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Abstract

The detection of linear structures in Synthetic Aperture Radar images is often used as a first step for further processing
such as the extraction of road and river networks. In this paper, we propose a new method based on the Generalized
Likelihood Ratio Test (GLRT) framework to evaluate at each pixel the likelihood of the presence of a linear structure.
Results are presented on Sentinel-1 images and compared with a state-of-the-art method, also derived from the GLRT
framework but with a simpler model of the lines. In our experiments, our method produces far fewer false positives than

the reference method.

1 Introduction

With the increasing availability of Synthetic Aperture
Radar (SAR) images, a lot of applications have been
developed to extract useful information from these data
for various fields (urban areas monitoring, environmental
surveillance,...). For some of these applications such as
river or road network extraction, the detection of linear
structures is a crucial step of the processing.

Linear structures can be characterized as a set of contigu-
ous pixels in a long and thin layout (width of a few pixels)
whose reflectivity is significantly different from the reflec-
tivity of the background. Linear structures, that are not
necessarily straight-lined, can be dark (rivers and roads for
most sensors such as Sentinel 1, TerraSAR-X,...) or bright
(rivers for near-nadir sensors like KaRIn sensor in the fu-
ture SWOT mission [3] or long, linear man-made struc-
tures).

Their detection is particularly difficult in SAR images be-
cause of the high level of speckle noise: the detected inten-
sity can be very different from the underlying reflectivity.
Because of these fluctuations, the methods that have been
developed for optical images [4, 2, 1, 10, 7] cannot be di-
rectly applied to SAR images. To cope with the speckle, a
first denoising step can be applied to reduce the noise level,
but that approach comes at the cost of additional computa-
tional time, the loss of some details or the appearance of
denoising artifacts that may respectively lead to false neg-
atives or false positives in the subsequent linear structure
detection.

In the past 30 years, several methods have been proposed
to address the problem of linear structure detection in noisy
SAR images: Hellwich et al. [S] combine intensity and
coherence information, Tupin et al. [8] combine the results
of a ratio-based line detector and a cross-correlation-based

line detector and can still be considered as a reference
method today.

In this paper, we propose a new approach based on a
local translation invariance property of linear structures to
derive a hypothesis test and decide in favor of the presence
or the absence of a line. This leads to a detection map.
This map can subsequently be used for other processing
steps, for example to retrieve the network through linear
programming [6].

2  Overview of the method

In this section, we introduce the model that grounds our
method and describe how our criterion is defined. Most of-
ten, only one type of linear structure is sought: either bright
lines over a darker background or dark lines in a brighter
area (e.g., roads or rivers). A feature of our approach is to
clearly distinguish those two cases. In the following, we
consider the task of detecting dark linear structures. The
adaptation to bright structures is straightforward.

2.1 GLRT criterion for linear structure de-
tection

Our detection criterion evaluates the likelihood of the pres-
ence of a linear structure centered at a given pixel k£ by
comparing two hypotheses:

e Hj : there is no linear structure
e H: there is a linear structure

The comparison between these two hypotheses is done by
determining which hypothesis best explains the observed
patch I, € REN+TUXEN+D) (e the vector formed by



the concatenation of all the intensities inside a small square
window centered at the k-th pixel). In this paper, we as-
sume that the null hypothesis Hy ("no linear structure")
corresponds to a patch with a constant reflectivity! R.
Under the alternative hypothesis H;, a linear structure is
present and the reflectivities inside the patch are shift-
invariant in the direction of the structure, see Figure 2.
The likelihood of each hypothesis depends on several un-
known parameters: the constant reflectivity R, under Hy;
the reflectivity profile P and the line direction 6, under H; .
These unknown parameters can be obtained by the maxi-
mum likelihood estimator. The decision in favor of hy-
pothesis Hy or H; can be made based on the generalized
likelihood ratio, i.e., the ratio of the likelihoods of each hy-
pothesis where unknown parameters are replaced by their
maximum likelihood estimates[9]:

p(I|Hy, P,0)

GLRT}, = —
p(Ix|Ho, R)

ey

This GLRT must be repeated at each pixel % of the image.
Computing the maximum likelihood estimators is simpli-
fied when log-transformed intensities are considered. Un-
der Goodman’s fully-developed speckle model, the log-
transformed intensities follow a Fisher-Tippett distribu-
tion:

L
—e"Vexp(~LeV "), (2)

p(ylz) = (L)

where y is the log of the intensity at a given pixel, x is the
log of the reflectivity at that pixel and L is the number of
looks of the image. In order to obtain closed-form expres-
sions for the likelihood estimators and GLRTs that can be
efficiently performed, we approximate this distribution by
a Gaussian distribution:

p(yl) = fla) = —

oV 2w

where o = \/9(1, L), and u = x —log(L) + ¢ (L) with ¢
being respectively the polygamma and the digamma func-
tion to match the standard deviation and the expected value
of the previous distribution. This approximation is reason-
ably precise for multi-look SAR images. Figure 1 com-
pares the distribution of the log-transformed speckle for
L = 4.4 corresponding to Sentinel-1 full-resolution GRD
images acquired in IW mode. The two distributions are
close. While the differences may impact the quality of es-
timators of the reflectivity, for hypothesis testing purposes
the impact is negligible at L = 4.4.

Under these assumptions, the biased log-reflectivity r =
log(R) — log(L) + (L) of the homogeneous background
under Hy hypothesis can be estimated from the mean of
the log-transformed intensities y of the patch. The estima-
tion of the reflectivity profile and of the line orientation is
described in more details in the next section.
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IThis assumption may seem too restrictive. Inhomogeneous reflectiv-
ity distributions inside the patch that can neither be modeled by a constant
nor by a shift-invariant profile lead to similar likelihood values under Hg
and H1, they therefore do not lead to false detections. The simplifying
assumption of a constant reflectivity under Hg therefore does not limit
the applicability of the method to homogeneous or linear structures.

Figure 1 Fisher-Tippett distribution (orange) and its
Gaussian approximation (blue) for L=4.4.

I.ie direct

Figure 2 The profile of the reflectivity of the linear struc-
ture is defined in the direction that is normal to the direc-
tion of the linear structure

When the estimates of the (biased) log-reflectivities of the
k-th patch 71, under Hy, and ?k,é’ under H1, are substi-
tuted in the definition of GLRT}, in equation (1), we obtain,
under our Gaussian approximation:

1 . 1 ~
log(GLRTY) = 5[y — k1|2 = Sl — 7y 6l @)

where 1 is a vector of ones with the same dimension as y,,
(the number of pixels in a patch).

2.2 Modeling of a linear structure

Before describing the linear structure parameters, we
first define how a linear structure can be characterized
at the scale of a patch. Considering a patch of size
(2N 4+ 1) x (2N + 1), centered at the k-th pixel, with
a dark line that crosses the patch as depicted in Figure
2, two ingredients define our model: (i) the reflectivity is
lower in the central line than farther from the line, and (ii)
the reflectivity distribution is invariant in the direction of
the line. Throughout the paper, the 1D distribution of the
reflectivity along the direction orthogonal to the line is
called the reflectivity profile.

Beyond the shift-invariance of the reflectivity in the direc-
tion of the line, we also require the profile to be symmet-
rical with respect to the median axis of the line. This is
useful to improve the localization of the linear structure
and to reduce the number of false positives.



2.3 Estimation of the local orientation of
the linear structure

The maximum likelihood estimate 8 of the angle of the lin-
ear structure in the patch is obtained by uniformly sampling
the orientations (60 steps are used in the range [0, 7] in
our experiments). The largest value of GLRT}, is retained
among all values computed for the set of orientations con-
sidered.

2.4 Estimation of the reflectivity profile of
the linear structure

The first step to estimate the reflectivity profile of the lin-
ear structure is to model the mapping from a 1D profile
Pk, t0 a 2D patch 7y g. In order to cover a patch of size
(2N +1) x (2N + 1) pixels for all orientations of the line,
the 1D profile has to cover v/2(2N + 1) pixels. Since we
consider profiles that are symmetrical with respect to the
central line, defining the profile only for the first v/2( N +1)
pixels from the patch center O is sufficient. The mapping
operation amounts to interpolating the 1D profile at each
pixel of the 2D patch according to the distance of the pixel
to the line that goes through O and that forms an angle 6
with respect to the horizontal direction. This interpolation
operation is a linear transform characterized by a matrix
M of size (2N +1)- (2N +1) x V2(N + 1):

Tko = Mopgy (5)

The second step is to compute the maximum likelihood
estimate Py of the reflectivity profile of a linear structure
oriented in the direction #. Under our Gaussian approxi-
mation, this corresponds to the least squares solution:

131@,0 = MZ““yk (6)
where M gi"V is the Moore-Penrose pseudoinverse of My .

In order to force the reflectivity at the center of the line
structure to be the minimum of the reflectivity profile, a
thresholding operation is added after estimating the maxi-
mum likelihood profile:

13;0 = max {f’k,ea [ﬁk,e]l} ) (7)

where the maximum is applied component-wise and [py]1
is the value of the log-reflectivity at the center of the pro-
file (first element of the vector). In the thresholded profile
f);, no reflectivity can be lower than the reflectivity at the
center of the profile. If, rather than dark lines, bright lines
were to be detected, this maximum should be replaced by
a minimum to define a profile p, where no reflectivity is
ever brighter than the reflectivity at the center of the line.
From this estimated profile, the estimated reflectivities in-
side the patch centered on pixel k are obtained by applying
the interpolation operator M :

Tro=MoDyy. 8)

The maximum likelihood orientation of the line structure
in the k-th patch is obtained by:

0 = argmax ||y, — Moyl )
0

The computation of GLRTY}, ¢ is then obtained by the ap-
plication of equation (??) for a given orientation §. The
detection criterion at pixel £ and orientation 6 can be ex-
panded as follows:

log GLRTy0 = 5ly), — 71| = 3lly), — Froll?

= %||7A‘k:1||2 —yril F YR — Ry
(10)

| 2

where the maximum likelihood estimate of the reflectivity
7, of a constant patch is the mean log intensity in the

patch: 7, = lTyk/lTl = m Zi[ylc]i'

A straightforward implementation of (10) requires com-
puting, at each pixel of the H x W pixels SAR im-
age, norms or scalar products of 7, and 7y 9. The esti-
mate 7 is obtained in (2N + 1)? = O[N?] multiplica-
tions. The estimate Ty ¢ requires 2(2N + 1)2v2(N +
1) = O[N?] multiplications. The total cost for evaluat-
ing log GLRT}, o at all pixels and for T angles 6 is thus
O[WHTN?3]. We show that the algorithmic complex-
ity can be reduced to O(WHTN?log(W H)] (and even
to O[WHTN log(W H)] if the constraint (7) is dropped)
with discrete correlations computed in Fourier domain us-
ing fast Fourier transforms.
Note that any product of the form w'y, corresponds to
a 2D discrete correlation of the log-transformed image y
with the 2D filter whose 1D representation in lexicographic
order is w: w'y, = [correl(y, w)]). This correlation can
be computed efficiently using 2D fast Fourier transforms:
correl(y,w) = FFT,y [FFTap(y) - conj (FFTap(w))]
where the conjugate operation conj() and the product - are
performed element-wise.
The first term 3|[#;1|[* in equation (10) corresponds
to sy correl(y, 1)]7, the second term —yjyl
—m[correl(y,l)]i, their sum is thus equal to
—m[correl(y7 1)]7, which can be computed in
O[W H log(W H)| operations with fast Fourier trans-
forms.
The third and fourth terms require the estimation of ?k,e
using equations (6), (7) and (8). The ¢-th element of
Dy ¢ corresponds to the product of the i-th row of ma-

to

trix MP™ and the log-transformed data y,,, which can
be expressed using a discrete correlation: [py 4]; =
[correl(y, [MY™]; 4)]k, where the notation [M5™]; o in-
dicates the i-th row of matrix M}™. All profiles 4 can
thus be computed in O[WHTN log(W H)] operations.
Rather than computing 7, ¢ for all 6 and k before deriv-
ing Y170, it is more efficient to compute (Myy,) Dy
since [M yy,]; = [correl(y, [Mgls.i)]x. The third term is
thus obtained in an additional O[W HT N log(W H)| op-
erations. The computation of the fourth term is the most
costly. To reduce the cost, we use the singular value de-
composition (SVD) of matrix My: M,y = U@S@V§
where Ujpisa (2N +1)? x (2N +1)? unitary matrix, Vg is
aVv2(N+1) xv/2(N +1) unitary matrix, and Sy is rectan-
gular with zeros outside the main diagonal. The expansion
IMopfgll> = PLoeMoMoply = BloVeS;Vibi



shows that
V2(N+1)
Frol®= > [Sel7i([Vele.Dre)® (1)
i=1

which can be computed for all £ and all § in O[W HT' N?]
operations once 13;9 has been computed. In the absence of
the non-linear thresholding operation (7), it would be pos-
sible to compute |74 ]|? by discrete correlations between
the SAR image y and the columns of the SVD of matrix
MyMP™ in O)W HT N log(W H )] operations.

The complete algorithm has a  complexity
OWHTN(N + log(HW))] to compute the detec-
tion map. It is summarized below:

Algorithm to compute a line detection map

Input: y (H x W pixels SAR image)
Output: log GLRT (H x W pixels detection map)
{compute first two terms}

1. ¢+ correl(y, 1)

2. fork=1to HW do

3. [log GLRT];, < —5xyzcli

4. end for

{compute last two terms}

5. dpax < 0 (H x W temporary map)
6. for 6 = 0, to 6 do

7. d<+0 (H x W temporary map)
8 {Ug, Sy, Vg} — SVD(M(;)

9. fori=1tov2(N+1)do

10. [Ple.i + correl(y, [M5™]; 4)

11 [ple,i < max([ple;, [Ple1)

12. d « d+ correl(y, [Mgle;) - [Ple; (3rd term)
13. t<—0 (HW temporary array)
14. for j = 1tov2(N + 1) do

15. t+—t+ [Ve}j,i[f)]o,j

16. end for

17. d + d— 3[Sp)7 (4th term)
18.  end for

19.  dupax ¢ max(dpax, d)
20. end for

21. log GLRT < log GLRT + d;.x

3  Potential adaptations of the
method

Some of the possible adaptations of the method are dis-
cussed in this section.

3.1 Multiscale processing

As the maximum width of the structures that can be de-
tected are limited by the size of the patch, the detection of
large structures can be computationally difficult. To cope
with this, a multiscale processing approach can be used by
applying the detector on rescaled images. Combinations
of multiple scales can be done by adding the rescaled re-
sponses of the detector.

3.2 Constraint over the symmetry of the
profile

Assuming that the background is homogeneous, the rate
of false detection can be decreased by enforcing the sym-
metry of the profile. This modification changes the shape
of the vector P representing the profile as storing the half
profile is now sufficient and changes the matrix My and
M

This constraint has been applied in the tests presented in
the next section.

3.3 Adaptation to river detection in near-
nadir sensors

On near-nadir sensors like KaRlIn in the future SWOT mis-
sion, flat surfaces like rivers are seen as bright linear struc-
tures on a dark background. The proposed detector can eas-
ily be adapted to this configuration by modifying the con-
straint presented in section 2.4: instead of preventing the
profile from being darker than its center as for dark lines
detections, the constraint prevents the profile from being
brighter.

4 Results

This section presents the results of the proposed line
detector applied to various Sentinel 1 SAR images. The
results are compared to the response of the linear structures
detector presented in [8]. The results presented here have
been obtained using our line detector > with a symmetry
constraint on three scales (with rescaling factors of 3,2 and
1) and summing the results.

All images are Sentinel 1 Full-resolution GRD images
acquired in IW mode with dark linear structures corre-
sponding to rivers. Figure 3 shows a comparison of the
two detectors on linear structures corresponding to the Esk
River near Carwinley (United Kindom). On Figure 4 the
linear structures correspond to the Vilaine and Oust rivers
near Redon (France).On Figure 7 the linear structures
correspond to the Loire river in Angers (France) and to
smaller rivers nearby.

Figure 5 shows one example over the city of Des Moines
(Iowa, USA) with the Racoon River. A ground truth (d)
for the "line" class (red line) and for the "no line" class
(green rectangle) has been used to draw the receiver oper-
ating curves (ROC) for both detectors presented Figure 6.
On the ROC curves, the proposed detector is better than
the state-of-the-art detector, as for any given false positive
rate, its true positive rate is higher.

The proposed algorithm response clearly has fewer false
positive while maintaining a good detection of the linear
structures. More importantly, the artifacts created by the
proposed method are not line-shaped unlike those of the
reference method and will be less troublesome for some

2The code of the line detector is available at https:/gitlab.telecom-
paris.fr/ring/glrt_based_lines_detector



Figure 3 Comparison between the proposed detector (c)
and the state-of-the-art detector (b) for one GRD image
with linear structures highlighted by red arrows (a)

further processing such as shortest path finding.

5 Conclusion

This paper proposes a new approach to detect linear
structures in a SAR image which can have multiple appli-
cations such as road-network or river extraction. In our
comparisons on Sentinel 1 image, the proposed method
shows an improved detection performance compared to a
reference line detection method.
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