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Abstract Cryptographic software is particularly vulnerable
to side-channel attacks when programmed in embedded de-
vices. Indeed, the leakage is particularly intense compared
to the noise level, making it mandatory for the developer to
implement side-channel attack protections. Random mask-
ing is a customary option, but in this case, the countermea-
sure must be high-order, meaning that each sensitive vari-
able is splitted into multiple (at least two) shares. Attacks
therefore become computationally challenging.

In this paper, we show that high-order template attacks
can be expressed under the form of a convolution. This for-
mulation allows for a considerable speed-up in their com-
putation thanks to fast Fourier transforms. To further speed-
up the attack, we also provide an interesting multi-threading
implementation of this approach. This strategy naturally ap-
plies to template attacks where the leakage of each share
is multivariate. We show that this strategy can be adapted
to several masking schemes, inherently to the way the split-
ting is realized. This technique allows us to validate multiple
very high-order attacks (order of some tens). In particular,
it revealed a non-trivial flaw (hard to detect otherwise) in
a multivariate extension of the DSM masking (and subse-
quently to fix it, and validate its rationale).
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1 Introduction

Cryptographic devices manage secret keys, which must be
protected against extraction. One stealthy attack consists in
the analysis of side-channel leakage. As a countermeasure,
cryptographic computations can be randomly masked.

The extent of protection bestowed by random masking
has been the topic of extensive research. Profiling attacks
have proven to be the most efficient, as they model the leak-
age with great accuracy and subsequently resort to maximiz-
ing the key extraction likelihood. Such attacks are known as
template attacks [18]. When confronted to randomly masked
implementations, they can be tailored, as explained for in-
stance in [37]. This paper shows that each share (random
split of sensitive variables) can have its leakage profiled, and
the resulting high-order template attack recombines all the
profiles in order to maximize the key extraction probability.

1.1 Related Works

The seminal paper of Template Attacks (TA) is based on the
maximum likelihood principle [18]. Given the importance of
masking, several extensions of the TA have been introduced
to defeat (or to assess) this countermeasure [37,30].

In 2014 the Higher-Order Optimal Distinguishers, abrid-
ged HOOD in the sequel, have been introduced against the
masking countermeasure, whatever its order [9]. It is dubbed
optimal in that it consists in computing a maximum likeli-
hood. Nevertheless, its complexity is exponentially linked
to the masking order. Thereby, their authors considered only
a monovariate distribution (one time sample per share). In
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practice, side-channel traces are multivariate, because os-
cilloscopes capture waveforms for each sensitive variable
manipulation. Therefore, the HOOD as per [9] is far from
being the most suitable distinguisher (for one time sample
per share), since we expect that an increase of the number of
time samples per share can significantly improve the success
rate of the attack [28].

Recently, the optimal side-channel attacks for multivari-
ate leakages and multiple models are introduced [8]. Their
inconveniences are twofold. First, this modelling is over-
constrained, as there is an additional assumption of a rela-
tion between the templates (a coefficient α between each
pair of templates’ mean). Second, its computation has an
exponential complexity according to the masking order.

Subsequently, a Taylor expansion of the maximum like-
lihood distinguisher has been introduced to reduce its com-
plexity [10]. In this paper the processing is simplified in pre-
computations (rounded at a given order, at the expense of
the templates precision). The online attack computations are
therefore efficient.

More recently a new approach is introduced in [38, §4.4.2].
Its core idea is to combine the leaking shares into one arti-
ficial trace (inspired from the normalised product combina-
tion [41] of each share’s leakage), for carrying out a tem-
plate attack efficiently in terms of implementation complex-
ity. Its inconvenient is the fact that this combination could
loose some information about the leakage, especially for
low-noise devices [42].

The work presented in our paper shows that neither the
rounding of attacks nor the shares combination are neces-
sary for computational reasons. Besides, this result holds for
any masking scheme.

1.2 Contributions

High-order masking schemes consist in randomly splitting
each sensitive variable into several shares, so as to make at-
tacks more difficult (it can be proven that attacks are ex-
ponentially complex with the number of shares, in terms
of number of traces [17,40]). Those shares can be linearly
combined to carry out computations on them (whilst remain-
ing protected by random masking). Typically, this property
also allows to demask at the end of the computation, when
all shares need to be aggregated to recover a ciphertext.

The same property is used by an attacker to mount so-
called high-order attacks; namely the attacker combines shares
so that jointly they contain information on the sensitive vari-
ables. The natural combination consists in undoing the shar-
ing, i.e. to conduct a linear combination of the individual
shares leakage. For a masking of order d, each tuple of less
than or equal to d shares consists in independent variables
(i.e., a free family). On the contrary, a tuple of N = d + 1
shares has exactly one linear relationship.

In this paper, we leverage this basic noting to concep-
tualize high-order attacks as a convolution product over the
d-dimensional mask space. This convolution stands out in
a straightforward manner for Boolean masking. But it can
also be adapted to other masking styles, by the introduc-
tion of the relevant variable change. The linear operation
used in the masking scheme impacts the type of convolution,
which we capture using the corresponding group law.

This new vision of masking schemes can therefore take
advantage of the considerable wealth of character theory. In
particular, the computation of the side-channel distinguish-
ers can be optimized thanks to Plancherel identity (arising
from properties of Fourier transforms).

The contributions of this paper are therefore to:

– Quantify the speed-up in distinguisher computation;
– Show that this speed-up is particularly adapted to the

optimal distinguisher (therefore: two advantages for the
attacker–minimizing the required number of traces to ex-
tract the key [optimal distinguisher using maximum like-
lihood] and minimizing the attack elapsed time and re-
quired memory space [optimal distinguisher computa-
tional complexity]);

– Provide an interesting multi-threading implementation
of our approach;

– Apply the attack in the context of multivariate sub-traces
for the leakage of each share;

– Illustrate quantitatively this new attack paradigm on (very)
high-order masking schemes, including six styles (Bool-
ean, IPM, DSM, Polynomial DSM, RSM, leakage squeez-
ing);

– Introduce a new multi-share extension of DSM (along
with the optimal attack on it).

1.3 Outline

The rest of the paper is structured as follows. Mathemat-
ical notions and results useful to present to paper contribu-
tions are gathered in Sec. 2. Our innovative algorithmic opti-
mization of the high-order multivariate distinguisher is pre-
sented in Sec. 3, on the simple exemple of Boolean Mask-
ing. Its adaptation per masking type is the topic of Sec. 4.
In particular, Boolean, i.e. additive, multiplicative and affine
masking schemes, are addressed in Sec. 4.1 (which covers
all these schemes altogether exploiting the fact they are in-
stances of the IPM scheme which generalizes them). DSM
and its multi-share extension (MS-DSM) are treated respec-
tively in Sec. 4.2 and 4.3. The polynomial extension of DSM,
which (as DSM) allows for both fault detection and side-
channel attack protection, is the topic of Sec. 4.4. The Rotat-
ing Substitution-box Masking is analyzed in Sec. 4.5. Even-
tually, leakage squeezing is addressed in Sec. 4.6. Validation
of the theory on simulated traces is the topic to Sec. 5. Even-
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tually, conclusions and perspectives are given in Sec. 6. The
appendix A explains the flaw of the straightforward exten-
sion of DSM to multi-share case, and also provides the sub-
sequent fix. The appendix B provides the success rate curves
of the attacks on various masking schemes.

2 Preliminaries

2.1 Linear Algebra and Linear Codes

Definition 1 (complementary subspaces) Let n be a non-
zero integer. Let C and C be two subspaces (seen as linear
codes) of a vector space Fn

2. By definition C and C are com-
plementary subspaces, if and only if, any element of the vec-
tor space Fn

2 can be decomposed in a unique way as a sum
of two elements of C and C. We write Fn

2 = C⊕C.

Remark 1 The supplementary subspace of a given subspace
is not unique and it is not an orthogonal subspace in the
general case. If a linear code C has an orthogonal supple-
mentary code (a dual code denoted C⊥), then C is called
a Linear Complementary Dual (LCD) code, and given their
dimension, we have that the so-called hull C∩C⊥ of C is
trivial, namely C∩C⊥ = {0} [33,35].

By the rank-nullity theorem, if the dimension of C equals
n0 < n, then the dimension of any supplementary subspace
C is equal n−n0.

Let us consider generating matrices G and G of respec-
tively C and C. We denote C = span(G) and C = span(G).
Then every vector z ∈ Fn

2 can be written in a unique way as
z = z1G⊕ z2G,where z1 ∈ Fn0

2 and z2 ∈ Fn−n0
2 .

Definition 2 (minimum distance) The minimum distance
dC of a linear code C is the smallest Hamming weight of its
nonzero codeword.

Definition 3 (dual distance) The dual distance d⊥D of a lin-
ear code D is d⊥D = dD⊥ .

2.2 Spectral Theory

As will be shown, instead of computing the distinguisher
for each subkey k (or equivalently for each sensitive value
z) distinctly, only one computation is sufficient, taking ad-
vantage of the properties of the convolution product over a
finite group. Let us first recall the definition of a convolution
product that can be processed efficiently.

Definition 4 ([43]) Let (S,+) be a group of size 2n. Let d be
a non-zero integer. Let f (0), . . . f (d) be d +1 functions from
S to R. A dth-order convolution product of f (0), . . . , f (d) is
the function denoted by f (0)⊗·· ·⊗ f (d) and defined from S
to R by: for every z ∈ S,

( f (0)⊗·· ·⊗ f (d))(z) .
=

∑ j1∈S . . .∑ jd∈S f (1)( j1) . . . f (d)( jd) f (0)(z−∑
d
w=1 jw),

where −z denotes the symmetric element of z relatively to
the + law (i.e. in the group (S,+)).

The naïve computation of the convolution product for all
possible z needs O(2dn) multiplications. In a view to speed-
up the processing of such convolution, let us also denote
the so-called functions product by f (1) • f (2) where f (1) •
f (2)(z) .

= f (1)(z) f (2)(z). It is the associative coordinate-wise
product. In addition, we denote by FFT the (Fast) Fourier
Transform over the group (S,+). An important property of
the convolution product with respect to the FFT is that, for
every z ∈ S, we have [43]:

( f (0)⊗·· ·⊗ f (d))(z) =

FFT−1
(

FFT ( f (0))• · · · •FFT ( f (d))
)
(z). (1)

The advantage of this property is that one can process
the dth-order convolution product for all possible values z at
once, with an overall complexity of O(dn2n) additions in-
stead of O(2dn) multiplications. Indeed, the computation of
the complete spectrum benefits from the Fast Fourier Trans-
form implemented by a butterfly algorithm.

The two groups of interest for our study are (Fn
2,⊕) for

which the FFT coincides with the Walsh-Hadamard Trans-
form, and (F2n ,+) for which it is the Cyclical Fourier Trans-
form.

2.3 Higher-Order Template Attack

This section recalls Boolean Masking and extends state-of-
the-art attacks on it to the case the leakage is multivari-
ate leakage. Our approach enabling computational speed-
up is presented in Sec. 3. Generalization to other masking
schemes is the topic of Sec. 4.

2.3.1 High-Order Boolean Masking

In this section, we introduce the notations. Let us assume an
attacker knows the plaintext t and guesses a constant secret
key k. They are inputted in a cryptographic algorithm, and
their combination gives rise a sensitive variable z. For exam-
ple, z(t,k) = Sbox(t⊕ k), in the case of the attack of a sub-
stitution box (in block ciphers such as AES or PRESENT).
In general, the function k 7→ z(t,k) is an injection, for all t.

The sensitive variable z is the target of side-channel at-
tacks. In masking schemes, each z is randomly splitted. Nam-
ely, dth higher-order masking consists in computing each
sensitive variable z(t,k) separately in N = d +1 shares.
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For example, in dth order Boolean masking scheme, z is
splitted in (z(0), . . . ,z(d)), such that:

z =
d⊕

w=0

z(w). (2)

In Eq. (2), the d+1 shares are traditionally randomly chosen
from d random numbers called masks mw, with 1 ≤ w ≤ d,
according to:

– z(1) = m1,
– z(2) = m2,
– . . .

– z(d) = md ,
– z(0) = z⊕⊕d

w=1 z(w).

Besides, in Eq. (2), the operation is the bitwise XOR, de-
noted as “⊕”.

In general, such masking adapts to other situations. Typ-
ically, one just needs the combination to be a group opera-
tion. In the rest of this section, we shall consider that this
group is additive. We denote it as (S,+). Notice that multi-
plicative groups also allow to derive multiplicative masking;
therefore the “+” sign shall be understood broadly, as the
group S inner operation. Exemples of groups S are:

1. (Fn
2,⊕), used in Boolean masking, or

2. (F2n ,+), such that + is the 2n-modular addition, which
is used in arithmetic masking.

Some cryptographic algorithms make use both of Boolean
and arithmetic masking, thus the two masking schemes shall
cohabit, and masking conversions shall be implemented [23].

2.3.2 Attack on High-Order Boolean Masking

Template attacks have been introduced as multivariate at-
tacks on unprotected devices in [18]. Their extension to mask-
ed implementation has been suggested in [37,30]. However,
template attacks on masking scheme where each share is
profiled independently is not clearly described in the state-
of-the-art. We discuss it in this paper, which gives the most
general attack compared to the existing literature.

During the profiling phase, the adversary can see the
leakage measurement Xq as (d + 1) disjoint sub-traces de-
noted by X (w)

q ,0≤ w≤ d. Each sub-trace X (w)
q is a sub-trace

of length D(w) and corresponds to the leakage of share z(w).
We assume that for each w, 0 ≤ w ≤ d, the adversary esti-
mates the multivariate Probability Density Function (PDF)
of X (w)

q , such that she profiles the device consumption of
D(w) samples for the wth share.

Thanks to the profiling result, the adversary can estimate
the probability p(X (w)

q |z(w)), for each manipulated data z(w).
We recall that z(w), for 1≤ w≤ d, is equal to mask mw, and
z(0) is equal to z⊕m1⊕·· ·⊕md .

According to [9, Thm 7], when attacking Q > 0 traces,
the (d + 1)th-order optimal distinguisher is (for simplicity
we assume that all the mask values have the same probabil-
ity):

Dd
opt = argmax

k

Q

∏
q=1

∑
m1,...,md∈S

p(X (1)
q |m1) . . .

p(X (d)
q |md)p(X (0)

q |z(tq,k)⊕
d⊕

w=1

mw). (3)

This equation is the maximum likelihood estimator. It
takes as inputs:

– the known plaintexts (tq)1≤q≤Q and
– the leakage sub-traces (X (0)

q , . . . ,X (d)
q )1≤q≤Q,

and returns the most likely key k̂ according to the relation-
ship between z, t and k.

In fact, in [9] the HOOD is studied by taking only one
sample per share. In our study, we generalize it by assum-
ing D(w) samples for the wth sub-trace, 0≤ w≤ d, and con-
sidering this sub-trace as a random vector. That means, we
generalize the HOOD in same way when one goes from the
first-order DPA (one sample per trace to compute the distin-
guisher) to the (first-order) template attack (D samples per
trace but concerning only one sensitive variable z). Here, we
migrate from the higher-order DPA to the higher-order tem-
plate attack.

To compute our distinguisher efficiency, one can see that:

Dd
opt = argmax

k

Q

∏
q=1

SumBM
q (z(tq,k))

= argmax
k

Q

∑
q=1

logSumBM
q (z(tq,k)) (4)

where SumBM
q is a pseudo-Boolean function (meaning a real

function defined over Boolean vectors) of 2n values, equal
to:

SumBM
q (z) =

∑
m1,...,md∈S

p(X (1)
q |m1) . . . p(X (d)

q |md)

p(X (0)
q |z⊕m1⊕·· ·⊕md)

(5)

=
∑

m1∈S
. . . ∑

md∈S
p(X (1)

q |m1) . . . p(X (d)
q |md)

p(X (0)
q |z⊕m1⊕·· ·⊕md)

= p(X (1)
q |.)⊗·· ·⊗ p(X (d)

q |.)⊗ p(X (0)
q |.)(z),

(6)

such that ⊗ is the convolution product relatively to the law
⊕ in the group (S,⊕). Clearly, the property that the value
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of z can be recovered as z = z(0)−∑
d
w=1 z(w) is central to

apparition of the convolution. This property is specific to
the Boolean Masking, but extends to all masking schemes,
as will be shown in Sec. 4. Indeed, in all masking schemes,
there is a relationship between the shares z(0), . . . ,z(d) which
allows to recover the sensitive value z(t,k).

3 Our Optimized Higher-Order Template Attack

The former section described the higher-order template at-
tack distinguisher as Eq. (4) and (6). In this section, we show
how to implement it in practice.

3.1 Higher-Order Template Attack Setup

The attack setup is depicted in Fig. 1. It consists in several
steps:

– First of all, the leakage of each share is profiled (of-
fline); This requires to collect so-called sub-traces X (w)

for each share z(w), 0≤ w≤ d.
– From this characterization, the probability density func-

tions p(X (w)|z(w)) corresponding to the leakage distribu-
tion of each share is computed. These template profile
functions can be computed efficiently, as shown later in
Sec. 3.3.

– Then, the probability density functions are combined by
a convolution product. As explained in Sec. 3.2, this com-
putation can implemented very efficiently leveraging the
Walsh-Hadamard transform.

In the figure 1, the leakage of each share is represented
as a bivariate Gaussian, for the sake of illustration. However,
this setup works well for higher multiplicity, and even for
different multiplicities D(w) > 0 for each share w, 0≤w≤ d.
This figure represents the attack on Boolean Masking with
N = d + 1 shares. Adaptation to other masking schemes is
the topic of Sec. 4.

3.2 Walsh-Hadamard Transformation to Speed-Up
Convolution Computation

The convolution which we exhibit in SumBM
q , namely in

Eq. (6), allows us to compute, for every q, all the 2n val-
ues of SumBM

q (z), z ∈ Fn
2, at once. Indeed, the Fast Walsh-

Hadamard relies on a butterfly algorithm of complexity nd2n,
whereas the naïve computation has complexity 2nd (direct
multiple summation over Fn

2× ...×Fn
2, as per Eq. (5)).

The overall attack is described in Alg. 1). It can be no-
ticed that the line 10 assumes that the function k 7→ z(t,k) is
injective.

For the sake of the paper to be self-contained, we provide
here-after the definition of the Walsh-Hadamard transform.

sharing function

z(1) ∈ S

leakage function

X
(1)
q ∈ RD(1)

convolution product Sumq : S → R

leakage function leakage function

z(0) ∈ S z(d) ∈ S

X
(0)
q ∈ RD(0)

X
(d)
q ∈ RD(d)

p(X
(0)
q |z(0)) ∈ R p(X

(1)
q |z(1)) ∈ R p(X

(d)
q |z(d)) ∈ R

...

...

sub-trace

masks mw ∈ S, for 1 ≤ w ≤ dsensitive info: z(t, k) ∈ S Device

Offline
profiling

On-line attack

∑d
w=0 z

(w) = z(t, k)
for example, in BM:
Linkage property,

sub-trace sub-trace

rep
eat

for
Q

traces
(1≤

q≤
Q
)

Distinguisher Dd
opt: k̂ = argmaxk∈S

∑Q
q=1 log Sumq(z(tq, k))

Fig. 1 Synoptic of the multivariate high-order attack, applied on dth-
order Boolean Masking (BM)

Input :
– Templates: for example (Y (w)

z )0≤z<2n and Σ (w);
– Sub-traces: (X (0)

q , . . . ,X (d)
q )1≤q≤Q;

– Plaintexts: T = (tq)1≤q≤Q,

Output : The most likely key Dd
opt ∈ Fn

2.

1 Distinguisher←{0, . . . ,0} // A vector of 2n zeros
2 for q← 1 to Q do
3 Product←{1, . . . ,1} // A vector of 2n ones
4 for w← 0 to d do
5 p(X (w)

q |z) is computed from X (w)
q for all z ∈ Fn

2 (e.g.,

using Eq. (8) and template means Y (w)
z and their

common covariance matrix Σ (w))

6 FFT (p(X (w)
q |.)) // In-place FFT on 2n-valued vector

p(X (w)
q |.) = {p(X (w)

q |z),z ∈ Fn
2}

// The lines 5 and 6 could be processed in parallel as will
be shown in Sec. 3.4

7 Product(.)← Product(.)• p(X (w)
q |.)

8 Sumq← FFT−1(Product(.)) // Computation of
convolution

9 for k ∈ Fn
2 do // Pigeonholing spectral components based on

the plaintext tq ∈ Fn
2 value

10 Distinguisher(k)←
Distinguisher(k)+ logSumq(z(tq,k))
// Permutation of Sumq indices

11 return argmaxk∈Fn
2

Distinguisher(k)

Algorithm 1: H-O Template Attacks with efficient process-
ing.

Definition 5 (Walsh-Hadamard Transform [43]) Let f :
Fn

2→ R. The Walsh-Hadamard transform of f is a function
f̂ : Fn

2→R, defined as f̂ (u) = ∑z∈Fn
2
(−1)u·z f (z), where “ · ”

is the canonical scalar product over Fn
2.

There exists a butterfly algorithm to compute WHT using
only additions (and subtractions), and no multiplications.

The general expression of Eqn. (1) can be formulated in
terms of Walsh-Hadamard Transform when S= Fn

2 as:
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Proposition 1 (Convolution Theorem)

∀z,
n⊗

w=1

f (w)(z) =
1
2n

n̂

∏
w=1

f̂ (w)(z). (7)

Proof (Well-known result, provided here-after for the paper
to be self-contained)

n̂

∏
w=1

f̂ (w)(z) = ∑
u
(−1)u·z f̂ (1)(u) · · · f̂ (n)(u)

= ∑
u
(−1)u·z

∑
y1

(−1)y1·u f (1)(y1) · · ·∑
yn

(−1)yn·u f (n)(yn)

= ∑
y1,...,yn

f (1)(y1) · · · f (n)(yn)∑
u
(−1)u·(z+y1+...+yn)

= ∑
y1,...,yn

f (1)(y1) · · · f (n)(yn)×2n1y1+...+yn=z

= 2n
∑

y1,...,yn
y1+···+yn=z

f (1)(y1) · · · f (n)(yn) = 2n
n⊗

w=1

f (w)(z).

ut

So, the result is a higher-order convolution, which can
be computed efficiently (complexity of dn2n instead of 2nd).
Thanks to the formalization in a convolution, one can com-
pute the SumBM

q of all the possible z at once. So the overall
computation complexity of the H-O Template Attack dis-
tinguisher (Eq.(3)) is Qdn2n instead of Q2nd . Note that our
computed distinguisher is a generalisation of HOOD, in which
only (D(w) = 1)w=0,...,d is considered. But our processing is
2nd

dn2n times faster.
Also, let us precise that an optimization of HOOD has

been proposed in [10], in which the computationally inten-
sive sums over all masks are simplified in precomputations
(rounded at a given order). The online attack computations
are therefore efficient. But the work presented in our paper
shows that, thanks to Fourier transform, the rounding of at-
tacks is not necessary (there are no longer computational
reasons). Hence one major contribution is to show how to
compute efficiently and exactly in high-order (possibly mul-
tivariate) contexts.

3.3 Efficient Computation of the Template Profile
Functions p(X (w)

q |.)

First, we notice that the coalescence principle [38] cannot
be taken advantage of because ∏

Q
q=1 ∑m1,...,md∈S is different

from ∑m1,...,md∈S ∏
Q
q=1. Intuitively, this means that averag-

ing traces would result in the masking countermeasure can-
celling the information.

For each possible value z of the wth share, the adversary
should compute p(X (w)

q |z). Thanks to the profiling phase,
the adversary estimates this probability. For example, let us

assume that the wth random vector follows a Gaussian dis-
tribution PDF (X (w) ∼ N (Y (w),Σ (w)), as suggested in the
seminal TA paper [18]), where Y (w) is the mean of the sig-
nal and Σ (w) the noise covariance matrix. The construction
of the templates requires the accumulation of traces and their
covariance, hence has a complexity linear with the number
of training traces and quadratic in the sub-traces dimension-
ality D(w), for 0≤ w≤ d. In this case

p(X (w)
q |z) =

1√
(2π)D(w) |detΣ (w)|

×\

exp
(
−1

2

(
X (w)

q −Y (w)
z

)T
Σ
(w)−1(

X (w)
q −Y (w)

z

))
, (8)

where T denotes the matrix transposition operator. For the
sake of clarity, we recall the dimensions:

– X (w)
q and Y (w)

z are D(w)×1,
– Σ (w) is D(w)×D(w).

One can remove the factor independent from the key (i.e.
from z), and keep only

p′(X (w)
q |z) =exp

(
(X (w)

q )TΣ
(w)−1

Y (w)
z − 1

2
(Y (w)

z )TΣ
(w)−1

Y (w)
z

)

=exp
(
((X (w)

q )T− 1
2
(Y (w)

z )T)Σ (w)−1
Y (w)

z

)

=exp
(
(X (w)

q − 1
2

Y (w)
z )TΣ

(w)−1
Y (w)

z

)
. (9)

It is noteworthy that the vectors Σ (w)−1
Y (w)

z can be pre-
computed only once at the end of the profiling phase. The
complexity of inverting Σ (w) is about (D(w))2.372. The eval-
uation of the PDF in Eq. (9) has complexity D(w) for every z
and w.

3.4 Further Improvement in Performance

The attack time is almost linear as function of the mask-
ing order, as shown in Fig 2. Further performance improve-
ment can be obtained by using multi-threaded code. Ac-
cording to the Alg. 1, the bottlenecks of the attack com-
putation are the lines 5, 6 and 7. Their complexities are
respectively O(2n×Q∑w D(w)) (for the multivariate Gaus-
sian noise case), O(n2n×Q(d+1)), and O(2n×Q(d+1)).
Since the processing of the lines 5 and 6 are independent
from a share to another, one can dispatch them to d + 1
threads, such that the wth thread processes the lines 5 and 6
for the corresponding wth share. For the 7th line, one can no-
tice that the product can be computed out-of-order because
the multiplication is commutative. This allows for a further
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Fig. 2 Single attack time (on 5000 samples), as a function of its order
(= number of shares)

improvement by current concurrent product computation us-
ing a shared memory between the threads.

If the computer can run d + 1 threads in parallel, then
the time to compute the attack is (almost) independent from
the masking order. Clearly, if the computer has less cores
than d + 1, then the full level of simultaneous parallelism
cannot be reached. Still, it is possible to devise a load bal-
ancing system which allocates a pool of workers (comput-
ing the Walsh-Hadamard transforms) to the maximum of the
machine computing power capacity. Similarly, the computer
memory shall be sufficient to store all structures in RAM,
otherwise the operating system will swap RAM from tempo-
rary memory on the hard drive, which is efficient. The level
of parallelism shall thus be carefully architected to avoid
memory swapping.

3.5 Equivalent Multivariate Signal-to-Noise Ratio (SNR)

The presentation of multivariate probability distribution at
each share (recall Eq. (8)) shows that the leakage can take
advantage of dimensionality reduction. The transformation
is that already described in the paper [7, Theorem 8]. This
equivalent SNR can thus be deduced exactly with the for-
mula given in [7, Corollary 4], namely:

Y (w)
z

T
Σ
−1Y (w)

z , for all w.

4 Type of Fourier Transform per Masking Scheme

In this section, we detail the customizations which shall be
performed to adapt the principle of fast multivariate high-
order template attack (Sec. 3.2) to several masking types.

For the Boolean masking, the group law is simply the
XOR operation between the Fn

2 elements. Thereby the group
is (Fn

2,⊕). Subsequently, the corresponding Fourier trans-
form is simply the Walsh-Hadamard Transform. Similarly,

for a certain arithmetic masking scheme [27], the group law
is the modular addition operation between the F2n elements.
Subsequently, the corresponding Fourier transform variant
is the Cyclical Fourier Transform.

To generalise our approach for other masking schemes,
we study the form taken by the term Sumq(z) defined in
Eq. (5), and how it shall be adapted accordingly. This ex-
pression will be specialized with the abbreviation of the mask-
ing scheme, such as for instance SumIPM

q (z) for the IPM
masking scheme.

4.1 Type of Fourier Transform for Inner-Product Masking
(IPM) Scheme

4.1.1 IPM Description

Let us first focus on the Inner Product Masking (IPM) [22,
3,1,19]. This choice is due to the fact that the IPM is a gen-
eralisation of several simple masking schemes (Boolean, i.e.
additive, multiplicative and affine masking schemes).

Instead of simply splitting every sensitive value as the
sum (i.e., ⊕) of random shares, IPM consists in decompos-
ing every secret in an inner product between d + 1 random
values and a d+1-dimension constant public vector [2]. For-
mally, the designers choose a constant public vector L =

(l0, . . . , ld) ∈
(
F2n\{0}

)d+1. Therefore, all field element lw
is invertible. In practice, and without loss of generality, l0 is
chosen equals 1, for performance reasons. Masking a sensi-
tive value z by IPM means computing d+1 shares all in F2n

and denoted z(0), . . .z(d), such that z = ∑
d
w=0 lwz(w).

Let us consider as in practice l0 = 1 (this condition is not
restrictive). Thereby, one has z(0) = z−∑

d
w=1 lwz(w) So, the

adversary needs to combine the d +1 leaking shares to lead
a successful H-O attack.

4.1.2 Exhibition of the Convolution Product in Optimal
Attack on IPM

According to the above description of the IPM scheme, the
optimal adversary has to maximize:

Dd
opt = argmax

k

Q

∏
q=1

∑
z(1),...,z(d)∈F2n

p(X (1)
q |z(1)) . . . p(X (d)

q |z(d))

p(X (0)
q |z−

d

∑
w=1

lwz(w)) (10)
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But,

SumIPM
q (z) =

∑
(z(1),...,z(d))∈Πd

w=1F2n

p(X (1)
q |z(1)) . . .

p(X (d)
q |z(d))p(X (0)

q |z−
d

∑
w=1

lwz(w))

=

∑
(z(1),...,z(d))∈Πd

w=1F2n

p(X (1)
q |l−1

1 l1z(1)) . . .

p(X (d)
q |l−1

d ldz(d))p(X (0)
q |z−

d

∑
w=1

lwz(w))

=

∑
(z(1),...,z(d))∈Πd

w=1lwF2n

p(X (1)
q |l−1

1 z(1)) . . .

p(X (d)
q |l−1

d z(d))p(X (0)
q |z−

d

∑
w=1

z(w))

=

∑
(z(1),...,z(d))∈Πd

w=1lwF2n

p′(X (1)
q |z(1)) . . .

p′(X (d)
q |z(d))p(X (0)

q |z−
d

∑
w=1

z(w)),

where p′(X (w)
q |z(w)) = p(X (w)

q |l−1
w z(w)), for all w = 1, . . . ,d.

In fact, for any lw 6= 0 one has lwF2n = F2n because x ∈
F2n 7→ lwx is a bijection.

Subsequently, the SumIPM
q becomes a convolution rela-

tively to the addition law in group F2n . Thereby, it can be
processed efficiently thanks to the (Cyclical) Fourier Trans-
form (CFT ).

Sum(k,q)(z) =
(

p′k(X
(1)
q |.)⊗·· ·⊗ p′k(X

(d)
q |.)⊗ pk(X

(0)
q |.)

)
(z)

=
CFT−1

(
CFT (p′k(X

(1)
q |.))• · · · •CFT (p′k(X

(d)
q |.))•CFT (pk(X

(0)
q |.))

)
(z).

So the overall computation complexity of the H-O Tem-
plate Attack distinguisher against the IPM is as expected
above (Eq.(3)) Qdn2n instead of Q2nd .

4.2 Type of Fourier Transform for Direct Sum Masking
(DSM) Scheme

4.2.1 DSM Description

Since the IPM is a particular case of DSM [39], let us further
generalise our approach for DSM. DSM is an error correc-
tion code-based masking scheme introduced in [6,24]. Un-
like IPM (which is defined over the field F2n ), DSM is de-
fined over the spacevector Fn

2.
To formally describe DSM, let C (resp. D) be a linear

code of dimension n (resp. n′) and G (resp. H) be its gener-
ating matrix. The codes C and D are chosen to be comple-

mentary. This means that square matrix
(

G
H

)
has full rank.

Subsequently, we denote J (resp. K) the (n+ n′)× n (resp.
(n+n′)×n′) matrix such that:
(

G
H

)−1

=
(
J K
)
. (11)

When C and D are also dual, in addition to be complemen-
tary, then such codes have been studied by Massey [33]. In
this case, J = GT(GGT)−1 and K = HT(HHT)−1. But in
general, C and D are not required to be orthogonal. Using
these two complementary codes, DSM consists in:

– first encoding the sensitive value z ∈ Fn
2 in the n-dim-

ensional code C by processing zG ∈ Fn+n′
2 ,

– second encoding a random value m ∈ Fn′
2 in the n′-dim-

ensional code D by processing z(1) = mH ∈ Fn+n′
2 ,

– third and finally masking z by processing z(0) = zG⊕
mH.

The advantage of this scheme from designer’s point of view
is the efficient method of de-masking (namely a projection),
since C and D are complementary: the sensitive variable is
recovered by computing z = z(0)J.

4.2.2 Attack on DSM

Even if this masking scheme has d⊥D − 1 (i.e. dC− 1 when
D=C⊥) as a masking order (at bit-level), the corresponding
Sumq is simply expressed as:

∀z ∈ C, SumDSM
q (z) = ∑

m∈F
2n′

p(X (1)
q |m)p(X (0)

q |zG⊕mH).

(12)

Notice that:

SumDSM
q (z) =

∑
z(1)∈Fn+n′

2

1D(z(1))p′(X (1)
q |z(1))p(X (0)

q |zG⊕ z(1)), (13)

where p′(X (1)
q |mH) = p(X (1)

q |m) The computation accord-
ing to Eq. (13) is not efficient because its complexity is
O((n+n′)2n+n′). But, the straightforward processing of the
SumDSM

q (according to Eq. (12)) is not so difficult. It has an
overall complexity of O(2n+n′). In fact one cannot compute
faster than Eq. (12) because zG and mH are not belonging
to the same subspace.

4.3 Multi-share DSM (MS-DSM) Scheme

4.3.1 MS-DSM Description

Rationale for the Straightforward Extension of DSM. In this
section, we aim at improving the security of DSM. One op-
tion consists in increasing the dual distance of the code D,
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which comes at the expense of longer codewords (recall that
in DSM, there is only one share, namely z(0)). Indeed, at bit
level:

Lemma 1 (Proposition 1 of [39]) The resistance order of
DSM is equal to the dual distance of code D minus the num-
ber one, that is d⊥D −1.

At some point, these codewords will have a length which is
incompatible with the host processor register size, or with
the size of the memories they address.

Therefore, a second option shall be envisioned. It con-
sists in:

– starting from a regular DSM protection,
– but by adding further masks within D.

Say d masks are used. They consist in the encoding of d
random values m1, . . . ,md in the same n′-dimension code D
by processing (z(w) = mwH)w=1,...,d . Therefore, the splitting
is as follows:

(z,m1, . . . ,md) ∈ Fn
2× (Fn′

2 )
d 7→ (z(0),z(1), . . . ,z(d)) =

(zG⊕
d⊕

w=1

mwH,m1, . . . ,md). (14)

The advantage of DSM in terms of ease of demasking is
preserved: as all masks belong to D, so is their sum, hence a
single projection on C allows to remove them all at once. In
practice, this means that z= z(0)J. Furthermore, the different
shares can now be processed independently, which makes
mapping on the processor registers easy. Specifically, using
DSM, the register bitwidth shall be enough to accommodate
n+n′ bits, but in multi-share DSM, one can see in Eq. (14)
that the masked value is broken in d +1 different values.

Security Analysis. This novel MS-DSM scheme processes
codewords, which transforms the representation of the shares.
It is thus not directly amenable to automatic analysis, as is
for instance enabled by [4]. Therefore, its verification poses
a threat. We report in this paper that our straightforward ex-
tension has a flaw, which is detected by carrying attacks.
Namely, the number of shares is increased, and the number
of traces to succeed the high-order attack increases, but then
saturates at a given order (namely 3 for words represented
on 4 bits). This is subsequently analyzed under the prism of
code properties: the dual distance of the masking material is
indeed bounded to 4 = 3+1 when the number of shares gets
> 3.

A fix is proposed in Appendix A, with an argument on
the dual distance. The fix consists in using not the same
H for all the masks mw, 1 ≤ w ≤ d, but in using d differ-
ent codes Hw. Attacks on this revised scheme get strictly
more complex (from the traces standpoint—more traces are
needed to achieve a given success rate as the number of

shares increases). While the attacks increasing complexity
with the number of shares is not per se a proof for the new
schemes, it nonetheless allows to validate its rationale.

Notice that, prior to our results, the study of the actual
masking order was only possible using MI curves (slopes,
see for instance Fig. 5 from [14]). Now, it is possible to di-
rectly conduct the attacks.

4.3.2 Exhibition of the Convolution Product in MS-DSM

From adversary point of view, our approach is useful for
carrying out the Maximum Likelihood-based (optimal) dis-
tinguisher. Against such scheme, the SumMS−DSM

q writes:

SumMS−DSM
q (z) =

∑
(m1,...,md)∈Πd

w=1F
n′
2

p(X (1)
q |m1) . . . p(X (d)

q |md)

p(X (0)
q |zG⊕m1H · · ·⊕mdH)

=

∑
(m1,...,md)∈Πd

w=1F
n′
2

p(X (1)
q |m1) . . . p(X (d)

q |md)

pz(X
(0)
q |(0⊕m1 · · ·⊕md)H)

=

∑
(m1,...,md)∈Πd

w=1F
n′
2

p(X (1)
q |m1) . . . p(X (d)

q |md)

p′z(X
(0)
q |0⊕m1 · · ·⊕md)

= p(X (1)
q |.)⊗·· ·⊗ p(X (d)

q |.)⊗ p′z(X
(0)
q |.)(0),

where, p′z(X
(0)
q |m) = pz(X

(0)
q |mH) = p(X (0)

q |zG⊕mH), for
m ∈ Fn′

2 .

Remark 2 For the version of Eq. (19), the former convo-
lution still applies, albeit with: p′(X |mHw) = p(X |m) for
1≤ w≤ d, and pz(X

(0)
q |m1H1⊕ . . .⊕mdHd) = p(X (0)

q |zG⊕
m1H1⊕ . . .⊕mdHd).

Subsequently, the sum SumMS−DSM
q becomes a convolu-

tion relatively to the⊕ law in the group (Fn′
2 ,⊕). Thereby, it

can be processed efficiently for each zG ∈ C, thanks to the
Walsh-Hadamard Transform, as shown below:

SumMS−DSM
q (z) =WHT−1

(
WHT (p(X (1)

q |.))• · · · •WHT (p(X (d)
q |.))•WHT (p′z(X

(0)
q |.))

)
(0)

=
1

2
n′
2

∑
m∈Fn′

2(
WHT (p(X (1)

q |.))• · · · •WHT (p(X (d)
q |.))•WHT (p′z(X

(0)
q |.))

)
(m).

The sum expresses that the value of the Walsh-Hadamard
Transform is 0 is the average of the function. One can pro-
cess the product function

WHT (p(X (1)
q |.))• · · · •WHT (p(X (d)

q |.))
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only once (for each q), since it is independent from z. Also,
one can ignore the factor 1

2n′/2 since it is independent from
k. Its overall complexity is about Qdn2n.

So the overall computation complexity of the H-O Tem-
plate Attack distinguisher against the so-called multi-share
DSM is slightly different to that expected above (Eq. (3)). It
is about Qdn′2n′ +Qn′2n+n′ instead of Qdn2n. It is notice-
able that this complexity is still better than that of the naïve
computation which is about Q2n′d+n, especially when d > 2
(which is not uncommon).

4.4 Type of Fourier Transform for the Polynomial DSM
(PDSM) Scheme

4.4.1 PDSM Description

A DSM scheme written over the space F2[α]/〈P(α)〉, such
that the degree of the irreducible polynomial P equals n+n′

(instead of its isomorphic space Fn+n′
2 ), is called Polyno-

mial Direct Sum Masking (PDSM) [16]. The PDSM is more
adapted for the AES masking as both are built upon the same
space F2[α]/〈P(α)〉 where P is the following irreducible
polynomial: P(α) = α8 +α4 +α3 +α +1.

4.4.2 Optimal Attack on PDSM

A similar extension of the (1+ 1)-shares PDSM to the so-
called (d+1)-shares PDSM is possible and it is of the same
interest of that of DSM.

Thereby, a similar spectral approach is possible to com-
pute the optimal distinguisher, thanks to the corresponding
FFT of the additive finite group of F2[α]/〈P(α)〉.

4.5 Type of Fourier Transform for the Rotating S-boxes
Masking (RSM) Scheme

4.5.1 RSM Scheme Description

For a security/complexity compromise in the masking of
the AES S-boxes, authors of [34] introduce the Rotating S-
boxes Masking (RSM) [26,44]. This scheme is the Boolean
masking, where the masks are chosen uniformly from a code
C [24] of length n = 8 in F2, either:

– C0 = {0x00} (no masking),
– C1 = {0x00,0xff},
– C2, a non-linear code of length 8, size 12 and its gener-

ating matrix denoted G, or
– C3, is a linear code of length 8, and dimension 4 (see

paper [15] for more details).

The last case is interesting since there are sixteen masks
(i.e. sixteen masked S-boxes’ tables) [24,11,21].

4.5.2 Exhibition of the Convolution Product in Optimal
Attack on RSM

For computing efficiently the SumRSM
q against this scheme,

let us denote by G the generating matrix of C3. Let us also
denote by G the generating matrix of a complementary sub-
space C3 of C3.

Subsequently, each z∈ F8
2 can be written as a sum z1G⊕

z2G, where z1,z2 ∈ F4
2, and the SumRSM

q (z) becomes:

SumRSM
q (z) =

∑
m(1),...,m(d)∈C3

p(X (1)
q |m(1)) . . . p(X (d)

q |m(d))

p(X (0)
q |z⊕m(1) · · ·⊕m(d))

=
∑

m1,...,md∈F4
2

p(X (1)
q |m1G) . . . p(X (d)

q |mdG)

p(X (0)
q |z2G⊕ (z1⊕m1 · · ·⊕md)G)

=
∑

m1,...,md∈F4
2

p′(X (1)
q |m1) . . . p′(X (d)

q |md)

p′z2
(X (0)

q |z1⊕m1 · · ·⊕md)

= p′(X (1)
q |.)⊗·· ·⊗ p′(X (d)

q |.)⊗ p′z2
(X (0)

q |.)(z1),

where,



(
p′(X (w)

q |mw) = p(X (w)
q |mwG)

)
w=1,...d

and

p′z2
(X (0)

q |z1⊕m) = p(X (0)
q |z2G⊕ (z1⊕m)G).

(15)

Consequently, the SumRSM
q is also a convolution rela-

tively to the ⊕ law in the group (F4
2,⊕). Thereby, for each

z2 ∈ F4
2 one can efficiently process the sixteen SumRSM

(q,z2)
(.) =

SumRSM
q (z2G⊕.), thanks to the Walsh-Hadamard Transform

(WHT ) as follows:

SumRSM
q (z) = SumRSM

q (z1G⊕ z2G) = SumRSM
(q,z2)

(z1)

=WHT−1

(
WHT (p′(X (1)

q |.))• · · · •WHT (p′(X (d)
q |.))•WHT (p′z2

(X (0)
q |.))

)
(z1).

That means, one needs to compute only sixteen (i.e. 2n/2)
functions SumRSM

(q,z2)
(.) with an overall complexity of O( n

2 d2n/2)

for each one. Finally, the overall complexity of the attack is
about O( n

2 Qd2n), i.e. 2× faster then that against the perfect
masking.

4.6 Type of Fourier Transform for the Leakage Squeezing
Masking (LSM) Scheme

4.6.1 LSM Description

In this scheme, the shares are like for perfect masking (Boolean
masking with all possible values for the masks) except some
bijective functions (Fw)w=1,...,d are applied to the masks [12,
25]. That leads to a better mixing of bits [13,24,20].
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4.6.2 Exhibition of the Convolution Product in Optimal
Attack on LSM

Since Fw is bijective for each w, so SumLSM
q becomes as fol-

lowing:

SumLSM
q (z) =

∑
m(1),...,m(d)∈G

p(X (1)
q |m(1)) . . . p(X (d)

q |m(d))

p(X (0)
q |z⊕F1(m(1)) · · ·⊕Fd(m(d)))

=
∑

m(1),...,m(d)∈G

p′(X (1)
q |F1(m(1))) . . . p′(X (d)

q |Fd(m(d)))

p(X (0)
q |z⊕F1(m(1)) · · ·⊕Fd(m(d)))

=
∑

F1(m(1)),...,Fd (m(d))∈G

p′(X (1)
q |F1(m(1))) . . .

p′(X (d)
q |Fd(m(d)))p(X (0)

q |z⊕F1(m(1)) · · ·⊕Fd(m(d)))

=
∑

m(1),...,m(d)∈G

p′(X (1)
q |m(1)) . . . p′(X (d)

q |m(d))

p(X (0)
q |z⊕m(1) · · ·⊕m(d))

= p′(X (1)
q |.)⊗·· ·⊗ p′(X (d)

q |.)⊗ p(X (0)
q |.)(z),

where
(

p′(X (w)
q |Fw(m(w))) = p(X (w)

q |m(w))
)

w=1,...,d
.

Thereby,

SumLSM
q (z) =WHT−1

(
WHT (p′(X (1)

q |.))• · · · •WHT (p′(X (d)
q |.))•WHT (p(X (0)

q |.))
)
(z).

4.7 Synthesis about the Six Masking Schemes

By running through all six representative masking schemes,
it appears that HOOD attack against all of them can benefit
from an acceleration. The adaptation of the reference attack
(that on Boolean Masking, namely Eq. (6)) assumes the def-
inition of a commutative group S with additive law, and a
transform on the precharacterized templates (as per defined
in Sec. 3.3). The table 1 summarizes different tweaks of the
reference attack to adapt to other masking schemes. The no-
tations are those borrowed from this section.

5 Experiments

5.1 Experimental Test Plan

The validation of the rewriting of the multivariate high-order
optimal distinguisher is carried out on synthetic traces. As
previously illustrated in Fig. 1, each trace consists in N =

d + 1 sub-traces. Each sub-trace is multivariate; in our ex-
periment, all are made up of the same number D(w) = D
(∀w ∈ {0, . . . ,d}) of samples. The sub-trace waveforms are

Table 1 Tweaks from the optimal attack to adapt from Boolean Mask-
ing to the other masking schemes studied in this Sec. 4

Masking Group S Mathematical transformation on
scheme the precharacterized templates

IPM F2n p′(X (w)
q |z(w)) = p(X (w)

q |l−1
w z(w))

DSM Fn+n′
2 p′(X1

q |mH) = p(X1
q |m)

MS-
DSM

Fn′
2 p′(X |mHw) = p(X |m) and

pz(X
(0)
q |

⊕d
w=1 mwHw) =

p(X (0)
q |zG⊕⊕d

w=1 mwHw)

PDSM F2[α]/〈P(α)〉 Direct usage of the templates
RSM F4

2 See transformation in Eq. (15)
LSM Fn

2 p′(X (w)
q |Fw(m(w))) = p(X (w)

q |m(w))

represented in Fig. 3. It represents an arch of the sine curve,
as can be observed in real measurements where the probe
and the target circuit under attack are not matched in terms
of impedance. Therefore, the captured side-channel wave-
form is low-pass filtered, meaning that the actual “impulse”
signal corresponding to the manipulation of the shares upon
clock rising edge is “smoothed”. On purpose, we generated
traces according to the pattern in Fig. 3 for D = 10, and we
pruned them for lower values of D. This allowed us to simu-
late attacks of with reduced dimensionality (D = 9,8, . . . ,1)
so that they are consistently comparable, i.e., common sam-
ples have same noise. This envelop is scaled with the Ham-
ming weight wH(z(w)) (living in {0, . . . ,n}) of the shared
variable z(w).

The traces are artificially noised. Each sample in each
sub-trace is added an independent identically distributed nor-
mal noise, of zero mean and of σ2 variance. This models
typical measurement noise from oscilloscopes [32]. At the
point of maximal amplitude in the envelop, the signal takes
value 1 (in arbitrary units). In perfect masking schemes, the
sharing is fully entropic, thereby Z(w) is uniformly distributed
in S. In this article, the size of S is |S|= 2n. This means that
the signal wH(Z(w)) garnered by the attacker in each sub-
trace follows a binomial distribution, of parameters n and
p = 1/2. Thus the signal variance is Var(wH(Z(w))) = n/4.
As a result, the noise N (0,σ2) being independent from the
signal, the SNR is equal to:

SNR =
1

4σ2 .

The corresponding multivariate SNR is derived in Sec. 3.5.
The attack proper consists in the computation of

argmax
k∈S

Q

∑
q=1

logSumM
q (z(tq,k)),

as defined in Eq. (4) and illustrated at the bottom of Fig. 3.
In this equation, the calligraphic M represents any of the six
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Fig. 3 Envelop of the D = 1,2, . . . ,10 considered waveforms

masking schemes discussed in previous Sec. 4. We leverage
the fact that the expression can be evaluated incrementally
to compute the attack success SR versus the number of side-
channel traces q. Namely, the algorithm consists in the rep-
etition of R = 100 attacks, and the estimation of the success
rate by averaging the number of correct key k∗ retrieval as a
function of q. It is given in Alg. 2.

Input : The value of the correct key k∗ ∈ S, and the
side-channel information, namely:

– Sub-traces (X [r](w)q )1≤q≤Q,0≤w≤d,1≤r≤R and
– corresponding plaintexts (t[r]q)1≤q≤Q,1≤r≤R.

Output : Success rate curve (SR(q))1≤q≤Q.

1 SR←{0, . . . ,0} // A vector of Q zeros
2 for r← 1 to 100 do
3 DM ←{0, . . . ,0} // A vector of 2n zeros
4 for q← 1 to Q do
5 for k← S do
6 DM (k)←DM (k)+ logSumM

q (z(t[r]q,k))

7 if k∗ = argmaxk∈SDM (k) then
8 SR(q)← SR(q)+1 // Incrementation

9 return SR/100 // Vectorial scaling by factor 1/100

Algorithm 2: Estimation of the attack success rate SR on
masking scheme M versus the number of consumed traces q.

In practice, for the sake of implementation simplicity,
Alg. 2 has been coded in python scripting language. Still,
this implementation leverages efficient computational pack-
ages, such as numpy. The Walsh-Hadamard transform is com-
puted using the open source library fwht [31]. Notice that
the absolute time for the attacks shall not be considered;
only the relative time between two setups can be appreciated
in a “portable” manner across different implementations of
Alg. 2.
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Fig. 4 Number of traces necessary for SR≥ 50% on n = 8 bits (when
σ = 1), as a function of the masking order N = d +1, for several sub-
trace dimensionalities D

5.2 Results of High-Order Attacks on Boolean Masking

The success rate of attacks on windows of size D= 1,2, . . . ,10
are shown in Fig. 8, for several masking orders (N = 1, . . . ,8)
in the case of Boolean masking. The duration of the success
rate computation (excluding the time to generate the traces)
is provided in the figures as well; they result from the execu-
tion of 100 independent attacks (recall Alg. 2), as executed
on a server1 running GNU/Linux Debian 4.9.189-3+deb9u1.
The durations are the sum of the times for attacks on traces
with dimensionality D = 1,2, . . . ,10.

A summary of all those graphs is given in Fig. 4. Curves
interrupt (for increasing values of N) when there is not enough
simulation data; however, one can safely extrapolate them.
This beam of curves reveals several aspects of masking sche-
mes security:

– whatever the masking scheme and whatever the leakage
dimensionality, the number of traces to recover the key
with a given probability is exponential in the masking
order;

– the dimensionality plays the role of an “SNR” booster,
in that if it increases, then the number of traces required
to extract is reduced (though remaining exponential).

Each of the graphs in Fig. 8 clearly demonstrate the use-
fulness to shift from monovariate HOOD (D = 1) to multi-
variate HOOD (D > 1). Indeed, the multivariate traces allow
for attacks with fewer traces. Please notice that for D = 1,
our new attack is the same as the HOOD, except that it is
computed 32d faster.

The computation gain of our Walsh-Hadamard approach
is contrasted to that of the naïve approach in Fig. 2. The
figures 8 and 2 demonstrate the usefulness of the Walsh-
Hadamard transform, since the complexity is reduced from

1 32-core Intel(R) Xeon(R) CPU E7- 8837 @ 2.67GHz, with 256
GB of RAM.
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Fig. 5 Number of traces necessary for SR≥ 50% on n = 4 bits (when
σ = 1), as a function of the masking order N = d +1, for several sub-
trace dimensionalities D

2nd to nd2n. This is a decrease from exponential to linear
with respect to side-channel order d.

We next analyze the case where z is on n = 4 bits (using
PRESENT S-box). The number of traces to recover the key
with probability 50% is given in Fig. 5. The success rate of
attacks is represented in Fig. 9. One can see that, compared
to the case of AES (n = 8 bits), the attacks require a fewer
number of traces.

5.3 Results of Multi-Shares DSM applied to PRESENT

In this section, we evaluate the security of introduced “Multi-
Share DSM” countermeasure applied on PRESENT (n =

4 bit). For the corresponding basic DSM, the selected codes
C and D are generated by matrices G and H given below:

G =




1 0 0 0 0 0 1 1
0 1 0 0 1 0 1 0
0 0 1 0 1 1 0 0
0 0 0 1 0 1 0 1


 and H =




0 1 1 0 1 0 0 0
0 0 1 1 0 1 0 0
1 1 0 0 0 0 1 0
1 0 0 1 0 0 0 1


 .

Results on multi-share DSM are shown in Fig. 10 for σ = 1.
This figure shows that the incorrect construction (see Ap-
pendix A.1) stops making attacks more complex, in terms
of number of traces to recover the key, when order increases
(namely, there is no further improvement starting from or-
der d = 2). Indeed, it is proven in the appendix that the se-
curity order is no more than d⊥D − 1 = 3− 1 (that is when
N = d + 1 = 3). The behavior is reminiscent of the one al-
ready noted by Battistello et al. [5]: the attack countermea-
sure becomes no longer useful at a given noise level σ when
the order increases. Such behaviour could not have been
seen by using the regular attack method, since the order is
too high.

After fixing the multi-share DSM (the matrices Hw are
all different, for 1≤ w≤ d), we get new results which attest
that the scheme is now more secure (no flaw), as shown in
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on n = 4 bits (when σ = 1), as a function of the masking order N =
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Fig. 11. The number of traces to extract the key with success
probability ≥ 50% is provided in Fig. 6 (resp. Fig. 7) for the
incorrect (resp. correct) versions. In the incorrect version,
the number of traces required to break the secret key stops
increasing after order N ≈ 4, whereas it is exponential (as in
Fig. 4 and 5) for the corrected version.

5.4 Discussion

The simulations described in this section attest that the op-
timized rewriting of the high-order multivariate template at-
tack can be used as a “drop-in” replacement for the naïve
HOOD. This explains why our experiments have been car-
ried out only on synthetic traces: this paper is concerned
with the analysis part, not the acquisition part of side-channel
attacks. Now, the high-order multivariate template attacks
described in this paper apply on provided these conditions
are met:

– the shares are manipulated at non-overlapping moments
in time;
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– each share is leaked independently,
– the noise is additive and independent from the signal.

Those conditions could be seen as limitations, but in prac-
tice, they are always asserted. Indeed, in order to avoid com-
bination of shares by the processor to appear out of the blue,
the manipulation of each share is carefully separated from
that of other shares.

Our efficient computation method allowed us to rapidly
test several situations, which uncovered many interesting re-
sults. For example, we characterized that:

– The number of traces required to extract the secret key
with a given success rate increases exponentially with
the attack order;

– This number of traces decreases with the sub-traces di-
mensionality;

– High-order masking schemes can be validated by simply
carrying attacks on them. Flaws can thus be identified.

6 Conclusion and Perspectives

6.1 Conclusion

Template attacks can be performed in the presence of mask-
ing. In this respect, the leakage from the different shares
shall be profiled. The result is a collection of d + 1 distri-
butions, characterized for each share value. For each share
value, the profiling is a waveform (termed a sub-trace), and
the attack naturally apply to this situation, even though the
sub-traces have different sizes. We show in this paper that
the attack therefore consists in the convolution product of
the d+1 distributions, independently to the masking scheme.
The exact nature of the convolution depends on the type of
masking (i.e., the random sharing method), and we show
how to compute this convolution for six representative mask-
ing schemes.

The template attack online computation can be greatly
speeded-up by computing the convolution using spectral tech-
niques (Plancherel equality). Furthermore, to still speed-up
the attack, we provide an interesting multi-threading imple-
mentation of our approach. In this respect, we show very
high order attacks on six flavors of masking schemes. In
particular, we introduce a new masking scheme (multi-share
extension of DSM), and show based on high-order attacks
a 3rd order flaw. We then fix the scheme and validate it by
attacks: the number of traces to succeed the attacks do in-
crease as the number of shares increases.

6.2 Perspectives

The properties of the masking schemes highlighted in this
paper could benefit to other studies related to side-channel

analysis. For instance, a technique to formally verify mask-
ing schemes is presented in [4]. It consists in a symbolic ver-
ification that all tuples of shares which are supposed to be in-
dependent of the sensitive variable indeed are. The method-
ology bases itself upon simplification rules which are spe-
cific to Boolean masking, in that it replaces expressions such
as X1⊕E where E is an expression which depends on ran-
dom variables (Xi)i∈I , where 1 6∈ I, as R (which is randomly
distributed). The method of Barthe [4] can be transported
to other masking schemes by leveraging the transformations
we put forward in this paper.
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A Multi-Share DSM Scheme

In this appendix, we explain how to extend DSM to a multi-share
case. This appendix is divided into two subsections: how not to ex-
tend (Sec. A.1) and how to it (Sec. A.2). Both methods are supported
by arguments based on coding theory.

A.1 Incorrect Multi-Share DSM Scheme

A.1.1 Recall About DSM

The DSM leverages two complementary codes C and D of generator
matrix G and H. The unique share is denoted by z(0) = xG+mH. As
per Lemma 1, we are interested in the dual distance d⊥D , because the
bit-level security order is equal to d⊥D −1.

A.1.2 Extension of DSM: a First Attempt

The first generalization is that given in Eq. (14). Actually, although the
sharing is now written with (d +1) shares, the representation can still
be viewed as DSM, using:




G =
(
G 0n×(n+n′) 0n×(n+n′) · · · 0n×(n+n′)

)
in lieu of G, and

H =




H In′ 0n′×n′ · · · 0n×n′

H 0n′×n′ In′ · · · 0n×n′

... 0n′×n′ 0n′×n′
. . .

H 0n′×n′ 0n×n′ · · · In′


 in lieu of H.

(16)

It is easy to see that the dual of spacevector generated by H is generated
by:
(
In+n′ HT · · · HT

)
. (17)

This means that all rows of Eq. (17) are orthogonal with all rows of
H as defined in Eq. (16). The security of this new masking scheme is
thus equal to d⊥span(H)−1. It is equal to minimum distance of the code
spawn by the matrix represented in Eq. (17) (minus the number one).

It could be believed that the minimum distance of the matrix rep-
resented in Eq. (17) grows when the number of HT blocks increases.
This is not true, since the minimum distance can saturate. This happens
when there exists a linear combination of lines in HT that is equal to
the null vector. Typically, we used

H =




0 1 1 0 1 0 0 0
0 0 1 1 0 1 0 0
1 1 0 0 0 0 1 0
1 0 0 1 0 0 0 1




Clearly, the sum of the four first column is equal to the all-zero column,
hence after transposition, the sum of the four first lines of HT is equal
to zero.

So, at most, the minimum dual distance of the code generated by
H is 5, and the maximum security level is 4. This explains why the
attacks do not become more difficult as d increases (in Fig. 10).

A.2 Correct Multi-Share DSM Scheme

A.2.1 Proposed Correction, Inspired from IPM

The limitation identified in the first attempt to make DSM multi-share
came from the fact all masks m1, . . . ,md where processed by the same
code D. One wishes to replace Eq. (17) by:
(
In+n′ HT

1 · · · HT
d

)
. (18)

https://github.com/dingluo/fwht
http://www.springer.com/
http://www.dpabook.org/
http://www.dpabook.org/
http://www.dice.ucl.ac.be/~fstandae/PUBLIS/88.pdf
http://www.dice.ucl.ac.be/~fstandae/PUBLIS/88.pdf
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Fig. 8 Attacks on D = 1, . . . ,10 samples on Boolean Masking of AES
(n = 8 bit) for noise σ = 1.0, and various number of shares (for 100 at-
tacks)

It is then possible have a growth of the minimum distance of the spacevec-
tor spawn of this matrix linearly with d. Thus, instead of Eq. (16), the
correct multi-share DSM scheme therefore employs:




G =
(
G 0n×(n+n′) 0n×(n+n′) · · · 0n×(n+n′)

)
in lieu of G, and

H =




H1 In′ 0n′×n′ · · · 0n×n′

H2 0n′×n′ In′ · · · 0n×n′

... 0n′×n′ 0n′×n′
. . .

Hd 0n′×n′ 0n×n′ · · · In′


 in lieu of H.

(19)

A.2.2 Validation

This new scheme works in practice, as attested by the attacks requiring
more and more traces to reach a given success rate, (as show in Fig. 11).

B Success Rate of Attacks

This appendix provides the success rate curves of the multivariate high-
order template attacks on various masking schemes.

Namely, Fig. 4 (resp. Fig. 5, Fig. 6, Fig. 7) have been plotted by
extracting the minimum number of traces required to reach success rate
≥ 50% from Fig. 8 (resp. Fig. 9, Fig. 10, Fig. 11).
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Fig. 9 Attacks on D = 1, . . . ,10 samples on Boolean Masking of
PRESENT (n = 4 bit) for noise σ = 1.0, and various number of shares
(for 100 attacks)
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Multi-share DSM starts with N = 2 N = 2 shares, time: 1h 28min

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  10  20  30  40  50  60  70  80  90  100

S
u
cc

e
ss

 r
a
te

 (
p

ro
b

a
b

ili
ty

)

Number of traces (x5)

D=1
D=2
D=3
D=4
D=5
D=6
D=7
D=8
D=9

D=10

N = 3 shares, time: 1h 42min N = 4 shares, time: 1h 58min

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  10  20  30  40  50  60  70  80  90  100

S
u
cc

e
ss

 r
a
te

 (
p

ro
b

a
b

ili
ty

)

Number of traces (x5)

D=1
D=2
D=3
D=4
D=5
D=6
D=7
D=8
D=9

D=10
 0

 0.2

 0.4

 0.6

 0.8

 1

 0  10  20  30  40  50  60  70  80  90  100

S
u
cc

e
ss

 r
a
te

 (
p

ro
b

a
b

ili
ty

)

Number of traces (x5)

D=1
D=2
D=3
D=4
D=5
D=6
D=7
D=8
D=9

D=10

N = 5 shares, time: 2h 11min N = 6 shares, time: 2h 24min

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  10  20  30  40  50  60  70  80  90  100

S
u
cc

e
ss

 r
a
te

 (
p

ro
b

a
b

ili
ty

)

Number of traces (x5)

D=1
D=2
D=3
D=4
D=5
D=6
D=7
D=8
D=9

D=10
 0

 0.2

 0.4

 0.6

 0.8

 1

 0  10  20  30  40  50  60  70  80  90  100

S
u
cc

e
ss

 r
a
te

 (
p

ro
b

a
b

ili
ty

)

Number of traces (x5)

D=1
D=2
D=3
D=4
D=5
D=6
D=7
D=8
D=9

D=10

N = 7 shares, time: 2h 39min N = 8 shares, time: 2h 55min

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  10  20  30  40  50  60  70  80  90  100

S
u
cc

e
ss

 r
a
te

 (
p

ro
b

a
b

ili
ty

)

Number of traces (x5)

D=1
D=2
D=3
D=4
D=5
D=6
D=7
D=8
D=9

D=10
 0

 0.2

 0.4

 0.6

 0.8

 1

 0  10  20  30  40  50  60  70  80  90  100

S
u
cc

e
ss

 r
a
te

 (
p

ro
b

a
b

ili
ty

)

Number of traces (x5)

D=1
D=2
D=3
D=4
D=5
D=6
D=7
D=8
D=9

D=10

N = 30 shares, time: 8h 51min N = 50 shares, time: 14h 51min

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  10  20  30  40  50  60  70  80  90  100

S
u
cc

e
ss

 r
a
te

 (
p

ro
b

a
b

ili
ty

)

Number of traces (x5)

D=1
D=2
D=3
D=4
D=5
D=6
D=7
D=8
D=9

D=10
 0

 0.2

 0.4

 0.6

 0.8

 1

 0  10  20  30  40  50  60  70  80  90  100

S
u
cc

e
ss

 r
a
te

 (
p

ro
b

a
b

ili
ty

)

Number of traces (x5)

D=1
D=2
D=3
D=4
D=5
D=6
D=7
D=8
D=9

D=10

Fig. 10 Attacks on D = 1, . . . ,10 samples for noise σ = 1.0, and vari-
ous number of shares (for 100 attacks) against (incorrect, see App. A.1)
Multi-Share DSM on PRESENT (n = 4 bit)

Multi-share DSM starts with N = 2 N = 2 shares, time: 1h 29min
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Fig. 11 Attacks on D = 1, . . . ,10 samples for noise σ = 1.0, and vari-
ous number of shares (for 100 attacks) against (correct, see App. A.2)
Multi-shares DSM on PRESENT (n = 4 bit)
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