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On the use and denoising of the temporal geometric
mean for SAR time series

Nicolas Gasnier, Student Member, IEEE, Loı̈c Denis and Florence Tupin, Senior Member, IEEE

Abstract—The increasing availability of SAR time series cre-
ates many opportunities for remote sensing applications, but it
can be challenging in terms of amount of data to process. This
letter discusses the interest of the geometric mean to average
SAR time series. First, the properties of the geometric mean and
of the arithmetic mean are compared. Then, a speckle-reduction
method specifically designed to improve images obtained with
the geometric mean is presented. This method is based on an
adaptation of the MuLoG framework to take into account the
specific distribution of the geometric mean. Finally, applications
of this denoised geometric-mean image are presented.

Index Terms—ADMM, change detection, denoising, geometric
mean, multi-temporal SAR series, speckle reduction, temporal
mean, variational methods.

I. INTRODUCTION

THE availability of Synthetic Aperture RADAR (SAR)
time series has substantially improved in the past few

years. This has fueled many applications in domains for
which the all-time acquisition capability and the repeated
acquisitions of SAR sensors are essential, for example in
land use monitoring or disaster detection. To study these time
series, a visual summary containing the spatial structures of the
scene can be very useful. By performing a temporal averaging
of the images, the speckle fluctuations can be reduced and the
signal-to-noise ratio of the spatial structures largely improved.
The temporal arithmetic mean (temporal multi-looking) has
long been used for this purpose [1]. The use of other kinds
of averaging procedures such as Hölder or Lehmer means
has been studied in [2]. Among these means, the geometric
mean stands out for having particularly interesting properties.
In particular, the geometric mean can be combined with the
arithmetic mean within a likelihood ratio test to obtain a
simple yet effective change detector [3]. More broadly, the
multiplicative approaches demonstrated their usefulness in the
processing of long SAR time series, such as in [4].

This letter focuses on the geometric mean and investigates
its interest for long (more than 10 images) SAR time series
analysis. The geometrical mean can be computed sequentially,
leading to efficient updates when new images are available.
First, we compare geometric and arithmetic means in terms
of statistical properties (bias, variance, and robustness). Their
behavior in various situations is studied. To further reduce
the remaining speckle fluctuations in the temporal geometric
mean, we derive a denoising method based on the MuLoG
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framework [5] that is specifically adapted to the statistical
distribution of the geometric means of observed SAR in-
tensities. The obtained geometric-mean image can be useful
in various applications such as multi-temporal filtering based
on a so-called ”super-image” with the ratio-based framework
RABASAR [6], change detection using an approach similar to
MIMOSA [2], or segmentation. It also conveys useful spatial
information for visual inspection.

After highlighting the interest of the geometric temporal
mean with respect to the arithmetic mean in cases of re-
flectivity changes (temporal reflectivity fluctuations or bright
outliers), the contributions of the paper are as follows:
• we introduce a way to efficiently compute numerically

the probability density function of the temporal geometric
mean,

• we derive an extension of MuLoG speckle reduction
method [5] to account for this probability density func-
tion1,

• we illustrate some applications of the proposed denoising
method.

The remainder of the letter is organized as follows: in
section II, we analyze the statistics and the properties of the
geometric and the arithmetic mean. Section III presents an
extension of MuLoG [5] to reduce the remaining speckle fluc-
tuations of the geometric-mean image. Experimental results of
the proposed approach are presented in section IV. Section V
draws some conclusions and perspectives.

II. STATISTICS OF THE GEOMETRIC MEAN
OF SAR INTENSITIES

In this section, we study the statistics of the geometric mean
of SAR images to motivate its use in the processing of SAR
time series.

A. Statistics of a SAR image

Under Goodman’s hypothesis of fully developed speckle
[7], the intensity follows a gamma distribution defined by the
following probability density function (pdf):

p(I|R) =
LLIL−1

Γ(L)RL
exp

(
−L I

R

)
, (1)

where I > 0 is the observed intensity of the image, L > 0
is the number of looks and R > 0 is the reflectivity of the
underlying scene.

1The code associated with the article is available on: https://gitlab.
telecom-paris.fr/ring/geometric mean denoising
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The distribution of the logarithm of the intensity image fol-
lows a Fisher-Tippett distribution [8] defined by the following
expression, where j = log(I) and s = log(R):

p(j|s) =
LL

Γ(L)
eL(j−s) exp(−Les−j). (2)

The expectation and the variance of j are:

E[j] = s− log(L) + Ψ(L) , (3)
Var[j] = Ψ(1, L) , (4)

where Ψ(.) is the digamma function and Ψ(., .) is the
polygamma function, see for example [8].

B. Statistics of the geometric mean
The geometric mean of T intensity values It is defined by:

R̂G =
T

√√√√ T∏
t=1

It = exp

(
1

T

T∑
t=1

log It

)
, (5)

it corresponds to computing the exponential of an arithmetic
mean of the log-transformed intensities.

If the speckle is completely decorrelated from one image to
another, and if the reflectivity remains constant (∀t, Rt = R),
it is possible to express the probability density function of R̂G
using Meijer functions [9]. Using the notations introduced in
[10] for Meijer functions, the pdf is given by:

p(R̂G|R) =T

(
L

R · Γ(L)

)T
R̂T−1G

× ḠT,00,T

LT R̂TG
RT

∣∣∣∣ ·, ·
L− 1, . . . , L− 1︸ ︷︷ ︸

T

, ·

 .

(6)

This expression can hardly be used for numerical computa-
tions as the evaluation of Meijer functions with numerous
parameters is very slow. We therefore propose an alternative
to evaluate numerically the pdf in section III.

The geometric mean is affected by a bias that can be
computed and compensated for:

E[R̂G] =
R

L
.

(
Γ(L)

Γ(L.T+1
L )

)−T
(7)

In the following, R̃G is the debiased geometric mean
estimator obtained by dividing R̂G by the bias, L being the
original number of looks of one date (here L = 1 for single-
look images).

C. Comparison between geometric and arithmetic means
The comparison between the geometric mean and the arith-

metic mean estimators of the reflectivity performed in this
section shows that while the arithmetic mean estimator is
preferable when there is no change in the underlying scene,
the geometric mean estimator behaves better as soon as there
are significant changes of the reflectivity in at least one image
of the time series. Four situations are considered: no change,
fluctuations around a mean value (i.e., temporal texture),
transient temporal changes, and permanent temporal changes.

Fig. 1: Ratio σG/σA, for large values of T , as a function of
the number of looks L.

1) Situation without changes in the reflectivity, i.e., R is
constant over time: When the reflectivity remains constant,
the arithmetic mean estimator corresponds to the maximum
likelihood estimator. The arithmetic mean of T intensities,
assuming a constant reflectivity and no speckle correlation,
follows a gamma distribution where the number of looks L
is multiplied by T (L is thus replaced by LT in equation
(1)). The standard deviation σA of the arithmetic mean of T
intensity values is:

σA =
R√
TL

. (8)

The standard deviation σG of the geometric mean estimator
R̃G can be computed through the first and the second moments
of the distribution [2]:

σG = R.L.

(
Γ(L)

Γ(L.T+1
L )

)T [
Γ(TL+2

T )T

Γ(L)T
−

Γ(TL+1
T )2T

Γ(L)2T

]1/2
.(9)

Both estimators are consistent (σA and σG tend to zero for
large values of T ). The arithmetic mean is a more efficient
estimator than the geometric mean. When T is large, we
obtain:

lim
T→∞

σG

σA
=
√
L ·Ψ(1, L) . (10)

This ratio tends to 1 when L is large, as shown in figure 1. It
is maximal for L = 1 where it is equal to π/

√
6 ≈ 1.28.

2) Situation with fluctuations of the reflectivity (temporal
texture): In this paragraph we consider the case of intra-class
fluctuations, inducing a temporal texture.

Although it is a well-known result that the geometric mean
is more robust to strong outliers than the arithmetic mean,
this paragraph shows that it is also less affected by temporal
texture.

Texture models [11] have long been used to describe fluc-
tuating reflectivities in speckle. To study the impact of these
fluctuations, we ran the following experiments: a Gaussian
distribution for the temporal evolution of the soil moisture is
assumed. As there is a linear relationship between the log
of the reflectivity and the moisture for a given soil [12],
we modeled the homogeneous reflectivities with a log-normal
temporal distribution with parameters µR and σR :

p(R|µR, σR) =
1

RσR
√

2π
exp

(
− (lnR− µR)2

2σ2
R

)
. (11)
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Fig. 2: Coefficient of variation of the arithmetic mean estima-
tor γA (red) and debiased geometric mean estimator γG (green)
for σR ∈ [2−6, 1] and T=12. The ratio γG/γA is shown in
black. Dotted and dashed lines correspond to simulations with
temporally correlated speckle (correlations between successive
images are 0.62 and 0.37, respectively).

Under this assumption, we can compare in numerical simula-
tions the variance of the arithmetic and geometric means for
various levels of variance σR of the reflectivity distribution and
different levels of temporal correlation. Fig. 2 shows that the
coefficient of variation of the geometric mean remains constant
when the temporal fluctuations σR increase. In contrast, the
coefficient of variation of the arithmetic mean rises with
the temporal fluctuations. This behavior is confirmed for all
levels of temporal correlation of the speckle considered. As
soon as the temporal fluctuations are non negligible (e.g., a
standard deviation σR that exceeds 0.37 in the conditions of
our numerical experiments: absence of temporal correlations
and stack of T=12 dates), the geometric mean offers a better
signal-to-noise ratio (i.e., a smaller coefficient of variation)
compared to the arithmetic mean. This behavior can be easily
explained: the arithmetic mean is heavily influenced by the
large variance of the intensities corresponding to the largest
radiometries.

The difference is also visible in real images. In figure 3, both
the arithmetic mean image and the debiased geometric mean
image are computed for a time series of Sentinel 1 SAR images
over an area of rice fields, where the underlying reflectivity
changes over time. The remaining fluctuations of the speckle
noise are stronger in the arithmetic mean image (Fig.3a) than
in the geometric mean image (Fig.3b).

In the case of temporal changes, the mean reflectivity
obtained with the arithmetic or geometric means does not
coincide with the actual reflectivities of the time series, but
still provides useful geometrical information (e.g., border of
fields, forests, roads, or rivers).

3) Situation with transient temporal changes: Bright tran-
sient changes of the reflectivity are often seen in SAR time
series and can be caused by vehicles, boats, or by temporary
constructions. For instance, when there is a boat visible at one
date, it produces strong echoes. If we model the reflectivity

Fig. 3: Comparison of the arithmetic mean image (left) and
geometric mean image (right). The fluctuations caused by the
remaining noise are stronger in the arithmetic mean image.

change by a multiplication by a factor K >> 1 at this date,
the geometric and arithmetic means are modified as follows:
• the geometric mean estimator is multiplied by K

1
T ,

• the arithmetic mean estimator is multiplied by 1 + K−1
T .

When T > 1, limK→∞K
1
T /(1 + K−1

T ) = 0, which indicates
that the geometric mean is to be preferred in order to be more
robust to the presence of strong scatterers at a single date: the
impact of these scatterers in the mean image is much smaller.
In contrast, the arithmetic mean is less sensitive to the dark
counterpart of these transient changes

4) Situation with permanent changes: If the change is
present in a large number of images, neither the arithmetic
mean nor the geometric mean are good estimators of the scene.
Indeed, in this situation where two classes are successively
present in the time series, a single estimate cannot capture
both classes. In this case, the geometric mean will bias toward
the dark class while the arithmetic mean will bias toward the
bright class.

In conclusion, the geometric mean has many advantages
compared to the arithmetic mean, being more adapted for
homogeneous classes with temporal texture and transient sit-
uations.

III. IMPROVING THE GEOMETRIC MEAN IMAGE
BY DENOISING

The temporal averaging reduces speckle fluctuations in the
images obtained by the geometrical and arithmetic means. To
further reduce the fluctuations, an additional denoising step is
beneficial. In this section we extend the MuLog framework [5]
to denoise images obtained with the geometric mean. MuLoG
has been developed for SAR images with gamma-distributed
intensities, it should thus be adapted to account for Meijer-
distributed variables.

A denoised image (i.e., an image of estimated reflectivities)
is obtained with MuLog by minimizing the following cost
function:

x̂ = arg min
x∈Rn

[− log(p(y|x)) + freg(x)] (12)

where x is the restored image, in log domain (xi is the log
of the estimated reflectivity at pixel i), y is the log of the
geometric mean image (yi corresponds to the value log(R̃G)
at pixel i). The term log(p(y|x)) is the log-likelihood and the
regularization function freg ensures that the estimated image x̂
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has a satisfying regularity (freg can be the Total Variation (TV)
or patch-based regularization like BM3D (Block Matching and
3D filtering) [5]).

The problem (12) is solved by a few iterations of the
ADMM (Alternating Direction Method of Multipliers) algo-
rithm [5], i.e., by alternating a Gaussian denoising step given
in equation (13) below and the non-linear correction defined
by equation (15) to account for the non-Gaussianity of speckle
fluctuations in images of the geometric mean:

ẑ ← arg min
z∈Rn

β

2
||z − x̂ + d̂||2 + freg(z) , (13)

d̂← d̂ + ẑ − x̂ , (14)

x̂← arg min
x∈Rn

β

2
||ẑ − x + d̂||2 − log p(y|x) , (15)

where β is a parameter that acts on the speed of convergence.
The minimization (15) can be solved with a Newton’s

method by using the following formula for all pixels i:

x̂i ← x̂i −
x̂i − ẑi − d̂i + D1

β

|1 + D2

β |
(16)

with D1 and D2 the first and second derivatives of the log-
likelihood:
D1 = −∂ log p(yi|xi)/∂xi and D2 = −∂2 log p(yi|xi)/∂x2i .

The likelihood of the geometric mean has been defined in
the intensity domain using Meijer functions in equation (6). In
the log-domain, it can be defined as the iterated convolution
product of Fisher-Tippett distributions. In the absence of
closed-form expressions for these convolution products, it
is necessary to evaluate them numerically, as well as their
derivatives. We computed the convolutions as multiplications
in the Fourier domain and then obtained the derivatives D1 and
D2 by finite differences. Solutions to the problem (15) can be
precomputed and stored in a table to speed-up the restoration
process.

IV. EXPERIMENTAL RESULTS

In order to evaluate the interest of the temporal geometric
mean, we illustrate 3 different applications of the geometric
mean image: to provide a high signal-to-noise ratio summary
of the spatial structures from a multi-temporal stack, to detect
changes, and perform multi-temporal filtering of a time series.
The time series used for this experiment is composed of 20
Sentinel 1 SLC images acquired at different times but on the
same orbit. In some of the images of the series, the presence
of boats causes strong backscatterings.

The denoising of the geometric mean is performed by
applying the BM3D denoiser [13] to update the ẑ image
according to equation (13), which corresponds to an implicit
regularization freg with edge and texture preserving properties,
and the pre-tabulated solution to equation (15). To reduce the
spatial correlations of speckle due to the slight over-sampling
and the spectral apodization of Sentinel-1 images, a 2x2
spatial sub-sampling is applied to the time series in order to
obtain images with uncorrelated speckle noise. An alternative
solution is to perform a speckle decorrelation approach [14].

Fig. 4: Geometric vs arithmetic mean: (a) and (b) two images
from the time series corresponding to dates t=11 and t=17,
(c) arithmetic mean and (d) debiased geometric mean, (e)
denoised arithmetic mean and (f) denoised geometric mean.

A. Temporal summary image: comparison between arithmetic
mean and geometric mean

In figure 4 both the arithmetic (c) and the geometric
temporal mean (d) show an obvious improvement in term
of noise level compared to the images from the time series
(a and b). Nevertheless, there is still a significant level of
noise in these images. As presented in section II.C, the noise
level in water area (constant reflectivity) is stronger with the
geometric mean than with the arithmetic mean. However, in
both denoised images (e) and (f), this remaining noise has
been successfully suppressed.

Concerning temporary strong scatterers, some boats that are
only present at one time of the time series such as the one on
the left of the 11th image of the time series (a) are clearly
visible in the noisy (c) and denoised arithmetic mean (e) but
not in the noisy (d) nor denoised geometric mean (f).

B. Use of the denoised geometric mean for change detection

Comparisons of the arithmetic and geometric temporal
means can be used to perform change detection [2]. The
computation of denoised mean images improves detection
methods based on these comparisons. For example, changes
can be detected based on the ratio between the arithmetic mean
and the geometric mean. Because of the residual fluctuations
of speckle in the mean images, when the total number of dates
is moderate, this ratio image is noisy which leads to false
alarms and non-detections. Figure 5 illustrates, in the same
Sentinel 1 SAR time series as in figure 2, the improvement of
the ratio image brought by denoising.
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Fig. 5: Improved change detection with denoised arithmetic
and geometrical means: (a) changes identified by the ratio
arithmetic mean / geometric mean, (b) ratio of the denoised
mean images. Stable areas are shown in blue, changing areas
in red.

Fig. 6: Improved temporal filtering with a super-image ob-
tained by denoising the geometric mean: the speckled image at
the date t = 11 (shown in Fig.4(a)) is restored by RABASAR
using a super-image obtained from (a) the arithmetic mean, or
(b) the geometric mean. Note the reduction of artifacts in the
circled area with the geometric mean.

C. Use as a ”super-image” for multi-temporal filtering

RABASAR [6] is a speckle reduction method for time
series. It uses the arithmetic mean to produce a so-called
”super-image” and to form a ratio-image where most of the
spatial variability of the reflectivity is compensated for. As
discussed in Section II, in the presence of an intra-class
temporal texture the geometrical mean is less impacted by
speckle fluctuations. It is also more robust to bright scatterers
appearing only at a few dates. In these contexts, the geomet-
rical mean leads to a better super-image and improved multi-
temporal filtering results. Figure 6 shows how the restoration
of an image of the time series illustrated in Fig.4 is improved
when the denoised geometrical mean is used as the super-
image in RABASAR: ghost structures due to transient bright
scatterers (boats visible only at a few dates) are suppressed in
Fig.6(b) in the circled areas. While a possible workaround to
the presence of bright targets at only a few dates could consist
of creating a different super-image for each image of the stack
(by selecting only the dates that are sufficiently similar, as
done in the original RABASAR framework [6]), this latter
approach involves a significant increase of the computational
load (a super-image must be re-created for each date) and does
not offer improvement of the signal to noise ratio in areas with
a temporal texture.

V. CONCLUSION

This paper shows the benefits of using the geometric
mean as a representative super-image for multi-temporal SAR

data stacks and a modified approach to further reduce the
speckle on this geometric-mean image. Due to the non-linear
combination of speckled images in a geometrical mean, the
denoising process must be carefully adapted to account for
the statistical distribution of speckle in the geometrical mean
image. The geometrical mean may be preferred over the
arithmetic mean for several reasons: an improved robustness to
the occasional presence of bright scatterers (e.g., boats) and
an improved signal to noise ratio in areas with temporally
fluctuating reflectivities (e.g., vegetation). Denoised geometric
images can be interesting for instance to obtain a temporal
summary of a multi-temporal stack of SAR images for vi-
sualization purposes. The ratio of denoised arithmetic and
geometric images can also indicate changes occuring in the
time series. The denoising step offers a notable improvement
of the quality of the change detection map. Our method to
denoise geometric mean images has also been applied to
the multi-temporal filtering algorithm RABASAR and shown
to effectively reduce the ”ghost structures” appearing at the
location of strong scatterers that were visible only at some
other dates. Further studies will focus on other applications
of the proposed denoising method on segmentation and multi-
sensors fusion.

ACKNOWLEDGMENT

The authors would like to thank the Centre National
d’Études Spatiales and C-S GROUP for funding. They are
grateful to the Reviewers and Associate Editor for their help
in improving the paper.

REFERENCES

[1] G. Nieuwenhuis and C. Schotten, “Land cover monitoring with multi-
temporal ERS-1 SAR observations in the Netherlands,” in First ERS-1
Symposium, Cannes, France, 1992.

[2] G. Quin, B. Pinel-Puysségur, J. Nicolas, and P. Loreaux, “MIMOSA:
An Automatic Change Detection Method for SAR Time Series,” IEEE
TGRS, vol. 52, no. 9, pp. 5349–5363, Sep. 2014.

[3] P. Lombardo and C. J. Oliver, “Maximum likelihood approach to
the detection of changes between multitemporal SAR images,” IEE
Proceedings - Radar, Sonar and Navigation, Aug 2001.
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