centerline and every a priori node that does not belong to the
actual centerline.

The off-river branches can be easily eliminated using a
pruning method. Because of the overlap of the reach nodes,

FIGURE 6. Shortest path determination between nodes B1 and B2 displayed
on the original image. The red arrow is pointing to the part of the river that has
been missed by the detection. Indeed linear structures that do not correspond
to the river caused the centerline to circumvent this part of the river.

FIGURE 7. Visualization on the same image of the result of the least-cost paths
for 3 pairs of nodes : A1 −→ A2 in green, B1 −→ B2 in blue and C1 −→ C2
in magenta. The centerlines have been widened for better visualization. In
this example, the a priori nodes have been chosen excessively far from the
river to illustrate the robustness of the proposed approach.

only the pixels on the least-cost path between the end nodes
of a reach and the previous reach are kept in the final central
line. Fig. 8 shows the result of the pruning of the centerlines
in Fig. 7. The final centerline for each river is then stored as
a boolean raster CL of the same size as the image that takes
the value 1 on the centerline and 0 elsewhere.

D. Segmentation of the reach from the centerline by conditio-
nal random field

The last step of the proposed method is to get an accurate
segmentation of the river reach using the previously estimated
centerline and the SAR image. This can be considered as a
region growing problem around the estimated centerline taking
into account the intensities in the SAR image. Random walk
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FIGURE 8. Centerline obtained after pruning of the previous result. The
centerline has been widened for better visualization.

FIGURE 9. Flowchart describing the second step of the algorithm that uses
the previously computed linear structures detector response and nodes from
the database to compute the river centerline.

[29] using the centerline as a seed, morphological approaches
or graph-cut approaches [30] with hard constraints could be
relevant for this problem, but we did not obtain satisfactory
results with these.

Instead, we propose an innovative method based on a
conditional random field (CRF) [31]. The problem is expressed
as the minimization of a global energy function E that takes
both the SAR image and the centerline into account, with
an adapted regularization that does not over-penalize narrow
rivers. An overview of this method is given by the flowchart
in Fig. 12.

The global energy E which depends on the classification `
(` = 1 for water and ` = 0 for land), is the sum of two data

terms, a regularization term, and a flux term :

E (`, I) = U Idata(`, I) + UCdata(`, CL)

+ Ureg(`, I) + Uflux(`, I).
(5)

The two data terms are U Idata that ensures fidelity with the
image intensity I and UCdata that ensures that the centerlines
retrieved in the previous step are classified as water. The
regularization term Ureg is adapted to the segmentation of
narrow rivers. Along with this adapted term, we propose a
term Uflux whose role is to favor a longer water/land contour
if this segmentation is in better agreement with the gradients
of the SAR image (i.e., to counter-balance the effect of the
term Ureg that encourages a short contour length).

The image data term U Idata is based on a model that
considers two likelihoods : a likelihood that depends on the
intensity of the image for the water class and a likelihood
that is intensity-invariant for the land class. The likelihood for
the water class is based on a gamma distribution (6) for the
intensity, with two parameters : R1 for the homogeneous water
reflectivity and L for the number of looks. The reflectivity of
water R1 can be estimated using a debiased geometric mean
estimator R̂1 on the intensity I for every pixel belonging to
the centerline. In order to increase robustness, the brightest
pixels (for Sentinel-1) that can correspond to bridges or boats
can be excluded from the computation of the mean. With these
variables, the theoretical distribution of intensity for water is
given by

p(I|R1) =
LLIL−1

Γ(L)RL1
exp

(
−L I

R1

)
. (6)

The neg-log-likelihood L1 for the water class (` = 1) is
then

L1(I|R1) = K(R1, L) +
LI

R1
+ (1− L) · log(I) (7)

where K(R1, L) = log(Γ(L)) + L · log(R1)− L · log(L)
For the land class, in the absence of a model for the

distribution of the land class, we consider a uniform likelihood.
The constant likelihood value L0 is chosen so that the data
energy of one well-classified pixel (i.e. its neg-log-likelihood)
is equal in expectation for both classes :

L0 = K(R1, L) + L+ (L− 1)(log(
L

R1
)−Ψ(L)) . (8)

Provided that the estimator for water reflectivity R̂1 is
accurate enough, the homogeneous log-likelihood L0 =
EI|R1

[L1(I,R1)] (8), with the expected value computed over
the water pixels, prevents the classification from being biased
towards land.

In order to simplify L1 and L0, the constant value
K(R1, L) can be subtracted from both neg-log-likelihoods.

For an elementary surface of the image du centered at
u, the image data energy is defined by U Idata(du) = `(u) ·
L1(I,R1, L)du + (1 − `(u)) · L0du. Another energy term
UCdata ensures that the previously determined centerlines are
classified as water. It penalizes by a large value of KC · du
the misclassification as land of any elementary surface du that
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belongs to a centerline (CL(du) = 1). This energy term is
given by UCdata(du) = KC · (1− `(du)) · CL(du)du.

Finally, a regularization term ensures that the transitions
between water and land are compatible with the gradients of
the image, by penalizing the transitions that would occur where
the gradient magnitude is low, or if the boundaries are not
orthogonal to the gradient direction.

We want to minimize over the water boundaries the weigh-
ted total variation on the label field ` that we assume to
be continuous and whose spatial gradient at location u is
‖
−→
∇`(u)‖ :

Ureg(`) = β

∫
u∈R2

w(u)‖
−→
∇`(u)‖du. (9)

The total variation is weighted with

w(u) = exp(−[
−→
∇`(u) ·

−→
∇I(u)]+/λ). (10)

This weighting w favors localizations of the boundaries that
are aligned with the strong gradients of the image. The
notation [x]+ returns x if x > 0 and 0 otherwise. The variable
λ and β are parameters that allow adjusting the regularization
and its sensitivity to the gradients.

It can be noted that for sensors with dark rivers on a bright
background such as Sentinel-1 or TerraSAR-X, the negative
of the gradient −

−→
∇I(u) should be used instead to segment the

rivers.
To prevent transitions from being encouraged by gradient

artifacts caused by speckle noise, we use a gradient adapted
to SAR images called Gradient by Ratio (GR) proposed by
Dellinger et al. [32], which is an adaptation of ROEWA (Ratio
of Exponentially Weighted Average) proposed by Fjørtoft et al.
[33]. It computes at each pixel the gradients in the horizontal
and vertical direction, as presented in Fig. 10.

The former regularization term Ureg can cause excessive
regularization especially in low contrast situations and lead to
false positives and false negatives in detection. For example in
SWOT images, a bright sand river inner bank in a meander,
also called a point bar (visible in Fig. 11) can be erroneously
classified as water. Conversely, in the case of a river with
an irregular width, the regularization can lead to an incorrect
estimation of the width. To cope with these problems that
are caused by the regularization that favors shorter water-land
boundaries over longer ones despite the weaker gradient, we
introduce an additional term that favors longer boundaries co-
located with strong gradients.

The boundaries of the river are expected to be located where
the gradient of the SAR image is the strongest within a small
neighborhood and to be oriented orthogonally to the gradient.
Over the boundary ∂{` = 1} between land (` = 0) and water
(` = 1), this criterion locally corresponds to maximizing the
dot product between the gradient

−→
∇I(u) and the unit normal

vector of the segmentation {` = 1}. Over the whole river,
the criterion can be expressed as the outward flux Φ of the
gradient through the boundary ∂{` = 1}

FIGURE 10. Gradient for the simulated SWOT image. The positive values are
displayed in green, the negative values are displayed in red. Above : horizontal
gradient, below : vertical gradient. The gradients have been computed with
the GR approach with a weighting parameter α = 2.4 which is a good
compromise between smoothing and location for L = 4.

Φ =

∮
u∈∂{`=1}

−→
∇I(u) · −→n (u)dl

=

∫∫
{`=1}

−→
∇ ·
−→
∇I(u) du

(11)

where the second line comes from Ostrogradsky’s divergence
theorem.

Here, the Laplacian of the image can be approximated with
a Laplacian of Gaussian (LoG) operator of parameter σL

−→
∇ ·
−→
∇I ≈ LoG(I, σL) (12)

that can be computed using a convolution.
The influence of the flux energy Uflux(`) can be balanced

with a multiplicative parameter η that adjusts its effect :

Uflux(`) =

∫
u∈R2,`(u)=1

η·LoG(I, σL)du. (13)
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FIGURE 11. Illustration of a situation in which using solely the total variation
regularization may lead to an erroneous contour detection.

The sign of η depends on the sensor : η < 0 for SWOT
(water generally brighter than land) and η > 0 for Sentinel-1
(land mostly brighter than water).

By combining the four terms : U Idata, UCdata, Ureg , Uflux of
E , we can write the segmentation problem as a minimization
problem :

arg min
`

∫
u∈R2,`(u)=1

L1(I,R1, L) + η · LoG(I, σL)du

+

∫
u∈R2,`(u)=0

L0 + CL(u) ·KCdu

+β

∫
u∈R2

w(u)‖
−→
∇`(u)‖du.

(14)

This equation can be discretized as

arg min
l

∑
i

`(i)(L1(I,R1, L) + η · LoG(I, σ))

+(1− `(i))(L0 + CL(i))

+β
∑
i∼j

w(i, j) · |`(j)− `(i)|
(15)

with w(i, j) = exp(−[(`(j)− `(i))(I(j)− I(i))]+/λ), where
i ∼ j means that j is an 8-neighbor of i. In the case of pixels
that are 8-neighbors of i but not 4-neighbors, λ is multiplied
by
√

2.
The minimization problem presented in (15) can be solved

using a minimal cut approach such as the one proposed by
Boykov et al. [30], with asymmetric edges on a directed graph.

III. EXPERIMENTAL RESULTS

In this section, we evaluate the interest and characterize the
performances of our method in segmenting small rivers in SAR
images using a prior database, both for SWOT and Sentinel-
1 images. Even if the images from the experimental dataset
have been chosen to be as representative as possible of various
situations, the comprehensive calibration of the algorithm on
a specific sensor is beyond the scope of our experiments.

FIGURE 12. Flowchart describing the third step of the algorithm that uses
the previously computed centerline along with the SAR image to detect the
river.

FIGURE 13. Result of the CRF segmentation for the same SAR image as in
Figs. 5 and 8 .

The results presented below have been obtained using
our published code 1 that uses the PyMaxFlow 2 wrapper to
Vladimir Kolmogorov’s graph cut solver presented in [34].

A. Dataset

Our method has been tested on Sentinel-1 GRD images and
on simulated SWOT HR images.

1. The code used for our experiments and all the images and ground truth
for Sentinel-1 images will be available : https://gitlab.telecom-paris.fr/ring/
guided-river-detection

2. http://pmneila.github.io/PyMaxflow/

https://gitlab.telecom-paris.fr/ring/guided-river-detection
https://gitlab.telecom-paris.fr/ring/guided-river-detection
http://pmneila.github.io/PyMaxflow/
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a) Sentinel-1: We used Sentinel-1 GRD images (more
specifically Interferometric Wide Ground Range Detected
High Definition images) in VV or VH polarization that have
been downloaded from a Copernicus Open-Access mirror and
cropped around the study area without orthorectification or
calibration.

These images have been multilooked by a factor of five in
the range direction from the Single Look Complex images and
have an ENL of about 4.4. Their spatial resolution is about
20.5m az × 22.m rg and each pixel corresponds to a 10m ×
10m square on the ground.

We use 7 images in our Sentinel-1 dataset, presented in
Table I, corresponding to various examples of small rivers with
different kinds of environments.

These images are associated with a ground truth that has
been manually drawn on the SAR image using GIMP software,
with the help of Open Street Map and optical images provided
by Bing displayed over the SAR images with QGIS software to
help to distinguish between actual rivers and other dark linear
structures. This ground truth is not binary but classifies the
pixels of the images into three classes : Land, Water, Uncertain
classification. The Uncertain class corresponds to pixels for
which it was not possible to determine whether or not it should
belong to the river. We used it for our ground truth in four
situations :

1) Isolated strong reflectors in rivers (most likely boats).

2) Bridges over rivers.

3) Small anabranches (diverging branches of a river, se-
parated by an island, that re-enter the main stream
downstream.

4) Flooded areas or small lakes that are only partially
connected to a river.

All Sentinel-1 image extracts and associated ground truth
are made available in the same repository as our published
code.

b) SWOT: Concerning SWOT images, as the SWOT
satellite has not yet been launched, all test images have been
simulated with the Jet Propulsion Laboratory (JPL) HR science
simulator [35]. The simulation is based on high-resolution
DEMs and landcover maps, near-nadir Ka-band normalized
backscattering coefficient functions for water and various land-
cover classes, and actual instrument characteristics. It accounts
for speckle, geometric effects such as layover, and azimuth
smearing due to the limited coherence time of water. These
images are associated with the water mask that has been used
for the simulation as ground truth.

We used three simulated images for our experiments. All
images have been simulated considering pessimistic assump-
tions about the performances of the sensor (worst case scena-
rio). The first image has been simulated from Lidar and high-
resolution landcover data on the Saline River, Lincoln County,
Kansas, USA, and presented in the previous part. This image
has been simulated with the so-called dark water phenomenon.
Dark water is water with a very low contrast compared to
land and is caused by very low water surface roughness at
low wind speed. This dark water phenomenon, and numerous

bright land structures, make river detection especially difficult
on this image. The two other images have been simulated
using Lidar data on the Rhône delta, France. Unlike the Saline
River image, these two images have been simulated without
dark water : the contrast between water and land is more
homogeneous. Image 9 corresponds to the downstream Petit
Rhône river, whereas image 10 corresponds to the upstream
Petit Rhone river with two small channels.

The SWOT images are summarized in Table II. The river
widths are here given in pixels and not in meters as the pixel
ground range spacing in SWOT depends on the position in the
swath.

B. Metrics

In order to quantitatively assess the performance of the
water detection compared to our ground truth, we use the
same six metrics as Lobry et al. [7]. These metrics are based
on the number of pixels considered as true positives (TP) for
adequately classified water, true negatives (TN) for adequately
classified land, false negatives (FN) for water classified as land
and false positives (FP) for land classified as water.

Recall =
TP

TP + FN
(16)

FPR =
FP

FP + TN
(17)

Precision =
TP

TP + FP
(18)

F-score = 2
Precision× Recall
Precision + Recall

(19)

ER =
FP + FN
TP + FN

(20)

MCC =
TP× TN− FP× FN√

(TP + FN)(FP + TN)(TP + FP)(TN + FN)
(21)

The recall is the proportion of actual water pixels that are
classified as water. The FPR is the proportion of land pixels
that are classified as water. The precision is the proportion
of actual water among all the pixels classified as water.
The F-score is the harmonic mean of precision and recall
and will be our main metrics. ER is the ratio between the
number of incorrectly classified pixels and the number of
actual water pixels. This metric is similar to the metric of
the SWOT mission science requirements [36], but computed
in radar geometry instead of ground geometry. The Matthews
correlation coefficient (MCC) [37] is another metric that takes
into account the over-representation of land in the context of
river detection.

C. Implementation

For each image, we extract the rivers using our method by
choosing a very limited number of prior centerline nodes, in
order to highlight the robustness of the proposed approach. For
single rivers (except for image 8, used as an example in the
previous part), we use only two nodes : one for each endpoint.
When two rivers are joining in a confluence, we locate one
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TABLE I
SENTINEL-1 GRD IMAGES USED FOR OUR EXPERIMENTS

Image #-name River name Location Date Polarization River width Size (pixels)
1 - Des Moines Racoon Des Moines, Iowa, USA 2018-08-02 VH 40m - 120m 1313×1750

2 - Sunar Sunar Garhakota, Madhya Pradesh,
India

2018-06-22 VH 40m - 150m 1026 × 923

3 - Gaoual Tomine
Koumba

Near Gaoual, Guinea 2018-07-15 VH 30m - 130m
30m - 130m

927×1854

4 - Angers Maine
Loire

Louet anabranch

Angers, Pays de la Loire,
France

2019-12-02 VV 100m - 150m
200m - 1000m

25m-120m

927×1854

5 - Garonne Garonne North of Toulouse, France 2020-02-09 VV 80m - 200m 1109×1704
6 - Redon Oust

Vilaine
Redon, Brittany France 2018-07-04 VH 15m - 60m

40m - 160m
618×773

7 - Régina Arataı̈
Approuague

Régina, French Guiana,
France

2017-10-11 VH 25m - 100m
100m - 150m

553×1216

TABLE II
SIMULATED SWOT IMAGES USED FOR OUR EXPERIMENTS

Image # - name River name Location Hypothesis on
sensor

performances

Simulated
dark
water

River
width
(pixels)

Size (pixels)

8 - Saline Saline Lincoln County, Kansas,
USA

Worst Case Yes 2-5 301×351

9 - Petit Rhône
downstream

Petit Rhône Camargue France Worst Case No 3-14 700×800

10 - Petit Rhône
Upstream and

channels

Petit Rhône
Chanel Bas-Rhône Languedoc

Channel of Rhône in Sète

Camargue France Worst Case No 2-8 800×730

node on the confluence and one node at each endpoint of the
two upstream rivers and of the downstream river. In the case
of an anabranch (e.g. in Angers image), a node is added in
the anabranch in order to prevent its centerline from going
through the main stream. The nodes that have been used are
plotted on the images.

We used the parameters presented in Table III. These
parameters have been chosen empirically by testing multiple
values on the SWOT simulated image Saline. We manually
increased the maximum scale Smax of the detection of the
linear structures from 3 to 4 to account for the wider range
of river width in our use of Sentinel-1 images and decreased
the Npow parameter from 70 to 10 in order to be more robust
to dark roads. For both kinds of images, we used L=4 for our
experiments.

The results could have been improved by fitting the para-
meters to the type of image (SWOT, Sentinel-1 VV, Sentinel-
1 VH) or even to the environment (urban area, rain-forest,
desert...), but our main goal for these experiments was to
show satisfactory performances without fine-tuning of the
parameters.

Concerning the optimization of the code we use, we im-
proved the computation of the linear features detection, which
is by far the slowest step, by using the fast computational
approach proposed in [19]. Moreover, the convolutions are
processed in the Fourier domain and the FFT of the image
is computed only once for all the orientations. However, the
computing speed could still be dramatically improved by using
parallel processing.

D. Results

Table IV gives the metrics for each image in our dataset. The
metrics are computed only for river detection (the detection of
surrounding lakes is considered to be a separate task, already
addressed by [7]). Three images are presented in detail below,
with their associated detection maps : image 1 (Des Moines)
is representative of the results obtained with our method for
typical Sentinel-1 images in urban areas, image 2 (Sunar)
to present an example where the centerline detection is not
successful, and image 9 (Petit Rhône Downstream) as an
example for SWOT images. All ten images of our dataset
and the corresponding segmentation results are presented in
the supplementary materials and for Sentinel-1 images, the
results can be reproduced using our published code.

a) Example 1: Image 1 (Des Moines), displayed in Fig.
14, shows that our method leads to correct detection of the
whole river, despite using only two nodes as prior information,
and although the river is meandering. The centerline (b) has
been correctly classified with the proposed approach based on
the response of the linear feature detector. The segmentation
of the river from the centerline using our conditional random
field approach also gives good results in this example. The
river contour is relatively well respected. It can be noted that,
despite a reflectivity similar to the reflectivity of the river, the
lake (which is not connected to the river) and two large roads
(Figure 14 (a)) are not misclassified as rivers. Our approach
avoids two typical pitfalls of river detection on SAR images
that are lakes close to rivers and highways.

b) Example 2: Image 2 (Sunar) presented in Fig. 15
illustrates a possible issue with the proposed approach when
using insufficient exogeneous information about the location
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TABLE III
PARAMETERS USED FOR THE EXPERIMENTS

Line detection Centerline detection River segmentation
Patch size Scale Range Angular step Linear detector power Regularization Flux

N [Smin, Smax] θstep Npow β λ σL η
SWOT 9 [1,3] 3° 70 4 0.2 3 6

Sentinel-1 GRD 9 [1,4] 3° 10 15 0.2 3 6

of the river. If a dark linear structure in a river meander in a
Sentinel-1 image creates a shorter path between two a priori
nodes of the centerline and if the actual river is not identifiable,
the detected centerline will be incorrect. This leads to false
positives on the dark linear structure and false negatives in the
part of the river that has been bypassed, such as in Fig. 16. The
resulting classification is erroneous for this part of the river.
However, this does not significantly affect the classification of
the remainder of the river, as the estimation of the parameters
is robust enough.

A possible improvement would be to use more centerline
nodes as exogenous information and to use a post-processing
step to flag as uncertain the river parts where the reflectivity
is too high (possibly sand, mud, or flooded vegetation) and
remove them if appropriate.

c) Example 3: Image 9 (Petit Rhone downstream), pre-
sented in Fig. 17, illustrates the behavior of the proposed
method applied to simulated SWOT HR images. In this
example, the river centerline has been correctly detected and
the river segmentation is relatively accurate except for some
false positives caused by speckle noise, and a very small
connected channel that has not been detected. In comparison
with the baseline method [7] that only detects a small part of
the narrow river, the proposed approach shows an improved
detection. Because our approach does not detect other water
surfaces, but only rivers that would have been missed by the
generic method, both approaches are complementary.

It can be noted that for SWOT images, the bright area
corresponding to the river response might be slightly larger
than the river itself in the azimuth direction because water is
moving and does not necessarily remain coherent during the
entire SAR integration time. This issue could be addressed by
a morphological post-processing in order to erase such false
positive pixels and thereby improve the precision.

IV. CONCLUSION

In this article, an innovative river extraction method is
proposed and evaluated. The originality of our approach is that
it uses an exogenous river database in order to guide the river
detection. The proposed technique consists of three phases :
First, computing the response of a linear feature detector, then
detecting the centerline using the response and the prior river
nodes, and finally segmenting the river around the previously
detected centerline using a CRF approach. Experiments per-
formed on both Sentinel-1 and simulated SWOT HR images
have shown that our method performs well including in low
contrast situations and for very narrow rivers of only a few
pixels.

The proposed method has been developed in the context
of the SWOT mission to process SWOT HR images that are
single-polarization and cannot easily be combined with images
from other sensors. This leads us to design a resilient method
for river segmentation in such images. While the proposed
method achieves good results in detecting rivers in single-
polarization (VV or VH) Sentinel 1 images, these results might
be further improved by using jointly the two polarizations
or even by merging information from optical images when
available. The two polarizations of Sentinel-1 images could
be combined by simply multiplying pixel-wise the VV and
VH amplitude images as it has been proposed by Nunziata et
al. [38] for coastal line segmentation, or as used in Ferrentino
et al. [39] for segmenting a lake. This would require a minor
adaptation of the last step of the proposed method (as the
product is not Gamma-distributed), but could improve the
discrimination between dark river banks and water. Another
possible adaptation of our method concerns the first step of
linear structure detection. Indeed, while our approach gives
good results, a limitation is that it is quite time-consuming.
Even if this could be significantly improved with a more
optimized implementation of our approach, a faster deep-
learning-based linear structure detector for SAR images could
potentially replace the current first step in the future.

The direct application of the proposed framework has ob-
vious potential for monitoring rivers included in the GRWL
database, but it may also be adapted to the detection of rivers
unknown to the database. For example, if other hydrological
information or a digital elevation model (DEM) indicate that a
small tributary is missing from the database, our approach can
help to retrieve it by using two inputs : one node in the main
river and one node placed further up in the expected tributary.

Other interesting research tracks concern the adaptation
of the proposed approach to other applications than river
monitoring, for example, road extraction in SAR images.
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water surfaces in simulated Ka-band SAR images of KaRIn on SWOT,”

https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2018RG000598
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2018RG000598
https://doi.org/10.1080/0143116031000139890
http://dx.doi.org/10.3390/rs8070570


IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING 13

FIGURE 15. Image 2 (Sunar) : (a) SAR image with annotations and (b) final segmentation. A1 and A2 mark the two nodes used as prior information. The
close-up squared in red in both images show a meander in which the segmentation is unsuccessful as the centerline bypasses the meander. A1 and A2 mark
the two nodes used as prior information. In (b) the true positives are displayed in blue, the false positives in yellow, and the false negatives in red. True
negatives are displayed as the actual SAR image pixels.

TABLE IV
SUMMARY OF THE METRICS FOR EACH RESULT

Number Name (sensor) Method Precision
(%)

Recall
(%)

FPR
(%)

F-Score
(%)

ER (%) MCC
(%)

Execution
time (s)

1 Des Moines (S1) Proposed 92.44 93.35 0.13 92.89 14.29 92.78 57.73s
2 Sunar (S1) Proposed 82.36 81.71 0.15 82.03 35.79 81.88 89.32s
3 Gaoual (S1) Proposed 92.51 89.09 0.12 90.77 18.12 90.64 212.96s
4 Angers (S1) Proposed 98.90 94.04 0.05 96.40 7.01 96.28 160.96s
5 Garonne (S1) Proposed 97.60 82.44 0.02 89.38 19.59 89.60 166.01s
6 Redon (S1) Proposed 90.28 92.70 0.15 91.47 17.28 91.35 47.48s
7 Régina (S1) Proposed 89.33 82.95 0.18 86.02 26.96 85.83 62.86s
8 Saline (SWOT) Proposed 63.24 94.45 1.02 75.76 60.45 76.81 10.45s

Baseline 5.30 87.58 33.87 10.00 1576.64 65.92 /
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FIGURE 17. Image 9 (Petit Rhône downstream) : (a) SAR image with a priori nodes, (b) segmentation with the baseline MRF method and (c) proposed
method segmentation. A1 and A2 mark the two nodes used as prior information. In (b) and (c) the true positives are displayed in blue, the false positives in
yellow, and the false negatives in red. True negatives are displayed as the actual SAR image pixels.
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