
HAL Id: hal-03023050
https://telecom-paris.hal.science/hal-03023050

Submitted on 26 Aug 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Exogenous coordination in multi-scale systems: How
information flows and timing affect system properties

Ada Diaconescu, Louisa Jane Di Felice, Patricia Mellodge

To cite this version:
Ada Diaconescu, Louisa Jane Di Felice, Patricia Mellodge. Exogenous coordination in multi-scale
systems: How information flows and timing affect system properties. Future Generation Computer
Systems, 2021. �hal-03023050�

https://telecom-paris.hal.science/hal-03023050
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr

Exogenous Coordination in Multi-Scale Systems: How
Information Flows and Timing Affect System Properties

Ada Diaconescu1, Louisa Jane Di Felice2, and Patricia Mellodge3

1Telecom Paris, LTCI, Institut Polytechnique de Paris
2Institut de Ciència i Tecnologia Ambientals (ICTA), Universitat Autonoma de Barcelona

3University of Hartford

August 17, 2020

Abstract

The architecture of coordination mechanisms is central to the performance and behaviour of (self-
)integrated systems across natural, socio-technical and cyber-physical domains. Multi-scale coordination
schemes are prevalent in large-scale systems with bounded performance requirements and limited resource
constraints. However, theories to formalise how coordination can be implemented across multi-scale sys-
tems are often domain-specific, lacking generic, reusable principles. In these systems, feedback among
system entities is a key component to coordination. Building on theories of hierarchies and complexity, in
previous work we formalised Multi-Scale Abstraction Feedbacks (MSAF) as a design pattern to describe
the architecture of feedback across system scales, highlighting the role played by micro-entities and
macro-entities, as well as their interconnections. Focusing on exogenous coordination, this paper refines
the MSAF pattern, describing a feedback cycle across scales as one where information flows bottom-
up and top-down through five actions: state information communication, state information abstraction,
information processing, control information communication, and adaptation from control information.
Abstracted state information at each scale is processed with control input from the scale above and pro-
vides control input to the scale below. Using the example of distributed task allocation through exogenous
coordination, NetLogo simulations are implemented to analyse the impact that different exogenous co-
ordination strategies, and their internal timing configurations, have on resource consumption and on
convergence performance. The experimental insights and refinement of the MSAF pattern contribute
to a general theory of multi-scale feedback and adaptation. This architectural pattern and associated
analysis and evaluation tools are still developing, but offer a concrete basis for further expansion, im-
provement, and implementation, while addressing questions that are at the core of the behaviour of
multi-scale systems.

Highlights
• Multi-scale self-* systems are described in terms of information flows that form multi-scale feed-

back cycles and comprise several entity types – generically identified via a Multi-Scale Abstraction
Feedbacks (MSAF) design pattern;

• Feedback cycles are defined via five actions: state information collection, state information ab-
straction, information processing, control information communication, and adaptation from control
information. They are interconnected via two further actions: inter-cycle information abstraction
and inter-cycle communication of control information;

• Concrete implementations of multi-scale feedback strategies with exogenous designs are provided
and evaluated, via a generic method, in terms of convergence behaviour, resource use, and timing;

• Results obtained from simulations run in NetLogo highlight the inherent trade-offs that these strate-
gies feature between coordination convergence time and resource usage, for various system topology
configurations, as well as different timing configurations;

1

© 2020 published by Elsevier. This manuscript is made available under the CC BY NC user license
https://creativecommons.org/licenses/by-nc/4.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S0167739X20304726
Manuscript_dca652393814c9b1ab1465cc6c14b31a

https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S0167739X20304726
https://creativecommons.org/licenses/by-nc/4.0/
https://www.sciencedirect.com/science/article/pii/S0167739X20304726

• The MSAF pattern and associated evaluation approach contribute to a general theory of feedback
in multi-scale systems, aimed to help understand existing systems of this kind, as well as to analyse,
develop, and maintain new ones.

Keywords: multi-scale coordination; control feedback; state abstraction; hierarchy theory; information
flows; resource analysis; complex system

2

1 Introduction
As socio-cyber-physical systems of increasing complexity become more and more prevalent, there is growing
interest in understanding how system components integrate dynamically to achieve goals [1]. Self-integration
refers to the ability of several entities to interact with each other at runtime, with the purpose of achieving
individual or shared goals. Coordination regulates the distribution and timing of actions among system
entities. It is a key challenge for (self-)integrating systems. In modern organisations, for example, the
successful achievement of goals depends on the collective ability of human employees and automated systems
to schedule and perform tasks. When multiple systems combine in unforeseen ways and in unpredictable
environments, they have to master (self-)integration, and hence coordination, at increasingly large and
heterogeneous scales [2]. This challenge affects both natural and artificial systems. As such, it does not
only require expertise from computer science, engineering, and specific application areas, but also expertise
from cross-disciplinary studies, generic systems, and complexity theories. We consider existing theories on
hierarchical systems to be a promising approach for tackling complexity, by dividing systems into multiple
loosely-interrelated processes that operate at different scales. Scales, throughout this paper, may refer to
abstraction levels, spatial scales, or temporal scales.

A wide range of cross-disciplinary observations shows that systems composed of many parts, from
molecules to animal societies and human organisations, tend to organise hierarchically [3, 4, 5, 6, 7, 8].
A multi-scale, hierarchical organisation does not necessarily entail “top-down” control, in a topological or
authoritative sense [9] [10], although it might. Instead, it can be viewed more broadly as the existence of
at least two scales occupied by system entities, affecting each other through feedback. In this sense, dif-
ferent processes in complex systems can be described as multi-scale feedback hierarchies, even if there is
no centralized control. Feedback processes between scales give the scales a functional existence, through
mutual impact phenomena. The absence of feedback between scales would turn scales into purely theoretical
concepts, such as in an ontology, or in an evolutionary tree, and these types of hierarchies are outside the
scope of this study.

Figure 1: Feedback in a two-scale system

. . .

Individual
information

Collective
information

Individual
adaptation

Micro-entities

Collective state
abstractionMacro-entity

In previous work [10], we introduced a feedback-centred definition of multi-scale systems through the
Multi-Scale Abstraction Feedbacks (MSAF) design pattern. An overview of the main principles of MSAF is
shown in Figure 1. Between subsequent abstraction levels, recursively, lower-level entities are referred to as
micro-entities and higher-level entities as macro-entities. The definition of what constitutes a micro-entity
and a macro-entity follows the distinction between the observer and the observed in Hierarchy Theory [11].
This implies dependence upon the observation scale, or ‘focal level’: a macro-entity at one scale (e.g., a
tree composed of its cells and tissues) can become a micro-entity at another scale (e.g., a tree within a
forest patch). For simplicity, Figure 1 only shows two system scales, with several micro-entities and one

3

macro-entity. Information about the state of the micro-entities, which we call individual state information,
is collected and abstracted, for example through compression, coding, or filtering, into a macro-entity. This
abstracted information about the global state of the system, referred to as collective information, is fed back
to, or collected by, the micro-entities, who then adapt based on this information. These flows of information
regulate the coordination of entities working towards a shared goal.

In the introduction of the MSAF pattern [10], three types of macro-entities were identified, depending on
their relation to their micro-entities: composed (e.g., a forest patch composed of trees), micro-distributed (e.g.,
culture distributed across members of society), and exogenous (e.g., a manager coordinating workers in an
organisation). The underlying similarity between different types of macro-entities is that abstracted collective
state information at the macro-scale becomes available to the micro-entities, who adapt and coordinate
accordingly. Consider, for instance, the case where ants coordinate to collect food sources through pheromone
trails. Here, ants (the micro-entities) are responding to feedback generated by the pheromone trail (a
macro-entity), which is in turn generated by the ants themselves. The pheromone trail provides collective
state information about how many ants have traveled recently through that path. It influences each ant’s
decision on whether or not to follow that same path. As another example, managers (macro-entities) in
an organisation collect individual state information about their employees’ work (micro-entities) and feed
control information back to them via adaptation control directives. Here, the collective state information
is returned to workers indirectly, after being processed by managers at the macro-scale and transformed
into control directives. This operation differs from the ants example, where collective state processing was
carried out by individual ants at the micro-scale, before adaptation. Both cases fit our MSAF pattern in that
collective state information, at the macro-scale, is employed in the feedback coordination cycle of individual
entities, at the micro-scale.

The study of hierarchies and their properties has been a central approach to the analysis of complexity
[4], under the name of Hierarchy Theory1. However, as noted by Wu [12], Hierarchy Theory “is not a
formal theory, meaning that it lacks clearly defined terms, well developed methodologies, and unambiguous
predictions” (p. 283). Many hierarchical designs that fit our description have been proposed for developing
systems in specific application domains, for example through the study of smart grids, traffic control, or
resource sharing [13, 14, 15]. While well-suited to their particular application, these ad-hoc designs cannot
be easily reused, as such, for developing new systems, especially across domains. This is because the multi-
scale feedback design is mixed with domain-specific coordination solutions (e.g., specific algorithms and their
particular deployment onto the targeted platform). Moreover, each solution is presented through domain-
specific terminology. These attributes make it difficult for non-domain experts to comprehend concrete multi-
scale coordination solutions, to distill the essential design aspects from the domain-specific implementations,
and to transfer these generic designs onto new application domains.

Our objective in introducing the MSAF design pattern is to avoid analysing hierarchies based on specific
characteristics of their components (e.g., living vs. non-living, automated vs. intelligent, or master vs. slave),
or of their interrelation topology (e.g., centralized, meshed, or tree-like). While important, these aspects are
specific to each hierarchical instance, driven by its particular objectives and constraints. To remain generic,
the MSAF design pattern characterises system entities from a relational stance, based on how they are
connected to one another, on what role they play in the feedback process, on how they distribute resources
amongst themselves, and on how information flows through them, bottom-up and top-down, forming feedback
cycles. In this view, our definition of scales is also relational: a scale exists if it is occupied by entities (micro
or macro) that are part of the feedback cycle.

The long-term aim of MSAF is to provide a formal framework and methodology for describing, analysing,
and evaluating multi-scale feedback systems. This would offer the grounds for developing an applicable theory
and engineering toolbox for scientists, system developers, and administrators, which is sufficiently generic
for adoption and customisation across domains and sufficiently specific to provide concrete guidance beyond
the theoretical status quo.

Expanding on our previous work [10], this paper further develops the generic description and analysis
of feedback in multi-scale systems. Firstly, we view feedback cycles through the lens of information flows

1Capitalized hereon when referring to the specific field of Hierarchy Theory vs. a generic theory of hierarchies

4

travelling through different scales. The information flows are increasingly abstracted, losing information, as
they propagate bottom-up (representing system state information at increasing scales); and progressively
refined, with local information, as they return top-down (with more-and-more precise system adaptation
controls). We formalise this feedback cycle via five actions, connecting micro- and macro-entities across
two scales: state information collection, state information abstraction, information processing, control in-
formation communication, and adaptation from control information. Across more than two scales, feedback
cycles are interconnected via two further actions: state information abstraction going upwards into the col-
lection process of the cycle above, and communication of control information returning downwards into the
information processing of the cycle below.

Secondly, we acknowledge the fact that various strategies for implementing these actions, or steps, lead to
different performance characteristics in terms of convergence behaviour, bringing about different trade-offs
and bottlenecks in terms of efficiency, stability, and flexibility. Focusing on systems with exogenous macro-
entities, we exemplify four concrete coordination strategies for the specific application example of multi-scale
task distribution. We analyse these coordination strategies in terms of their information flows and ensuing
resource requirements. While the focus of our results is on exogenous macro-entities, the evaluation approach
is generic and conceived to accommodate other designs (i.e., where macro-entities can be micro-distributed,
composed, or mixed).

Thirdly, we acknowledge the key role that timing plays in determining the behaviour of coordination
mechanisms. In Hierarchy Theory, it is generally understood that higher levels in both nested and non-
nested hierarchies operate at slower timescales than lower ones. Allen and Starr, for example, include timing
as one of the five general principles for ordering levels in ecological hierarchies, with higher levels operating
more slowly and at lower frequencies [11]. However, it is unclear whether the difference in timing is a
natural consequence of systems’ hierarchical organisation, or whether there are specific design benefits to
higher levels operating at slower timescales than lower ones. We explore this question by selecting one of
the coordination strategies and analysing its convergence performance with respect to varying delays, both
for inter-scale communication and for entity adaptation following incoming control information. This offers
initial guiding considerations to take into account when timing multi-scale feedback systems.

This paper’s contribution, thus, is three-fold: (i) it expands and refines the MSAF design pattern and
associated analysis and evaluation approach; (ii) it exemplifies, through multi-agent simulations developed in
NetLogo, different instances of the MSAF pattern via concrete implementations of multi-scale coordination
strategies, focusing on exogenous designs; (iii) it analyses, evaluates and compares the concrete exogenous
strategies in terms of resource use and convergence behaviour, and explores the impact of inter-level timing
delays.

Importantly, our objective is not to identify or propose optimal algorithms for large-scale coordination,
but to contribute to a generic theory, based on the MSAF design pattern, which can be implemented to
analyse, develop, maintain, and/or utilise multi-scale systems for large-scale coordination. In this sense, our
modelling is exploratory, with the purpose of recursively building a more robust theory, and of providing
practical guidance for system design. The task distribution application included here is meant as an illus-
tration of the theoretical concepts proposed. It is meant neither as a contribution to the task distribution
problem, nor as a main means to validate the generic multi-scale design and evaluation framework.

The rest of the paper is structured as follows. The next section summarises the main streams of literature
that we build upon. Section 3 discusses the key principles of the MSAF design pattern, expanding on previous
work, as well as the associated evaluation approach. Section 4, then, describes the exogenous coordination
strategies for the task distribution example. The strategies are implemented through an agent-based model
and described following the Overview, Design Concepts & Details (ODD) protocol [16, 17]. Results are
presented in Section 5 and discussed in Section 6, focusing on trade-offs between convergence time, resource
use, and inter-level delays.

5

2 Background & Related Work
This paper builds on related work across two domains: (i) the theory of hierarchies and holarchies and (ii)
research on coordination in multi-scale systems, including domain-specific studies in anthropology, computer
engineering, and organisation theory.

We refer to Hierarchy Theory as the theory of hierarchies developed by Simon [3, 4], Allen and Starr
[11], Pattee [6], and Salthe [18], among others (for an overview, see [12]). The theory’s understanding of
hierarchies strongly emphasises the role played by observers: according to Allen, for example, all systems
are hierarchical, and if a system appears not to be so it is only because the observer is placed at the focal
level of the system (without being able to “zoom out” and see the other levels). The focal level is the middle
level of the hierarchy, which must be composed of at least two more levels, one above and one below it.
Elements occupying higher hierarchical levels with respect to the ones below them follow one or more of
five conditions: (i) they are the context of the lower-level elements; (ii) they constrain lower-level elements;
(iii) they operate at a slower frequency; (iv) they have a higher bond strength and greater integrity; and
(v) they contain or are made of lower levels. Thus, Hierarchy Theory appears to be mostly concerned with
multi-scale systems where macro-entities are either composed (see point v above) or micro-distributed (see
point i).

Simon [3, 4] also notes the prevalence of hierarchical systems, highlighting the near-decomposability prop-
erty between hierarchical levels, which can be analysed quasi-independently from each other. This confers a
substantial advantage to the evolution of complex systems, as each level provides a stable intermediate com-
ponent for the level above. Koestler [5] follows a similar approach in his conceptualisation of holarchies, i.e.,
nested hierarchies composed of holons, where a holon is an entity simultaneously being a whole (composed of
smaller parts) and a part of something bigger. Hence, holarchies refer to composed macro-entities. Operator
hierarchy theory [8] also focuses on composed macro-entities, making the distinction between structural and
functional closure across levels. The former refers to cases where lower levels are spatially enclosed by higher
ones (e.g., the walls of a city fortress enclosing its inner components). The latter, also known as relational
closure in the field of cybernetics [19], describes cases where higher levels are related to lower ones through
mutually dependent transformation processes, with lower-level processes being necessary for the process of
the whole (e.g., autocalytic sets of proteins [20]).

There are two key differences between the main principles of Hierarchy Theory and the MSAF design
pattern: in terms of types of hierarchies, Hierarchy Theory makes the distinction between nested and non-
nested hierarchies. However, most of the examples used to describe its principles tend to be ecologically nested
hierarchies. MSAF expands and shifts this categorisation to types of macro-entities, rather than types of
hierarchies, including exogenous and micro-distributed macro-entities, which are non-nested, in addition to
composed ones, which are nested. This also allows for heterogeneous designs, where different hierarchical
levels may feature different macro-entity types, such as an organism composed of cells and, at the same time,
part of an exogenous social organisation. In terms of the scope of the theory itself, while Hierarchy Theory
is mostly conceptual and descriptive, the aim of the MSAF pattern is to be able to model the structure
and behaviour of multi-scale systems, focusing on cross-level feedback cycles and their resource distribution.
This practical aim, however, does not disentangle us from theory: as mentioned in the Introduction, through
practical applications we aim to progressively contribute to a more robust general theory of hierarchies.

Within this general theory, information plays a key role. Throughout this paper, we refer to information
as the combination of (i) a resource flowing from one or more output entities to one or more input entities
and (ii) the perception of that resource by one or more entities, leading to either short-term adaptation (the
perceiving entity changes its behaviour in response to the resource) or long-term adaptation (the perceiving
entity stores the resource, or a variant of it, and eventually adapts its behaviour). Entities that perceive a
piece of information are a subset of the entities receiving it (i.e., the input entities). Following McKinney
and Yoos’ information taxonomy [21], the resource which is flowing is equivalent to the information as a
token view, and its perception leading to adaptation is equivalent to the information as adaptation view.
We use the term information to refer to both of these views, with the caveat that the resource flow is only
relevant to us if it does, eventually, lead to some form of adaptation.

The ways in which entities process and store information, then, is crucial in determining coordination

6

mechanisms. Centralized coordination relies on one or more entities in the system playing a privileged
role in the coordination of other entities, usually through a higher resource capacity (e.g., entities with
higher information capacity and knowledge of the state and behaviour of the overall system). Decentralized
coordination relies on entities sharing local resources (e.g., local information exchanges) to fulfil a task. It
does not require that any single entity have knowledge of the system as a whole. The distinction between
centralized and decentralized coordination, however, is often blurred, for example in ant colonies where
certain ants are more central to information flow in the colony when compared to others [22]. In this case,
coordination is based on local information exchange among all ants, but some ants still play a privileged
role.

In anthropology, organisation types are often linked to the scale of communication [23, 24, 25, 26]. While a
peer-to-peer, decentralized communication style is convenient for smaller groups [25], limiting communication
overheads, larger groups tend to implement more centralized or tree-like structures [23], with entities at
higher levels mediating information to avoid ‘communication stress’ [27]. Malone [28] compares different
centralized and decentralized coordination structures in organisation markets, pointing to fundamental trade-
offs between efficiency and flexibility: while centralized markets are coordinated more efficiently, they are
also less flexible to changes. De Wolf and Holvoet [29] summarise the main characteristics of design patterns
for decentralized coordination. Similarly to the efficiency vs. flexibility trade-off, they point to possible
trade-offs across different design patterns in terms of optimality and flexibility.

From our feedback-oriented perspective, coordination among entities is not so much a matter of cen-
tralization or decentralization, but rather one of how information is communicated and transformed across
different system scales, and how this impacts coordination behaviour and resource distribution. From this
perspective, centralized, decentralized, and hybrid topological schemes are an orthogonal concern, represent-
ing the way in which a system’s abstract information scales are actually implemented or mapped onto a
resource platform. Moreover, as mentioned in the Introduction, the presence of multiple scales does not nec-
essarily reflect a centralized organisation (in an authoritative sense). That is, the information abstractions
about a system’s state do not need to be co-located with the authority that enforces the ensuing system
adaptations [30]. For instance, in stigmergy-based coordination approaches, abstracted information about
the system state is encoded onto an external macro-entity (e.g., current frequency in smart grids [31] and
pheromone trails in ant foraging [32]), yet the ensuing decisions are taken by the adapting micro-entities
(smart devices in smart grids and ants in the foraging process, respectively).

Constructal Theory [33] highlights the important role that the topology of hierarchical systems plays in
their evolution and viability. The Constructal Law stipulates that “for a finite-size flow system to persist in
time (to live) it must evolve such that it provides greater and greater access to the currents that flow through
it”. This explains, for instance, the prevalence of tree-like shapes in river basins, plants, snowflakes, neural
networks, traffic networks, or social organisations, due to the progressive optimisation of flows from a point to
an area, or vice versa. Two main aspects differentiate our study from this theory. Firstly, while Constructal
Theory mostly applies to matter and energy flows, where the flowing quantities conserve over time, we focus
on information flows abstracted across system scales. Secondly, while Constructal Theory concentrates on
uni-directional flows, we are only concerned with those flows that form feedback cycles leading to system
adaptation.

Software Engineering also provides several hierarchical or multi-layer designs for system coordination,
including [34] for Self-Aware Computing, [35] for Organic Computing, [36] for Autonomic Computing, [37]
for Adaptive Systems, and [38] for Robotics. With respect to the MSAF pattern, these domain-specific
designs correspond to the ones where macro-entities are exogenous. These are similar to nested or embedded
controllers in Hierarchical Control Theory [39]. Composed macro-entities can be found in some component
and service-oriented architectures (SOA) [40], Holonic Multi-Agent Systems (HMAS) [41], and recursive
problem-decomposition designs (Wrappings) [42]. These differentiate from the MSAF composed type in
that they are activated “on-call”, as needed, rather than running continuously as in the case of feedback
cycles. They are also typically activated top-down, from the hierarchy’s root, whereas MSAF systems can
be activated both top-down and bottom-up. While MSAF is compatible with the feedback designs proposed
by the related domains above, it is more generic in that it only focuses on those design aspects that are

7

essential to multi-scale feedback cycles. It emphasises bottom-up information abstraction and top-down
control refinement as generic flows occurring across system scales irrespective of their domain-specific details
(e.g., concrete information acquisition, analysis, learning and decision making algorithms).

In previous work, we also proposed a generic goal-oriented holonic architecture for large-scale self-
integrating systems [43]. This corresponds to encapsulated hierarchy systems with composed macro-entities,
allowing for heterogeneous designs across levels. We then identified several design patterns for implement-
ing each hierarchical level, such as tree-like, collaborative, and stigmergic, mainly exemplified for the smart
micro-grid application domain [13]. This architectural view focused on specifying the goal-oriented top-down
control flow as a means of (self-)integrating various system scales and on the design patterns available for
implementing each scale. We further generalised this in [10], introducing the MSAF pattern and its three
macro-entity implementation types, based on an extensive cross-domain literary study. The current paper
expands beyond these initial proposals, studying information flows and feedback cycles in order to provide a
generic framework for specifying information transmission and processing across the entire system, and for
analysing the corresponding resource distribution consumption.

The next section introduces our approach to the description of feedback cycles and information flows in
multi-scale systems.

3 Feedback Cycles and Resource Evaluation

3.1 Entities and Scales
Multi-scale systems are composed of N abstraction levels, indexed as Ln = L0..LN−1. Levels are populated
by entities eid|id = 0..A − 1, with A being the total number of entities. We define entities loosely, as any
system component that sends, receives, or transforms information within a feedback cycle. Entities across
levels are connected through streams of information flows. As mentioned in Section 2, we refer to information
as data that are passed between entities and that lead to adaptation. In this sense, material or energy flows
that may be passing through entities are relevant to us in terms of their information content. Information
flows are sent, received, or transformed through actions, with each action requiring one or more output
entity eout, one or more input entity ein, and one or more acting entity eact, i.e., the entity or entities that
are doing work (spending energy) for the information flow to be sent, received, or transformed. The output
and input entities can be the ones doing the work for the flow to be exchanged, or a third entity may play
the role of eact. Actions can also be internal to entities, for example when entities process an incoming flow,
transforming it into something else.

When considering a feedback cycle between two abstraction levels, or scales, we define entities populating
the lower hierarchical level as micro-entities, and entities at the higher level as macro-entities. In addition
to information flows connecting micro and macro-entities at subsequent levels, these two types of entities
are also connected through relations, which can be associations (ex 6= ey) or compositions (ex ∈ ey). When
a micro-entity is related to a macro-entity above it, it is also referred to as a child with respect to the
macro-entity, its parent. In previous work [10], we identified three types of relations between micro-entities
and macro-entities, leading to three types of macro-entities:

1. Exogenous macro-entities exist separately from the micro-entities. They can be materially similar
to the micro-entities (e.g., a manager as an exogenous macro-entity to workers) or different (e.g., a
pheromone trail as an exogenous macro-entity to ants);

2. Micro-distributed macro-entities are macro-entities that are distributed across micro-entities (they are
endogenous). Examples include culture or political identity distributed across a population;

3. Composed macro-entities are also endogenous to micro-entities. They are compositions of the micro-
entities below them (e.g., forests made of trees or molecules made of atoms).

This characterisation of types of macro-entities further explains our broad definition of entities. People,
insects, culture, a database, or an abstract idea of the world can all represent macro-entities if they are

8

associated with collective information which leads to the adaptation of micro-entities, which, in turn, may
be different entities or hosted within the same entity. Different types of macro-entities can also co-exist within
the same system. For example, we may consider a three-level system composed of individuals (micro-entities),
their political identity (micro-distributed macro-entity), and the leader of each political group (exogenous
macro-entity). In all cases, a macro-entity provides collective state information about the micro-entities
it gets data from, and shares that collective state information with micro-entities, who adapt accordingly.
We use terms such as “provide” and “share” loosely, as depending on the domain of the system, alternative
terms may be better suited. We refer to the first set of micro-entities as abstracted micro-entities (from which
information is collected and abstracted), and to the second set as adapted micro-entities (who adapt following
control signals that result from the collective abstraction). The set of abstracted and adapted micro-entities
may be the same, for example in the case of workers being monitored and directed by a manager. They
may also be different, for example in the case of a set of trees generating a patch of light availability which
impacts the growth of another set of trees.

We specify here a generic feedback cycle, identifying its main information flows and their interrelations,
first in terms of a single cycle across two scales (3.2) and then in terms of multiple cycles across more than two
scales (3.3). While the description remains generic, we acknowledge that systems may require assumptions
and simplifications to fit within this framework, as scales are not always clear cut.

3.2 Single Feedback Cycle
In the MSAF pattern, we define a single feedback cycle as a set of interconnected actions where information
flows link two system scales, with information being transferred bottom-up and top-down between the two
scales, leading to the adaptation of micro-entities with respect to feedback received from macro-entities.

Focusing on the transfer of information across two scales, feedback cycles are characterized by five ac-
tions: state information collection, state information abstraction, information processing, control information
communication, and adaptation from control information. To explain details of this generic definition in less
abstract terms, we refer to two specific examples of exogenous coordination: food collection in ant colonies
through pheromone trails, and worker-manager feedback in an organisation. In the first case, ants are the
micro-entities while the pheromone trail is the exogenous macro-entity. In the second one, workers are
micro-entities and their manager is the macro-entity. The five actions are characterised as follows:

1. State information collection: State information from the individual micro-entities is collected within
macro-entities. For example, workers may send a log of what they have been doing to their managers,
managers may collect this information directly from workers, or information could be collected by a
third entity (e.g., a tracking system). In the ant example, ants deposit pheromones onto a trail;

2. State information abstraction: The collected information is abstracted, with an inevitable loss of
information. For example, managers may compile a table summarising which actions have been carried
out by how many workers, based on the information collected in the step above. Depending on the
system, this action may be conflated with the one above. Such is the case for the ant example, where
the trail receiving pheromones is simultaneously collecting information and abstracting it, by changing
its pheromone concentration;

3. Information processing : The abstracted information is processed to determine what control signals to
send to the micro level. Managers may work out which tasks still need to be completed, based on their
compiled table, an external computer system may process the abstracted information and generate an
output, or workers themselves may process the abstracted information stored in an external computer
system. In the case of ants, the abstracted information from the pheromone trail is used as an input
for information processing within the ants themselves, in deciding where to move next;

4. Communication of control information: Control information is communicated to the micro-entities.
Managers may tell workers what to do next, or workers may fetch the feedback directly from managers.
If workers are the ones processing the abstracted information, this communication action is null, or

9

internal, since the control information is already within the workers. This is the case for ants who
are processing information from the pheromone trail. However, in these cases a communication step
between the macro-level and the micro-level is still required to connect the cycle. Workers still fetch
the abstracted information, and ants collect the information from the pheromone trail;

5. Adaptation based on control information: The micro-entities adapt their behaviour based on the re-
ceived control information. For example, workers may pick which tasks to perform based on feedback
from managers and other inputs, such as their current state or which other tasks are available. Simi-
larly, ants decide where to move next based on a series of inputs which includes the information received
from the pheromone trail.

While these five actions, as described above, can sometimes be conflated or happen in different ways,
what remains the same is the continuity of the information flow passing through them. The information flow
moves up and down the two scales, being abstracted first, and then transformed into control information
used by the micro-entities to adapt. While, by definition, abstraction always happens at the macro-scale
and adaptation always at the micro-scale, the other actions are not assigned to either scale in particular.

The overall feedback cycle is also not necessarily triggered by information collection. This is only the
case when system coordination starts with actions performed by micro-entities at the bottom-most level,
who then coordinate via the higher levels. Coordination may also be triggered by a macro-entity at the
top-most level, by sending control information about a desired coordinated action to the level below (e.g.,
an organisation’s manager sending objectives to the subordinates). A concrete example of such top-down
coordination was developed in [13], in the context of goal-oriented hierarchical systems, applied to smart
micro-grids.

3.3 Multiple Feedback Cycles

Figure 2: Multiple feedback cycles across three levels, extensible to N levels

Single feedback
cycle

Single feedback
cycle

St
at

e
in

fo
rm

at
io

n

L0

L1

L2

Inter-cycle abs. of
state information

Inter-cycle comm.
of control information

C
ontrol inform

ation

10

The feedback cycle introduced in (3.2) operates between two system scales, Ln−1 and Ln, by collecting,
transforming, and returning information. To connect this two-scale process to the scale above (Ln+1), we
identify two further actions (Figure 2): inter-cycle abstraction of state information and inter-cycle com-
munication of control information. As the ant-pheromone system is always two-scale, we describe these
actions referring to the example of the worker-manager system, expanding it across three scales populated
by workers, mid-managers, and a top-manager:

• Inter-cycle abstraction of state information: an abstraction of the state of an entity (at Ln) is sent to
its parent (at Ln+1). The sent state is a further abstraction of the collective state that the entity has
computed from the level below (Ln−1). For instance, mid-managers may send the statistics of actions
performed by their workers to their top-manager;

• Inter-cycle communication of control information: an entity (at Ln) receives control information from
its parent entity (at Ln+1) and employs it as input to its information processing. As this higher-level
control input merges with the entity’s processing flow, it is refined, or enriched with local information,
which has not been sent to the higher level. For instance, a top-manager can tell mid-managers which
performed actions were superfluous and which in higher demand. In turn, the mid-managers can use
local information about the actions performed by each one of their workers in order to update their
specific control directives to these, accordingly.

3.4 Information Storage Registers

Figure 3: Multiple feedback cycle across three levels, with storage registers

Collective
state

Error to
goals

Individual
control

L0

L1

Collective
state

Individual
state

Individual
control

Goals

Collective
control

L2

Inter-cycle abstraction
of state information

Inter-cycle
communication
of control information

Single feedback
cycle

State register

Control register

Individual
state

Individual
control

Collective
state

Collective
control

Individual
state

Individual
control

Collective
state

Collective
control

Error to
goals

Goals

Having explained how information flows may connect multiple scales through a series of actions, we
now introduce information registers as a form of intermediary storage for information flows between levels,
schematized in Figure 3. This is useful for more easily transferring feedback cycles into real computing
architectures and evaluating their resource requirements.

11

The state information collection and state information abstraction actions (condensed here into one)
deposit information into a collective-state register. As the name suggests, this represents the collective
state abstraction, stored within a parent entity at Ln, of the child entities at Ln−1. Then, the information
processing action uses the collective state information in this register and deposits the transformed result
into a collective-control register. This represents the control information sent to child entities (at Ln−1)
via the communication of control information action. As before, child entities adapt accordingly.

The resulting feedback cycle (between Ln−1 and Ln) connects to the level above (at Ln+1) via two further
registers. Information from the collective-state register (at Ln) is further abstracted via the inter-cycle
abstraction of state information and deposited into an individual-state register (at Ln). This new register
represents the entity’s individual state as viewed by the level above (Ln+1). It is transferred to the collective-
state register of each parent entity at Ln+1, via the parent entity’s state information collection and state
information abstraction actions. Similarly, an individual-control register (at Ln) receives information
about how to adapt itself (and implicitly its child entities) from parent entities (at Ln+1). Each parent
entity’s communication of control information (at Ln+1) transfers information from its collective-control
register to the individual-control register of the child entity (at Ln). Then, the inter-cycle communication
of control information forwards this information as input to the entity’s information processing action. The
information processing action merges the individual control information from above (Ln+1) with the collective
state information from below (at Ln) to determine the collective control information for its child entities
(at Ln−1). The parent’s control information from above is refined, or enriched based on local information
collected from below. For simplicity, we only consider here tree-like topologies (i.e., with a single parent per
child), hence ignoring the necessary merging of input from several parents.

The entity at the top-most level (the top-manager, in our example) uses two additional registers: goals
and error-to-goals. The goals register is where the the system objectives are stored (e.g., internal goals
or external goals from a user) and is used as an input for the step of information processing, together with
information from the collective-state register. The error-to-goals register stores the difference between
the current system state and the objectives in the goals register. Depending on the system design, entities
at lower levels may also be aware of the system goals, or hold local goals, in which cases they would also
contain a goals register (not considered here).

For each entity at an intermediate scale (Ln), the two bottom registers (collective-state and collective-
control) represent the entity’smacro-facet with respect to the scale below (Ln−1), while the two top registers
(individual-state and individual-control) represent the entity’s micro-facet with respect to the scale
above (Ln+1). This corresponds to Koestler’s double-faced holon view (Janus) [44], showing their ‘whole’
face below (macro) and their ‘part’ face (micro) above.

3.5 Resource Requirements
We define En the set of entities at level Ln and |En| as the number of members of this set. Hence, E0 is
the set of entities at the bottom-most level L0 and EN−1 the set of entities at the top-most level LN−1. We
further define C as the number of children per parent, with each child identified via a unique childId with
respect to its parent (childId = 0..(C − 1)). The maximum number of entities at level n is C(N−n−1). The
number of levels for a multi-scale system with |E0| entities at the bottom level L0 and C children per parent
is:

N =

{
logC |E0|+ 1, if (|E0| mod C) == 0

logC |E0|+ 2, otherwise
(1)

To evaluate the resource requirements of feedback-driven multi-scale systems we aim to determine: (i)
storage requirements, in terms of the sizes of each register type, at each abstraction level; (ii) the commu-
nication amount, in terms of number and size of inter-level messages engendered by the system’s protocols;
(iii) the processing requirements of the information transformation flows at each level.

To provide a general estimate of storage, or memory requirements, we consider that bottom-level en-
tities (E0) only feature two information registers, as they only display a micro-facet towards their parent:
individual-state, to send their state to their parent and individual-control to receive control information

12

from their parent. Entities at intermediate levels (E1 to EN−2) have four registers each, as in Figure 3. In
addition to the two registers representing their micro-facet (same as for E0 entities), they feature two more
registers for their macro-facet, displayed towards their children: collective-state to abstract the global state
of their children and collective-control to send control information to their children. Finally, top-level en-
tities (EN−1) only feature a macro-facet towards their children - hence two registers (collective-state and
collective-control). As explained in Section 3.4, the top entity features two extra registers: goals and
errors-to-goals.

Based on these considerations, the total memory requirements of a multi-scale system, at any time t, is
approximately:

Memorytot,t = |E0| ∗ (|individual-stateE0 |+ |individual-controlE0 |)+
N−2∑
n=1

[|En| ∗ (|collective-stateEn
|+ |collective-controlEn

|+ |individual-stateEn
|+ individual-controlEn

|)]+

(|collective-stateEN−1
|+ |collective-controlEN−1

|+ |goals|+ |error-to-goals|)

(2)

Here, |<reg-name>En
| is the size of a register <reg-name> of an entity in En. We assume that all entities

at a certain level are homogeneous in terms of sizes of the same register type (though registers of different
types may have different sizes). This is a simplifying assumption as we only focus on the heterogeneity of
entities located at different levels.

Inter-level communication is the number of messages between each child entity at Ln−1 and its parent
entity at Ln, Messages(Ei,n−1→Ej,n), multiplied by the total number of child entities at Ln−1 (assuming a
single parent per child and homogeneous communication of all children with the parent):

Messages(n−1)→n = |En−1| ∗Messages(Ei,n−1→Ej,n) (3)

The total bandwidth can be obtained by multiplying each message exchanged by the size of the in-
formation register being transferred (e.g., |individual-stateEn | for bottom-up messages and |collective-
controlEn+1 | for top-down messages).

4 Exogenous Multi-Scale Task Distribution Strategies
To apply our general framework to a specific case of multi-scale feedback, we select the coordination problem
of task distribution amongst multiple workers. As mentioned in the Introduction, the coordination problem
is illustrative, as our aim is not to contribute to the task distribution literature, where the issue of centralized
and decentralized task allocation is discussed from multiple perspectives (see, for example, [45] [46] [47]).

We test and compare four exogenous coordination strategies by developing an agent-based model (ABM),
using NetLogo. To describe the ABM implementation, in the next sub-sections we follow the ‘Overview,
Design Concepts, and Details’ (ODD) protocol provided by Grimm et al. [16] [17]. The ODD framework
allows for each assumption of the model to be clearly stated, improving transparency not only within the
algorithms implemented by ABMs but also regarding modelling choices and objectives, making it easier
to understand and replicate the ABM and its simulation results. In the next sub-section (4.1), we specify
the purpose of the simulations, and how the entities generalised in sub-section 3.1 are implemented in the
strategies. Then, sub-section 4.2 specifies how the five actions of the feedback cycle are implemented across
each strategy, including details on how the simulations are initialised. The ODD design concepts are briefly
outlined in sub-section 4.3, before providing full details of the strategies we implemented in subsection 4.4,
including the data model for each strategy, and details on what the feedback cycle looks like for each. Before
moving to simulation results, we end this section with a resource analysis of each strategy (4.5).

13

4.1 Purpose and Entities
The purpose of the agent-based model is (i) to use the general design pattern described above to characterise
strategies for exogenous coordination in multi-scale systems, (ii) to compare coordination strategies in terms
of convergence performance (convergence time and convergence behaviour) and resource consumption, and
(iii) to study the impact of execution time differences across levels on convergence performance.

The coordination problem consists of distributing a number of tasks of different types amongst a fixed
population of workers, according to a predefined goal. The goal is provided as input and indicates how many
worker entities should perform each type of task, at each simulation step. We limit the set of task types to
two, assuming that the number of worker entities is equal to the sum of all tasks in the goal, meaning that
no entity can be idle when meeting the goal. Starting from a random distribution of task types, the worker
entities must coordinate and change the type of tasks they perform until reaching the goal. We explore and
compare four coordination strategies for this task distribution problem, with different underlying algorithms
of information abstraction, processing, and communication.

We call the task-performing entities situated at the bottom-most level (L0) workers, the coordinating
entity at the top-most level (at LN−1) top-manager, and all coordinating entities at intermediate levels (from
L1 to LN−2) mid-managers. We assume that each worker and mid-manager has one and only one parent,
implying the presence of a single top-manager. We define W as the set of all workers (at L0), with |W |
the number of workers in the set (equivalent to E0 in the general model of subsection 3.5). Similarly, M
is the set of all mid-managers, with |M | their total number. E = W ∪M ∪ TM is the set of all entities,
with TM designating the top-manager (EN−1 in in the general model of subsection 3.5). As in the general
model, C is the number of children per manager, and childId the id of a child with respect to its parent
manager. The model does not have a spatial dimension to it, while time is measured in discrete time steps
(t = 0..max-simulation-steps).

Each worker w ∈ W is characterised by a task selectedTaskw,t, which it is carrying out at simulation
time t. K is the number of task types to be distributed, with K = 2 in the presented simulations. Each task
type has an index, denoted by taskid; for K = 2, taskid ∈ {0, 1}. Finally, the task distribution objectives
are defined as goals[]. For K = 2, we have goals = [goaltask0, goaltask1].

4.2 Process Overview, Scheduling, & Initialisation
The model follows the five actions of the feedback cycle outlined in subsection 3.2, interconnecting feed-
back cycles across scales via the two extra actions of subsection 3.3. Inter-cycle communication only occurs
between subsequent scales (or abstraction levels). The four storage registers are instantiated into work-
ers, mid-managers, and the top-manager as specified in subsection 3.4 for entities in E0, E1..EN−2, and
EN−1, respectively. The size of the registers depends on the task distribution strategy used. The worker’s
individual-state register is an exception, always featuring the same size, as it is necessary to store its cur-
rent state (selectedTask). The top-manager’s goals register (goals = [goaltask0, goaltask1]) and an error-
to-goals register also share the same size of K = 2. The sum of goals for all tasks is always equal to the
number of workers (e.g., if the goal for task0 is 2 workers, and the goal for task1 is 10 workers, then there is
a total of 12 workers).

Each simulation run is initialised by choosing: (i) the total number of workers |W |; (ii) the system goal of
task allocation between task0 and task1, matching the total number of workers; (iii) the number of children
per manager C, which together with |W | determines the number of scales N of the system; and (iv) the
strategy used to determine the behaviour of workers, mid-managers, and the top-manager.

At time step t = 0, workers are assigned a random task, after which the feedback cycle begins, based on
the specific strategy selected, as follows:

1. State information collection: Workers send information of their current state (selectedTask = 0 or 1)
to their manager, by placing it into their individual-state register – eout = worker; ein = worker’s
individual-state register; eact = worker;

14

2. State information abstraction: Managers update their collective-state register with the status of each
worker, along with the status of its other workers – eout = child’s individual-state; ein = manager’s
collective-state; eact = manager;

3. Information processing : Managers use a sub-algorithm (of the given strategy) to process what control
information to send down to workers. If the manager is a mid-manager, control information is processed
using, as inputs, the collective-state register that they have updated with information coming from
below, and their individual-control register updated with information from the manager above (see
next step). If the manager is the top-manager then individual-control is substituted by the goals
register. We define the sub-algorithm used by mid-managers within a given strategy as midmanager-
control-subalgorithm and the one used by the top-manager as topmanager-control-subalgorithm. Here,
eout = the manager’s individual-control (or goals) and collective-state; ein = the manager’s
collective-control; eact = manager (mid-manager or top-manager);

4. Communication of control information: Children read the control information from their parent man-
ager’s collective-control register onto their own individual-control register. If the child is a mid-
manager, it uses this information to compute which control signals to send further down. If the child
is a worker, we move to the next step. Here, eout = parent’s collective-control register; ein = child’s
individual-control register; eact = child;

5. Adaptation based on control information: Using the specific sub-algorithm of the given strategy worker-
control-subalgorithm, workers update their task. eout = worker’s individual-control register; ein =
worker ; eact = worker.

The two additional inter-cycle steps proceed as follows:

• Inter-cycle abstraction of state information: Mid-managers further abstract information in their collective-
state register and place the result into their individual-state register. This means that mid-managers
offer an abstracted view of their internal state to their parent manager. The parent manager acquires
this information during step (1) of its feedback cycle (State information collection) and places it in its
collective-state register. In the current implementation, inter-cycle abstraction occurs after informa-
tion processing (i.e., between steps (3) and (4) of the feedback cycle).

• Inter-cycle communication of control information: Mid-managers acquire control information from
their parent manager by fetching it from the parent’s collective-state register and storing it into
their individual-control register. This control information is used as input during the information
processing step (3), to guide the control information sent to child managers, or workers. In the current
implementation, this inter-cycle action occurs between steps (2) and (3) of the feedback cycle.

In terms of timing, coordination is synchronous: at each level entities execute one after the other, in
random other. Levels also execute one after the other, starting from the lowest level and moving up, then
starting over from the lowest level again. Pseudo-code for the generic feedback process is included in the
Appendix (Listing 1).

4.3 Design Concepts
The ODD framework identifies eleven design concepts: basic principles, emergence, adaptation, objectives,
learning, prediction, sensing, interaction, stochasticity, collectives, and observation. The basic principles
underlying our model’s design are the operation of inter-level feedback, its subsequent adaptation, and its
role in the large-scale coordination of multi-scale systems. The model aims to provide insights into the
behaviour of such systems under different assumptions (e.g., number of levels, number of entities, inter-level
delays, task distribution goals), with the broader aim of contributing to a rigorous formalisation of a theory
of feedback and adaptation in different multi-scale systems. In terms of emergence, system-level patterns
arising from the entities’ behaviour include convergence time, convergence behaviour, and resource use. The

15

adaptation design concept is central to our approach, as already explained in detail. In this sense, the
objective is a system-level goal of task distribution. We do not include learning mechanisms for now, as the
strategies determining the entities’ behaviours do not change over time. As for sensing, the state variables
included in the entities’ decision-making process are the four storage registers which we discussed in Section
3.4. Interactions among agents are based on information communication, via information flows that pass
through the storage registers. Stochasticity characterises system initialisation, with workers selecting tasks
randomly until they receive control directives from higher levels. Some of the coordination strategies also
use probabilistic processes, to avoid getting stuck or causing oscillations. Collectives of entities determine
the entities’ information abstraction and refinement across hierarchical levels. In this case, as we are only
looking at exogenous macro-entities, collectives are formed via shared parent managers (groups of children
linked to the same parent). Observation, finally, is based on the following output data: convergence time (in
time steps), total error to the goals at each time step, number of entities, levels, and children per parent,
type of strategy, and characterisation of its resource requirements (memory, processing, and bandwidth).

4.4 Task Distribution Strategies
We test and compare four task-distribution strategies: a Random with Rewards Strategy (shortened to
‘Rewards’), a Blackboard Strategy (BB), a Model Strategy, and a Basic Strategy.

The Random with Rewards Strategy is a relatively simple coordination strategy. Workers carry out a
task (either task 0 or task 1), and receive a positive reward if the task needs completing, thus staying in
that task, or no reward if the task isn’t needed, thus switching tasks. It uses a top-manager to collect the
workers’ selected tasks and to return rewards to a maximum of workers equal to the goal of each task type.
Hence, the strategy only applies to two-level systems, with an exogenous macro-entity tracking which tasks
need to be completed. The tracking does not necessarily require high processing capacities. For example,
the exogenous macro-entity could simply be a pile of two resources - when a worker goes to pick a resource
and that resource isn’t there, it doesn’t receive positive feedback (i.e., the resource itself), and switches tasks
(to collecting the second type of resource).

The Blackboard Strategy is more sophisticated. It aggregates the amount of selected tasks for all children
combined, separately for each task type. Propagated upwards, aggregates are summed up, recursively, for
children at each level. The difference between this aggregate and the goals is provided as control feedback
(a correction error for each task type). Propagated downwards, control feedback is split more or less equally
amongst children, with a small random error. If the feedback for their selected task indicates that too many
workers are already performing it, workers have a certain probability of changing tasks. The name Blackboard
reflects the fact that this strategy utilises a common location (i.e., a blackboard) where entities access shared
knowledge.

TheModel Strategy keeps track of the amount of selected tasks of each type within each child branch. This
differs from the Blackboard strategy, which only keeps the sum of selected tasks for all children combined.
As the name suggests, managers here have a more complete model of the state of their children. The
advantage of this strategy is that, in keeping aggregate information for each branch, a manager can know:
(i) how many workers are available in each of its sub-trees, and (ii) what the selected task distribution is
amongst its sub-trees. This extra information helps provide more accurate feedback to each sub-tree, in
terms of necessary task switching, because each manager knows how many workers it has at its disposal
and what exact changes they can perform. We include a variation of this strategy, Model Optimisation
with Initial Rewards (ModelRew), combining the Model and Random with Rewards strategies, capitalising
on their combined advantages. The strategy employs the Reward strategy during the initial steps, when
feedback is not yet available from the higher levels (i.e., no adaptation model is provided from the top).

Finally, the Basic Strategy follows a simple mechanism whereby each level aggregates information using
summation. Workers send their task (0 or 1) upward and the mid-manager sums the tasks over all its children.
This procedure is completed for all levels until the top-manager has the total of all workers performing task
1. The top-manager then compares this value with the desired task distribution to generate an error. To
propagate from the top downward, the error is divided equally amongst the children at each level. The
feedback to the worker is a decimal number between 0 and 1 inclusive. The workers, then, switch tasks

16

with probability proportional to the manager feedback. Due to the simplicity of this strategy and to the
large amount of task switching among workers, this algorithm was selected to perform timing analysis in the
presence of inter-level delays.

For each strategy, the data model is summarized in Table 1. In addition to the four registers of Table 1,
each strategy has an additional goals[] register, where the index is the taskid and the value is the goal for
that taskid. In addition, the Random with Rewards strategy features a rewards[] register, initialised with
a copy of the goals[] register at the beginning of each step. Here, the index is the taskid and the value is
the number of rewards remaining for that taskid in the current step (rewards[taskid] = rewardstaskid

). The
following sub-sections provide full details of the four strategies’ feedback cycles, as well as describing the
hybrid Model Optimisation with Initial Rewards strategy. Subsection 4.5 analyses these strategies in terms
of their resource distribution requirements.

Register Random w/ Rewards Blackboard Model Basic

Individual State
individual-state:
the taskid of the
selectedTask

individual-state[]:
a table where index
i is the taskid and
the value at i is the
number of tasks per-
formed with taskid
(by all the manager’s
children combined)

individual-state[]: a
taskModel[] table where
index i is the taskid and the
value individual-state[i] is
the number of workers that
selected this task (in the
sending entity’s sub-tree)

individual-state:
the number of work-
ers performing task1

Collective state
collective-state:
the taskid of the
selectedTask

collective-state[]:
a table where index
i is the taskid and
the value at i is the
number of tasks per-
formed with taskid
(by all the manager’s
children combined)

collective-state[][]: a ta-
ble of tables where in-
dex j is the childid of
the child sending the in-
formation, and the value
collective-state[childid] is a
taskModel[] (cf. above) for
that childid

collective-state:
the number of work-
ers performing task1

Individual control

individual-control:
the reward for the
selectedTask (true or
false)

individual-
control[]: a table
where index i is the
taskid and the value
at i is the error cor-
rection amount for
taskid (> / = / < 0)

individual-control[]: a
goalModel[] table where
index i is the taskid, and
the value (goalModel[i]) is
the number of tasks to be
selected by the worker for
that taskid

individual-control:
the error between
the current aggre-
gate and the goal of
task1 divided equally
amongst children

Collective control

collective-control:
the reward for the
selectedTask (true or
false)

collective-
control[]: a table
where index i is the
taskid and the value
at i is the error cor-
rection amount for
taskid (> / = / < 0)

collectivecontrol[][]: a
table of tables where index
j is the childid of the tar-
geted child; and the value
(collective-control [childid])
is a goalModel[] (cf. above)
for that childid

collective-control:
the error between
the current aggre-
gate and the goal of
task1 divided equally
amongst children

Table 1: Data model for each strategy

4.4.1 Random with Rewards Strategy

This approach assumes that an immediate and accurate reward process is available to all workers. It also
assumes that workers remember their reward and selectedTask from one step to the next. The feedback
cycle between the workers and the top-manager proceeds as follows:

1. State information collection: Each worker sends the taskid of its selected task to the top-manager,

17

requesting a reward;

2. State information abstraction: The top-manager processes each collected taskid immediately (there is
no taskid storage). The abstraction is reflected in the remaining amount of rewards for each taskid
(rewards[] table, cf. Processing step, below).

3. Information processing : The top-manager processes requests sequentially, in the order of arrival.
If rewardstaskid

is higher than zero, then the top-manager grants a reward (true) and decreases
rewardstaskid

by one; otherwise it grants no reward (false);

4. Communication of control communication: Each worker receives its reward reply from the top-manager
(true or false);

5. Adaptation based on control communication: Workers maintain their selected task if they received a
reward in the previous step, and change their selected task randomly otherwise.

As this strategy only involves two levels, hence a single abstraction feedback cycle, it does not require
any further inter-cycle steps. Listings 2 and 3, included in the Appendix, provide the pseudo-code for the
worker and top-manager algorithms.

4.4.2 Blackboard (BB) Strategy

The Blackboard strategy can be configured with two parameters: the random error for the downward
propagation of feedback (random-param) and the probability of worker task switching (Pswitch).

The feedback cycle between workers and their parent managers proceeds as follows:

1. State information collection: Workers (at L0) send the taskid of their selected task to their parent
manager (at L1);

2. State information abstraction: Each parent manager calculates the sum of collected taskids, for each
task type (collective-state[]). The sum is updated upon reception of each taskid, so collected data is
stored directly in abstracted form. This abstraction is also sent (as individual-state[]) to the higher-level
manager (L2).

3. Information processing : Each manager (L1) uses the error correction received from its parent manager
(at L2) (via individual-control[]) to determine the error correction proportion to send to its workers
(collective-control[]). All child managers at L1 that share a parent at L2 receive the same error
correction amount, as they all see the same error displayed onto their shared blackboard (their parent).
Knowing the number of children per manager C, each child manager estimates the fraction of the shared
error from the parent that it must deal with. It thus divides the shared error by C, adjusts it by a
random error of +/-1 (using the random-param configuration parameter) and forwards the result to its
workers. This randomness avoids the system getting stuck in a cycle where managers send the same
feedback to workers that cannot adapt to it (e.g., a worker already performing the task for which the
manager is demanding more workers);

4. Communication of control information: Workers receive their error correction share (individual-control[]),
indicating which tasks need to be selected and which ones dropped, for each taskid;

5. Adaptation based on control information: Workers check whether the error correction for their selected
task is negative (individual-control [taskid] < 0), meaning that fewer tasks of that type are needed. If
that is the case, the worker picks one of the other tasks which has a positive error correction (individual-
control [taskid] > 0); meaning that more tasks of that type are needed. To avoid significant oscillations
and divergence, workers only pick a new task with a certain probability (Pswitch), which is inversely
proportional to the number of children per manager C.

18

The feedback process between children and parent managers, at consecutive levels (Ln−1 and Ln, n =
2..N − 1), proceeds as follows:

1. State information collection: Child managers (Ln−1) send the sum of worker selected tasks, for each
taskid (individual-state[]), to their parent manager (Ln);

2. State information abstraction: Each parent manager (Ln) calculates the sum of collected taskids,
for each task type (collective-state[]). The sum is updated upon reception of each child’s individual-
state[] table, so collected data is stored directly in abstracted form. This abstraction is also sent (as
individual-state[]) to the higher-level manager (Ln+1), except for top-managers (n = (N − 1));

3. Information processing : If the parent manager is the top-manager (n = N − 1), then for each taskid
it calculates the error between the amount of selected tasks and the goal for that taskid (collective-
control [taskid] = goals[taskid] − collective-state[taskid]). Otherwise, for mid-managers (n < (N − 1)),
the control feedback from the higher level (Ln+1) is employed instead of the goals. The error correction
(collective-control[]) is calculated in the same way as described above, for managers at L1 – splitting
it more or less equally amongst managers at Ln that share the same parent at Ln+1, with some
randomness (random-param);

4. Communication of control information: Child managers receive the control feedback from their parent
managers (individual-control[]);

5. Adaptation based on control information: Managers do not adapt their behaviour to control feedback,
they merely process and transmit control information to lower managers and/or workers.

Mid-managers execute the following two extra inter-cycle steps:

• Inter-cycle abstraction of state information (between steps 3 and 4): Mid-manager copy their collective-
state[] into their individual-state[] register, without further abstraction;

• Inter-cycle communication of control information (between steps 2 and 3): Mid-managers copy their
parent’s collective-control[] into their individual-control[] register and use it as input to their informa-
tion processing action (step 3). It provides the error-to-goals for each taskid, indicating the number of
workers that need to either adopt or drop each task.

4.4.3 Model Strategy

If information is perfect, the Model strategy converges as soon as abstract state information arrives at the top-
manager and control feedback arrives back to the workers (i.e., in N −1 steps). This applies to any topology
(e.g., large |W |, high N , and/or unequal numbers of children-per-manager) and any task-distribution goals.
At the same time, this approach increases all resource usage proportionally to the number of children-per-
manager. This increase is further augmented for coordination problems where the inter-children relations
are also important (e.g., human organisations [48], featuring polynomial resource increase with C).

In this strategy’s data model, for each child-parent pair, we have that the parent’s collective-state[childid]
is the child’s individual-state[], and the child’s individual-control is the parent’s collective-control [childid].
The Model strategy implemented here assumes that information is accurate and that relations amongst
workers’ selected tasks are irrelevant.

The feedback cycle between workers (at L0) and their parent managers (at L1) proceeds as follows:

1. State information collection: Workers (L0) send the taskid of their selected task to their parent manager
(at L1) (the worker’s individual-state[] is a taskModel formatted to have individual-state[taskid] = 1,
and the other values set to 0);

2. State information abstraction: Managers do not abstract collected information before processing. Each
element in a manager’s collective-state[][] is a taskModel for one of its children (cf. above). After
processing, a manager abstracts its collective-state[][] register, by summing the tasks of all children,
for each taskid, and storing the resulting taskModel into its individual-state[] register;

19

3. Information processing : Each manager at L1 takes the goals received from its parent manager (L2) and
distributes them exactly to its workers. The sum of all tasks in the received goals equals the number
of workers, as managers at L2 are aware of the number of workers in each of their sub-trees;

4. Communication of control information: Workers receive the newTaskid they must select next (the
worker’s individual-control[] is a goalModel, with individual-control [newTaskid] = 1 and all other
values set to 0);

5. Adaptation based on control information: The worker selects the new task with newTaskid.

The feedback process between children and parent managers, at consecutive levels (Ln−1 and Ln, n =
2..N − 1), proceeds as follows:

1. State information collection: Child managers (Ln−1) send to their parent manager (Ln) the sum of
worker selected tasks in all their sub-trees, for each taskid (individual-state[]);

2. State information abstraction: Managers do not abstract collected information before processing. Each
element in a manager’s collective-state[][] is a taskModel for one of its children. After processing, a
manager abstracts its collective-state[][] register, by summing the tasks of all children, for each taskid,
and storing the result as a taskModel into its individual-state[] register;

3. Information processing : If the parent manager is the top-manager (n = N − 1), then for each taskid
it splits the goal [taskid] amongst its child managers, in exact proportion to the number of workers of
each of its child managers, and places the result in the goalModel of each child manager (collective-
control[][]). Mid-managers (Ln) do the same, using the goals from their parent manager (Ln+1);

4. Communication of control information: Child managers receive the control feedback from their parent
managers, as a goalModel (individual-control[]);

5. Adaptation based on control information: Managers do not adapt their behaviour to control feedback,
they merely process and transmit control information to lower managers and ultimately to workers.

Mid-managers execute the following two extra inter-cycle steps:

• Inter-cycle abstraction of state information (between steps 3 and 4): Mid-managers compress their
collective-state[][] into their individual-state[] register, by summing-up the number of workers that
perform each task type (taskid);

• Inter-cycle communication of control information (between steps 2 and 3): Mid-managers copy from
their parent’s collective-control[][] register the part concerning them (based on their childid), place this
information into their individual-control[] register and use it as input to their information processing
action (step 3). This control input indicates the absolute number of workers managed by this mid-
manager that need to achieve each task type (taskid).

Listings 7 and 8 provide the pseudo-code for the worker and mid-manager algorithms, respectively. The
top-manager procedure is the same as the mid-manager one, except for using the system goals[] instead of
the individual-control[] from a higher manager.

4.4.4 Model Optimisation with Initial Rewards

This strategy, ModelRew, combines the Reward and Model approaches. It uses the Reward strategy during
the initialisation steps, while feedback from the top-manager is not yet available. After the initialisation
steps, the combined strategy swaps to the Model approach, taking the adaptation model into account, and
thus converging within the next step. In this way, it reduces errors considerably, while waiting for control
feedback. The number of initialisation steps is the same as the number of management levels (N −1), unless
we introduce further inter-level delays. This combined strategy guarantees that the worker coordination
converges within a maximum of N − 1 steps, while potentially converging earlier (especially for a small
number of workers). It also reduces the error to the goal during the initialisation steps (for any topology).

20

4.4.5 Basic Strategy

This strategy is the simplest of all approaches presented here in terms of the amount of information commu-
nicated and stored and the amount of processing performed. It assumes that all entities know the number of
children-per-manager, that workers can perform random operations, and that only the top-manager knows
the goals. The Basic strategy sends upwards the aggregate number of workers executing task1; and receives
downwards the error between the goal and the aggregate of task1. Workers start with a random selectTask.
They then switch to the opposite task with a probability that is proportional to the overall system error di-
vided by the number of workers (received as control feedback). Mid-managers aggregate their children’s tasks
(collective-state) and send it to their parent manager (individual-state). They divide the error received
from their parent manager (individual-control) equally amongst their children (collective-control). The
top-manager calculates the difference between the number of workers performing task1 (collective-state)
and the goal of task1 (goalstask1

), providing the result to its children (collective-control).
This strategy saves resources by only using one task (task1) to communicate and evaluate their respective

states. This works in our current setting as we only employed two task types (K = 2). To handle more task
types, another aggregate should be found based on a subset of the task types.

The feedback cycle between the workers (at L0) and their parent mid-managers (at L1) proceeds as
follows:

1. State information collection: Each worker sends the taskid of its selected task (0 or 1) to its parent
manager;

2. State information Abstraction: The parent manager processes each collected task id immediately (there
is no taskid storage) by summing the tasks of all children. The result is stored into its collective-state[]
register;

3. Information processing : No processing is performed by the managers beyond the summation step and
workers process control feedback received by computing individual-control[]/C which represents their
share of the total error in the system;

4. Communication of control information: Workers receive the control feedback from their parent man-
agers (individual-control[]);

5. Adaptation based on control information: Workers switch to the opposite task with a probability that
is proportional to the value in individual-control[]/C.

The feedback process between children and parent managers, at consecutive levels (Ln−1 and Ln, n =
2..N − 1), proceeds as follows:

1. State information collection: Child managers (Ln−1) send to their parent manager (Ln) the sum of
worker selected tasks in their sub-trees (individual-state[]);

2. State information abstraction: The parent manager processes the information in collective-state[] imme-
diately by summing the values reported by each of its children. The result is stored into its individual-
state[] register;

3. Information processing : For the top-manager, the value in collective-state[] represents the total number
of workers performing task 1. It then computes the difference between the value in collective-state[]
and the goal value for task 1. The result is stored in collective-control[]. For mid-managers, the value
in individual-control[] is divided by the number of children C and stored in collective-control[] ;

4. Communication of control information: Child managers receive the control feedback from their parent
managers, as the error for their sub-trees (individual-control[]);

5. Adaptation based on control information: Managers do not adapt their behaviour to control feedback,
they merely process and transmit control information to lower managers and ultimately to workers.

21

Mid-managers execute the following two extra inter-cycle steps:

• Inter-cycle abstraction of state information (between steps 3 and 4): Mid-managers copy their collective-
state[] into their individual-state[] register, with no further abstraction;

• Inter-cycle communication of control information (between steps 2 and 3): Mid-managers copy their
parent’s collective-control[] into their individual-control[] register and use it as input to their informa-
tion processing action (step 3). This control input provides an estimate of the error for the goal of
task1.

Listings 9 and 10 provide the pseudo-code for the worker and mid-manager algorithms, respectively. The
top-manager procedure is the same as the mid-manager one, except for using the system goals (for task 1)
instead of the individual-control from a higher manager.

4.5 Strategy Resource Analysis
Resource analysis is central to our approach as it allows us to compare coordination strategies and to
evaluate the trade-offs between their convergence behaviours and the resources they consume. We describe
resource analysis with respect to memory, abstraction complexity, process complexity, and communication.
The analysis itself is approximate, as we focus on the order of magnitudes rather than on exact amounts.
Memory and message sizes are estimated in bytes, considering that entities store and exchange information
as numbers, and allocating one byte for each number. Other units may be used and more bytes per number
may be allocated while preserving the relative differences amongst the strategies’ resource consumption.

In terms of memory requirements for entities, workers store the taskid of their selectedTask, and the two
registers: individual-state and individual-control. Mid-managers store four registers: collective/individual-
state and collective/individual-control. Finally, the top-manager stores two registers (collective-state
and collective-control) and two registers for external communication (goals and error-to-goal). While
the size of the registers (collective/individual-state and collective/individual-control) varies with the
strategies, the taskid always occupies 1 byte and the goals and error-to-goals always K bytes.

Hence, the total memory requirements for the multi-scale task-distribution system, for any strategy, is
as follows:

Memorytot,t = |W | ∗ (|individual-statewrk|+ |individual-controlwrk|+ 1)+

|M | ∗ (|collective-statemng|+ |individual-statemng|+ |individual-controlmng|+ collective-controlmng|)+
(|collective-statemng|+ |collective-controlmng|+ 2 ∗ |goals|)

(4)

Where wrk stands for worker and mng for manager (both mid and top). In our simulations, each one of
the four register types has the same size for all management levels (L1..LN−1).

In terms of communication messages, each entity (at Ln−1) initiates the communication towards its
parent manager (at Ln), except for the top-manager (at LN−1) who has no parent. Hence, at each step, two
inter-level messages are exchanged between each child and its parent. First, the child sends its individual-
state to its parent, which includes it into its own collective-state. Then, the child fetches its parent’s
collective-control and stores it into its own individual-control. This means that each child exchanges
exactly two messages with its parent, at each time step t (Messages(Ei,n−1→Ej,n) = 2, n = 0..N − 2). This
gives the total number of messages exchanged in the multi-scale system, at each time step t, as:

Messagestot,t =

N−2∑
n=0

(2 ∗ |En|) (5)

The total bandwidth required for this communication is:

Bandwidthtot,t =

N−2∑
n=0

[|En| ∗ (individual-staten + collective-controln+1)] (6)

22

Strategy Role Memory
(B)

Abstraction
complexity

Process
complexity

Parent
comm.(B)

Abstract.
Info Loss

Random w.
Rewards

worker
top-manag.

≈ 2 (cnst.)
≈ 2(K+1)

-
O(C)

O(1)
O(C)

2 (cnst.)
-

-
-

Basic worker
mid-manag.
top-manag.

2
4
4

-
O(C)
O(C)

O(1)
O(1)
O(1)

2
2
-

-
(C-1)
-

Blackboard worker
mid-manag.
top-manag.

2K
4K
4K

-
O(CK)
O(CK)

O(K)
O(K)
O(K)

2K
2K
-

-
(C-1)K
-

Model worker
mid-manag.
top-manag.

2K
2(C+1)K
(2C+1)K

-
O(CK)
O(CK)

O(K)
O(CK)
O(CK)

2K
2CK
-

-
(C-1)K
-

Table 2: Strategy resource requirements (K: number of tasks; C: number of children)

Further considering that in our simulations all registers of managers at all levels have the same size
(<register-size>), which depends on each strategy, and approximating the workers’ registers to the same
size, the above equation becomes:

Bandwidthtot,t =

N−2∑
n=0

(2 ∗ |En| ∗<register-size>) (7)

To evaluate the resource requirements of each coordination strategy, we determine the sizes they utilise for
each register type, for both workers and managers. These values can then be inserted in the above equations,
together with system-defining parameters (|W |, |M |, C, N), to determine the total resource overheads of
each strategy, for each targeted system.

Table 2 summarizes the resources used by each strategy. The Memory column expresses how much
information, in Bytes [B], is stored by each class of entities (workers, mid-managers, and top-managers).
Abstraction Complexity, then, reflects the order of magnitude of how complex the abstraction algorithm is
(moving information from lower to higher levels). Process complexity provides the order of magnitude of the
complexity of the processing action. Parent Comm. provides, in turn, a measure (in Bytes [B]) of the amount
of information that is communicated between one child-parent pair, in one simulation step. Abstract Info
Loss, finally, measures (in Bytes [B]) how much information is lost in the abstraction from lower to higher
levels. Each measure is provided in relation to the number of tasks K and to the number of children C.

To estimate the total resource requirements for each strategy, the values provided in Table 2 for each
worker and manager, e.g., for Memory and Communication, can be used as inputs into the system-level
equations provided in subsection 4.2 (e.g., Eq. 4 for total system memory and Eq. 5, 6 or 7 for total system
communication).

In the Rewards strategy, memory-wise, workers consume one byte of data for their selected taskid
(individual-state) and one byte for the reward (individual-control). The top-manager requires one byte
of data for incoming requests with a taskid (collective-state), one byte for the reward (collective-control), a
table of size K bytes for the goals (fixed) and a table of size K for the rewards (reinitialised at each step).
Information abstraction is reflected in the top-manager as the sum of worker requests for each taskid, sub-
tracted from rewards[taskid] - hence O(C) complexity. Reward calculation in the top-manager also features
O(C) complexity. Communication between each worker and the top-manager consists of two messages (of 1
byte each), leading to 2 bytes of worker-manager communication (hence a total of 2C bytes for the entire
system) at each step.

In terms of resource consumption, the Blackboard strategy uses communication registers of size | <
register > | = K. Hence, memory-wise, workers require 2K bytes2 and (mid- and top-) managers 4K bytes.

2Worker’s memory can be optimised to K + 1 bytes if only storing the taskid of the selectedTask in individual-state.

23

Information abstraction occurs in mid-managers by aggregating data collected from children (of total size
C ∗K) into a single individual-state[] table (of size K) - hence ((C−1)∗K less). The abstraction complexity
is thus of the order O(C ∗ K) and the processing complexity of O(K) (as iterating through tables of size
K). Communication between levels, for each child-manager pair, is around 2∗K bytes (for individual-state[]
going upwards and collective-control[] coming downwards).

The Model strategy uses storage registers of | < register > | = K bytes for individual-state[], individual-
control[], and goals[], and of | < register > | = C ∗ K bytes for collective-state[] and collective-control[].
Hence, workers require around 2∗K bytes3, mid-managers 2∗(C+1)∗K bytes and top-managers (2C+1)∗K
bytes. Information abstraction occurs within mid-managers as they sum all their children’s selected tasks
(collective-state[][]) into a single taskModel (individual-state[]) - hence (C − 1) ∗ K less. Abstraction and
processing complexity is of the order of O(CK) in both top- and mid-managers. Workers feature O(CK)
processing complexity. For child to parent communication, workers require 2K bytes (for each worker-
manager pair) and managers 2CK bytes (for each inter-manager pair).

The Basic algorithm has a minimal resource impact (relative to the other strategies) as it only marginally
depends on the number of tasks or the number of children-per-manager. Memory-wise, each worker keeps its
selectedTask (which is also its individual-state) and the individual-control from its manager, hence 2 bytes.
Managers use 4 bytes, one for each of their four input and output tables. Inter-level communication is only 2
bytes (for each child-manager pair) – one for state abstraction going up and one for control feedback coming
down. The abstraction complexity is proportional to C, as managers sum-up their childrens’ selectedTask.
Hence, the information loss via abstraction is C − 1. The processing complexity is constant O(1), as mid-
managers simply split their parent’s feedback-in equally amongst their children, for task1 only; and the
top-manager simply extracts collective-state from the goal of task1.

5 Experiments and Results

Figure 4: Four NetLogo configurations. From top left to right (clockwise): |W | = 4096 workers & C = 4
children per manager; |W | = 16 workers & C = 2 children per manager; |W | = 9 workers & C = 2 children
per manager; |W | = 16 workers & C = 4 children per manager

3Worker’s memory can be optimised to K + 1 bytes if only storing the taskid of the selectedTask in individual-state.

24

Experiments were run to compare the performance of the implemented strategies in terms of convergence
time, behaviour, and guarantees. Convergence time is measured in number of simulation steps until the error
between the goal and the workers’ actual task distribution is zero (for a number of steps larger than the delay
of control feedback from the top-manager). Convergence behaviour is assessed qualitatively, considering (i)
the general shape of the error to goals series decreasing to zero (e.g., monotonically, asymptotically through
oscillations) and (ii) how fast the error to goals diminishes before reaching zero. The guarantees are based
on predictable, analytical evaluations that can be made on the above aspects. As previously mentioned, the
purpose of these experiments is to show the relative qualitative differences amongst strategies with different
information flows and resource requirements. Figure 4 shows examples of the NetLogo configurations.

Each experiment was repeated 50 times, at least. For the Model and Rewards strategies, the results
variance between runs was relatively small (< 10% for Rewards and sometimes 0 for Models) so we considered
50 runs to suffice for accurate comparison of average convergence times. For Blackboard the variance was
more significant (up to 100% for experiments with large |W |), yet the convergence time was many times
higher than for the Model and Rewards, so an accurate comparison was unnecessary for the targeted
qualitative evaluation. For evaluating the Basic strategy with various time delays, 100 runs were used for
each experiment to account for result variations. We organise results into five sub-sections: overview of
strategy convergence behaviours (5.1), goal variation in task distributions (5.2), topology height variation
(5.3), scaling with number of workers (5.4), and timing and delay (5.5).

5.1 Overview of Strategy Convergence Behaviours
Rewards converges monotonically, since at each step more workers select a task that fits the goal, no
longer changing it once they have a reward. This behaviour is efficient since we only used two task types
(K = 2). This means that, at every step, workers have a 50% chance of picking a task type for which
they receive a reward, and hence to keep that task. In this case, the error decreases monotonically by
about 50% at every step. If the total initial error produced by workers as they select tasks randomly is
maximum (errortotal,0 = |W |), which is rarely the case, then the Rewards strategy’s convergence time is
around convergencesteps ≈ (log2 |W | + 1) steps (for K = 2). This behaviour would be less efficient for
larger numbers of task types (K > 2). In general, the upper bound of convergence is likely to be around
convergencesteps = abs(log(1−1/K) |W |+1). For example, for K = 64, convergencesteps ≈ abs(log0.985 |W |),
so over 400 steps for |W | = 500 workers. This points to interesting trade-offs that call for further exploration,
with the inclusion of more task types.

Model starts with a relatively constant random error in the initial steps, until information is aggregated
to the top level and control feedback reaches the workers again (N − 1 steps). It then converges within one
step. This is possible because we assumed the information model, the control plan, and the communication
to be perfect. This means that Model is guaranteed to converge within exactly N − 1 steps (the number
of management levels). ModelRew produces the minimum convergence time between Model and Rewards,
because it uses Rewards in its initial steps (N −1) and Model once feedback from the top-manager becomes
available. Its main advantage is to reduce the error during the initial steps (like Rewards does), while
guaranteeing convergence when control feedback arrives (like Model).

Blackboard, on the other hand, is sensitive to its two configuration parameters that control the level of
randomness at the manager and worker levels (i.e., random-param and Pswitch, respectively). Their values
impact the strategy’s convergence behaviour, leading to (asymptotic) oscillating convergence, monotonic
convergence, or no convergence. We did not aim to search for optimal parameters, as the results already
show the relative qualitative differences to the other strategies. Rather, we picked parameters that lead
to convergence in each tested setting. We used random-param values between 0.5 and 0.9; and Pswitch

calculated as 1/(0.5 ∗ |C| + coef), where coef was either 1 or 5. When these parameters are set to enable
convergence, Blackboard reduces the workers’ initial error relatively fast (to error-to-goal ≈ 10% of goal),
then features a longer and longer tail as the error decreases. Hence, aiming to reach a small error (e.g., of
1% or 0.1% of |W |), rather than zero error, significantly reduces convergence time, which may suit certain
applications.

Finally, the Basic strategy features significant random task switching and only converges for small

25

numbers of workers |W | and/or few management levels N . The convergence is not monotonic. Because
of the large randomness in worker behaviour, convergence is highly facilitated when goals are distributed
equally between task types.

5.2 Goal Variation in Task Distributions

Figure 5: Average convergence steps for 16 workers, C = 2, and different goal task distributions

fig1

0

5

10

15

20

25

30

35

8 12 15 16
8 4 1 0

C
on

ve
rg

en
ce

 T
im

e
(ti

m
es

te
ps

)

Goal Distribution

BB
Rewards
Model
ModelRew

The first set of experiments compared the strategies’ sensitivity to variations in the goal task distribution
(i.e., how many workers must perform task0 and how many workers task1). We selected a small scale of
16 workers with 2 children-per-manager (|W | = 16, C = 2, N = 5), allowing to rapidly explore several
distributions. Figure 5 summarises the average convergence results for the Blackboard4, Rewards, Model,
and ModelRew strategies. The Basic strategy is not shown in the graph as its convergence for unequal task
distributions was several orders of magnitude larger than for the other strategies. The convergence data for
all strategies, including the Basic one, is included in the Appendix, under Table 4 (rounded to one decimal).

Generally, as strategies use random task selection – in the initialisation phase and for some strategies
also when feedback is available – they all converge faster for equal task-distributions (e.g., goaltask0 = 8 and
goaltask1 = 8) than unequal ones (e.g., goaltask0 = 16 and goaltask1 = 0). The convergence time for the
Basic strategy increases dramatically as goals become more unequally distributed between the task types
(i.e., more than 1000 times higher for goals = [15, 1] than for goals = [8, 8]); for goals = [16, 0] it does not
converge).

Qualitatively, results show that the Blackboard strategy is less efficient (up to several times slower) than
Rewards and Model, as well as more sensitive to goal variations in task distributions. As discussed above,
these results could be improved for the Blackboard strategy by optimising the configuration parameters for
each experimental scenario. Model always converges after 4 rounds (N − 1), except when goals = [8, 8],
as here the mid-managers solve the coordination problem without knowing the goals, hence before feedback
from the top-manager arrives, by distributing tasks equally between children (by design). Rewards offers
very similar performance to Model and, at times, can be faster. For 16 workers, convergence should occur in
about 5 steps if the initial task selection produces the maximum error (16) to the goals, and less otherwise
(which is the case in most experiments). ModelRew converges within a maximum of N − 1 = 4 steps

4BB config.: coef = 1; and rand-param = 0.85 for goals = [8, 8] and [12, 4]; rand-param = 0.5 for goals = [15, 1] and [16, 0]

26

(enabled by the use of Model), and sometimes faster (enabled by the use of Rewards in the initial steps).
The case where goals = [8, 8] is an exception, as Model is better here.

5.3 Topology Height Variation

Figure 6: Average convergence variation with the number of levels N (or children-per-manager C) - for
|W | = 5000 workers and goals = [4000, 1000] task distribution

0

2

4

6

8

10

12

14

14 9 8 7 6 6 6 5 5 4 3

2 3 4 5 6 7 8 9 10 50 100

Av
er

ag
e

C
on

ve
rg

en
ce

 V
ar

iat
io

n
(ti

m
es

te
ps

)

Number of levels (N) &
Children per manager (C)

Model
ModelRew
Reward

Figure 7: Average convergence variation with the number of workers, C = 4 (3 best strategies)

0

2

4

6

8

10

12

Reward Model ModelRew

Av
er

ag
e

C
on

ve
rg

en
ce

 V
ar

iat
io

n
(ti

m
es

te
ps

)

|W|=16, goals=[12,4]
|W|= 64, goals=[48,16]

|W|= 256, goals=[192,64]
|W|= 1024, goals=[768,256]
|W|= 4096, goals=[3072,1024]

This set of experiments aims to further explore the differences between theModel and Rewards strategies,
as in the small-scale experiments these strategies performed similarly. We increased the simulation scale to
|W | = 5000 workers and picked an unequal task distribution with goals = [4000, 1000]. We performed

27

tests for various numbers of children per manager C, resulting in different numbers of hierarchical levels N .
These configurations led to asymmetric topologies, meaning that some parent managers had fewer than the
maximum number of children C. Hence, these tests also highlighted the strategies’ ability to handle such
asymmetries.

Results are shown in Figure 6. Rewards is not affected by the number of levels as it always uses a
two-level topology. Therefore, its convergence time only depends on the number of workers |W | = 5000. In
terms of convergence time, Model has the same performance as ModelRew at this scale, except for |C| = 2,
as before. As expected, the convergence time of these model-based strategies is equal to the number of
management levels (N −1). This confers an increasing advantage to these strategies over Rewards, at larger
scales |W |. Blackboard is not is included, as it is significantly slower than other strategies. Table 5, in the
Appendix, collects average convergence data for all the strategies.

5.4 Scaling with Number of Workers
These experiments aimed to analyse how the strategies scaled with the number of workers coordinating to
achieve the goal. We fixed the number of children-per-manager to C = 4 and varied the number of workers
|W |, maintaining a symmetric topology with the same number of children for all managers. We also varied
the goals, as to keep the same relative proportion between task types (goals = [0.25 ∗ |W |, 0.75 ∗ |W |).

Figure 7 depicts the results for the best performing algorithms (with full results included in the Appendix,
Table 6). As expected, convergence time for Model and ModelRew scales exactly with logC |W | = (N − 1),
which is 4 in these experiments. For Rewards, it scales approximately approximately with log2 |W |. This
provides an increasingly significant advantage to Model over Rewards for increasing number of workers |W |,
if the number of levels stays low (with high C values).

5.5 Timing and Delay

Figure 8: Convergence time versus task-switching-delay (d) for four different values of inter-level-delay (r)
with goals = [1, 7] task distribution, averaged over 100 trials.

0.E+00

1.E+04

2.E+04

3.E+04

4.E+04

5.E+04

6.E+04

7.E+04

8.E+04

0 1 2 3 4 5 6 7 8 9 10

C
on

ve
rg

en
ce

 T
im

e
(ti

m
es

te
ps

)

task-switching-delay, d

r = 1
r = 2
r = 3
r = 4

The last set of experiments involves the investigation of delays between levels in the hierarchy and
the effect of delays in task implementation by the workers. For these experiments, we selected the Basic
strategy as it has the most worker task switching of all the algorithms implemented, providing a scenario in

28

Figure 9: Convergence time versus task-switching-delay (d) for four different values of interlevel-delay (r)
with goals = [4, 4] task distribution, averaged over 100 trials.
.

0.E+00

2.E+02

4.E+02

6.E+02

8.E+02

1.E+03

1.E+03

1.E+03

0 1 2 3 4 5 6 7 8 9 10

C
on

ve
rg

en
ce

 T
im

e
(ti

m
es

te
ps

)

task-switching-delay, d

r = 1
r = 2
r = 3
r = 4

interlevel-delay Upward Propagation Delay Total Propagation Delay Optimal task-switching-delay
1 1 4 1
2 8 13 7
3 27 34 20
4 64 73 30

Table 3: Optimal task-switching-delay for goals = [1, 7] task distribution with 4 levels and 2 children per
manager.

which delays would have a significant impact on convergence time. The main purpose of these experiments
was to highlight the fact that interrelated timing parameters (inter-level delays and task-switching delays)
are important to overall system behaviour and should be seriously considered during system design and
configuration. It was not to evaluate and fine-tune these parameters for the Basic strategy in particular.
We consider a scenario where the system is imposed with a certain delay between levels of the hierarchy,
which may be due to transmission delays or an inherent/engineered slowness in the execution of the higher
levels compared to the lower levels (e.g., more processing). The effect of task-switching delays is studied to
determine whether a change in worker behaviour can offset delays between levels in terms of overall system
convergence time to a desired task distribution.

We define two additional parameters in the system for these experiments:

• interlevel-delay, r ∈ (1, 2, 3, . . .): The ratio of execution intervals for levels Ln and Ln−1. For example,
if r = 1, the level Ln executes each time level Ln−1 executes. If r = 2, then level Ln only executes
after level Ln−1 executes twice. The top-manager therefore executes rN−1 times more slowly than the
workers and the overall propagation delay is rN−1 + r(N − 1)− (r − 1).

• task-switching-delay, d ∈ (0, 1, 2, . . .): The number of time-steps needed before workers take action
based on the feedback received from their managers. For example, if d = 0, workers take action
immediately to switch tasks. If d = 5, then workers receive feedback at time step 0, but do not modify

29

their tasks. They continue to perform their unmodified tasks for time-steps 1..4, and ignore feedback
from the managers during these time-steps. Then on time-step 5, they take action to modify their
tasks using the feedback received at time-step 0.

The number of children per manager (C = 2) and number of levels (N = 4) remained constant throughout
all tests. The varied parameters were r, d, and task distribution objective (goals). For each condition, 100
trials were performed, where each trial sets the worker tasks to a (different) random initial state and executes
until the system converges to the desired task distribution with zero error. Due to the randomness of the
workers’ task switching, it was necessary to set a threshold for the number of time-steps for which the error
was zero. Convergence was not declared complete until the system had zero error for a sufficient number of
time-steps, due to information propagation implementation delays in the system. The threshold was based
on the values set for inter-level-delay and task-switching-delay.

Figure 8 shows the average convergence time for four different values of inter-level-delay (r = 1, 2, 3, 4)
with goals = [1, 7] task distribution. For r = 2, 3, 4 the system shows an overall decrease in convergence
time as task-switching-delay is increased from 0 to 10. Relative improvement was 55% for r = 4 and 72%
for r = 3 and 4. One case demonstrates worse performance (r = 1) with the system becoming slower as
task-switching-delay is increased over the same interval. For this case, relative degradation was 432%.

Figure 9 shows the same data as Figure 8, except the task distribution was goals = [4, 4]. In contrast
with the previous data, for r = 3 and 4 the system shows an overall decrease in convergence time as task-
switching-delay is increased from 0 to 10, while the performance decreased for r = 1 and 2. Also, the
magnitude of the improvement was much smaller. Relative improvement was 32% for r = 4 and 18% for
r = 3. Relative degradation was 18% for r = 2 and 485% for r = 1.

The difference between the two sets of results above can be explained in the context of the Basic algorithm.
The workers initialize to a random task with a 50% chance of being assigned task0 or task1. On average,
initial task distribution is closer to [4,4] than [1,7] and the system has less switching to perform to achieve
the [4,4] goal. As a result, the convergence times are much faster in Figure 9 compared to Figure 8.

The results also show that adding delay to the workers’ implementation leads to improvement if the
system experiences delays with information propagation up the hierarchy. One associated question is then,
to consider how much task-switching-delay can be increased before the system’s convergence time stops
improving.

Figure 10: Convergence time versus task-switching-delay for interlevel-delay = 4 with goals = [1, 7] task
distribution, averaged over 100 trials.
.

0.E+00

1.E+04

2.E+04

3.E+04

4.E+04

5.E+04

6.E+04

7.E+04

1 10 100

C
on

ve
rg

en
ce

 T
im

e
(ti

m
es

te
ps

)

task-switching-delay, d

Figure 10 shows the convergence time for the case where r = 4 extended to larger task switching delay
d values. The system continued to show improvement until d = 30, where it achieved a minimum value.
This minimum is followed by a slight decrease in performance as d increased from 30 to 100, followed by a
significant decrease for values of d greater than 100. These results indicate that there may be an optimum

30

amount of task switching delay that can offset the level-to-level delays present in a hierarchy. It is not
beneficial for workers to act immediately in the presence of delays since they will be acting on manager
feedback that does not accurately reflect the state of the overall system at that time. Similar results are seen
for the other values of inter-level-delay. Estimates of optimal d values for r = 1, 2, 3, 4 are shown in Table 3.

6 Discussion
The comparison of different algorithms for large scale coordination allows us to tap into the question of
underlying trade-offs in the behaviour of multi-scale systems. Overall, as expected, larger information flows
allow for faster coordination convergence, with better guarantees (less variability), in a variety of cases. This
comes at the cost of higher resource requirements (i.e., storage, processing, and communication of larger
information flows). However, reduced information flows may be efficient, and even better than those using
more information, in specific cases for which they can be optimised. This implies niche specialisation –
optimising the resource versus efficiency trade-off for specific operational contexts – with the downside of
being less adaptable to certain variations in their environment (e.g., different numbers of entities to coordinate
or different goal configurations).

If statistical abstraction processes are used to reduce information as it travels from lower to higher
scales, then this can help robustness and stability, as low-level information errors and small fluctuations can
be leveled-out (on this, see [49]). Conversely, the ability to access and process more detailed information
is advantageous for adaptability, if it allows to perceive relevant changes and to take them into account
immediately. This comes at the cost of a higher resource utilisation, which may become prohibitive as the
number of coordinated entities increases. When resources are limited, the availability of too much (fine-
grained) information may be a serious disadvantage, clogging the system, slowing it down, or bringing it to
halt. The effectiveness of information abstraction with respect to the targeted coordination problem is key
to addressing this challenge.

Reliance upon accurate information and complicated processing increases sensitivity to error (e.g., in
information communication, storage, and processing). Hence, information-intensive strategies must invest
further resources and further complicate their procedures to ensure fault-tolerance and maintain accuracy
and guarantees, or revert to less accurate procedures and more general guarantees. Dealing with new types of
information remains an open issue for these strategies, requiring even more complicated processes (e.g., open-
ended evolution and/or learning). Generally, the availability of more information does not, in itself, guarantee
better coordination. In addition to the issue of resource overload, ineffective processing algorithms, feedback
messages, and timing configurations may lead to large oscillations, instability, and divergence throughout
the multi-scale system.

These general considerations are exemplified concretely by the strategies we tested. The Model strat-
egy uses as much information as needed to guarantee rapid convergence. It is the most resource-intensive
strategy, with resource requirements (for the managers) growing proportionally with C ∗K. These resource
requirements would potentially grow much faster if inter-worker relations are also considered (e.g., polyno-
mial scaling with C). This pays off in guaranteeing stability and a bounded convergence time, linearly linked
to the number of scales N . For multi-scale Model systems with a given number of workers |W |, designers
must consider the trade-off between the hierarchy’s height (N) (which can be lowered by increasing the num-
ber of children per manager C) and the resource load of each manager (increasing linearly or polynomially
with C). Finally, sensitivity to errors and overloading may become a significant issue.

Comparatively, the Rewards strategy is much less resource-intensive, with different resources scaling
proportionally with either C or K. It is particularly well-suited for small numbers of task types, like in
our experiments (K = 2). However, even for such a favourable application context, Rewards becomes
increasingly slower (logarithmically) than Models as the number of workers increases and if Model uses
higher C. Rewards also has the advantage of converging monotonically, which may be important for some
systems. This strategy, however, does assume that an accurate reward is globally and immediately available
to all workers. The Blackboard strategy differs in its dependency on system and problem parameters,
in that its resource requirements mostly vary with the number of task types K. This is due to the fact

31

that it only processes and communicates aggregates from all branches, at each scale. Only its information
abstraction process depends on the number of children per manager, scaling with C ∗K. As its convergence
behaviour highly depends on configuration parameters optimised for each execution context (e.g., topology,
goal distribution, number of workers), this strategy fits the general category that features efficient and
robust information usage if optimised for its application niche. It is particularly well-suited for coordination
problems not requiring absolute accuracy, as it can converge to solutions that are close to the targeted goals
(i.e., 1% or 0.1% error) sooner than actually reaching them (i.e., 0% error).

Finally, the issue of timing was addressed by observing the effect of different time delays (inter-level
communication delays r and worker task switching delays d) for the Basic strategy. As mentioned in the
Introduction, timing plays a key role in hierarchical systems, with higher levels of the hierarchy typically
operating at slower rates. This behaviour is seen in ecological [11] as well as engineered [39] systems. While
it is generally recognised that systems must have slower timescales at higher levels of the hierarchy due to
biological, physical, or organisational constraints, it is not clear if there are performance benefits to this type
of timing.

The experiments run with the Basic algorithm were used to investigate the performance versus timing
trade-off specifically for the two-task distribution coordination problem. The results show that in terms
of convergence time, the more slowly higher levels of the hierarchy operated, the slower was the system’s
convergence time. Taken alone, this result indicates that this typical system characteristic does not benefit
system performance. However, convergence time is not the only performance metric to consider and benefits
such as improved transient response (e.g., oscillation or overshooting behaviour) and robustness to changing
system goals, reconfiguration (e.g., addition/removal of workers or managers), or disruption of information
flow should also be considered. The exploration of these metrics offers exciting avenues for future work.

Given that many types of systems exhibit slower timing at higher levels, and in several cases this timing
scheme cannot be modified, the question of whether the system itself can compensate for decreased per-
formance was investigated. In this task distribution problem, this compensation was implemented in the
workers as task-switching delay d with the motivation being that workers may receive inappropriate feedback
from managers if inter-level delay is present (i.e., managers may provide feedback to workers using outdated
information).

In this implementation workers modified their behaviour to ignore manager feedback for a certain number
of time-steps so as to not respond to fluctuating instructions and to be more certain of the feedback quality.
The results indicate that this type of worker behaviour modification was effective in offsetting the inter-level
delays r in that an increase in d resulted in faster convergence times for a given r in many cases. Furthermore,
the slower the inter-level communication r and the further the system’s initial conditions were from the task
distribution goal, the more significant the benefit increasing d. Although not pursued rigorously here, the
results seem to indicate that it is possible to determine an optimum value for d given the overall system
characteristics and goals. Such a result would benefit system designers who may incorporate compensation
techniques into worker algorithms to enable improved system performance.

7 Conclusions
Multi-scale systems are prevalent across observation scales and domains. Understanding their behaviour with
respect to information flows and control feedback is central to many pressing applications, from smart grids to
task planning and multi-scale governance structures. This study provided key general insights into their main
architectural aspects, in terms of information flow cycles and their timing interrelations. As a refinement of
the previously developed Multi-Scale Abstraction Feedbacks (MSAF) design pattern, we introduced a five-
step feedback cycle to characterize information flows across scales, composed of collection of state information,
state information abstraction, information processing, communication of control information, and adaptation
based on control information. We added two further actions – inter-cycle abstraction of state information
and inter-cycle communication of control information – to connect a two-scale feedback cycle to upper scales,
leading to multi-scale feedbacks.

We further extended the MSAF pattern via a reusable approach for analysing and evaluating various

32

designs and algorithms for multi-scale systems, in terms of convergence performance and behaviour, as well
as of associated resource consumption (i.e., information storage, processing, and communication). Results
obtained through an agent-based simulation for four exogenous coordination strategies highlighted essential
design questions about the effectiveness and efficiency of information abstraction and usage, at each scale,
while considering associated resource costs. Experiments also highlighted the impact of different timing
delays, and their interrelations, on convergence behaviour. These contributions offer an initial base to
analysts and designers of multi-scale systems, for better understanding, evaluating, and controlling existing
systems, and for better conceiving new ones.

While this paper focused on analysing coordination mechanisms with exogenous macro-entities, the MSAF
design pattern also includes the description of multi-scale systems with composed and micro-distributed
macro-entities, building towards a general theory of feedback in multi-scale systems. This study only
scratched the surface of the types of questions that could be addressed by such a theory. It raises fur-
ther significant research challenges to be tackled within each multi-scale problem domain, for example:

• What is the best way to abstract fine-grain information into coarse-grain information that is minimal
and yet sufficient for the coordination process, at each scale? In other words, what does the coordination
process at each scale need to know about the global state of lower scales?

• How can one determine the most effective and efficient use of available information, which comes at a
resource cost (at each scale)?

• How can different types of information abstraction help to render coordination processes more robust
and resilient to information errors, and/or more reactive and adaptable to relevant changes?

• How can coordination processes obtain new types of information and learn how to capitalise on them
(at each scale)?

8 Acknowledgments
We are very grateful to two anonymous reviewers for their constructive insights. We would also like to
thank all the participants of the Complex Systems Summer School (CSSS) of 2018, organised by the Santa
Fe Institute (SFI), for all the insightful discussions and ideas related to the presented topic. Finally, we
would like to thank Dr. Jean-Louis Dessalles, from Telecom Paris, for lucrative comments on information
abstraction.

33

A Appendix

A.1 Algorithms
For these algorithms, the information registers were renamed into pseudo-code variables as follows:

• individual-state becomes aggregOut ;

• collective-state becomes aggregIn;

• individual-control becomes feedbackIn;

• collective-control becomes feedbackOut ;

Algorithm 1 Generic feedback process

User input: number of workers |W |; number of hierarchical levels N ; worker goal for task-0 ; worker
goal for task-1 ; number of children-per-parent C; type of feedback-subalgorithm

if timestep == 1 then
each worker is assigned a random task between 0 and 1

end if

for each worker at level L0, randomly picked do
worker sends its current state to its parent manager’s aggreg-in
worker fetches feedback from feedback-out from its parent manager (if available)
worker computes what do to using worker-feedback-subalgorithm,
...using as inputs its current state and feedback-in (if available)
worker adapts and updates its current state

end for

for each mid-manager from level L1 to level LN−2, randomly picked at its level do
mid-manager computes feedback using midmanager-feedback-subalgorithm,
...using as inputs aggreg-in and feedback-in (if available)
mid-manager abstracts information from aggreg-in into aggreg-out
mid-manager sends aggreg-out to its parent manager
mid-manager sends feedback to children through feedback-out

end for

for the top manager at level N − 1 do
if aggreg-in is empty then

do nothing
else

top-manager computes feedback using topmanager-feedback-subalgorithm,
...using as input aggreg-in and goals
top-manager sends feedback to children through feedback-out

end if
end for

34

Algorithm 2 Worker algorithm for Random with Reward strategy
procedure workerRandomWithReward

if timestep == 0 then . this worker has not executed before
selectedTaskt+1 ← random(K) . pick a random task (here, either 0 or 1)

else
if rewardedt == false then . no reward granted in previous step

selectedTaskt+1 ← random(K) . pick a random task
else . reward granted in previous step

selectedTaskt+1 ← selectedTaskt . keep the currently selected task
end if

end if
rewarded← getReward(selectedTaskt+1) . get reward for selected task from parent manager

end procedure

Algorithm 3 Top-manager algorithm for Reward system
procedure initialise Rewards

for all i ∈ K do
rewardsi ← goalsi

end for
end procedure

procedure getReward(selectedTask)
if rewardsselectedTask > 0 then

rewardsselectedTask ← rewardsselectedTask − 1
return true . grant reward

else
return false . no reward

end if
end procedure

35

Algorithm 4 Worker Blackboard Strategy
procedure workerBB

feedbackIn[]← feedbackOut[] of myManager
if feedbackIn[] == null then

selectedTaskt+1 ← random(K) . pick random task
else

deltaselectedTaskt
← feedbackIn[selectedTaskt]

if deltaselectedTaskt
< 0 then

selectedTaskt+1 ← getNewTask(feedbackIn[], selectedTaskt)
end if

end if
aggregOut[]← selectedTaskt+1

send aggregOut[] to myManager
end procedure

procedure getNewTask(feedbackIn[], selectedTaskt)
positiveDeltas[]← all positive deltas from feedbackIn[]
if positiveDeltas[] == (null or empty) then

return selectedTaskt
else

randomIndex← random(randMax)
if randomIndex > 0 then

return selectedTaskt
else

newTask ← taskp with a probability proportional to postiveDeltas[taskp]∑
positiveDeltas[]

return newTask
end if

end if
end procedure

Algorithm 5 Mid-manager BB-Basic Strategy
procedure Mid-manager Procedure

feedbackIn[]← feedbackOut[] of myManager
for all deltaIni ∈ feedbackIn[] do

deltaOuti ← integer part of (deltaIni/childrenPerManager)
rest← remainder of (deltaIni/childrenPerManager)
randomV alue← random(100)
if (childId < rest) and (randomV alue < randomParam) then

deltaOuti ← deltaOuti + 1
end if
feedbackOut[i]← deltaOuti

end for
send aggregOut[] to myManager

end procedure

36

Algorithm 6 Top-manager BB-Basic Strategy
procedure Top-manager Procedure

for all aggregi ∈ aggregIn[] do
deltaOuti ← (goals[i]− aggregi)
feedbackOut[i]← deltaOuti

end for
end procedure

Algorithm 7 Worker Model Strategy
procedure workerModel

feedbackIn[][]← feedbackOut[][] of myManager
if feedbackIn[][] == null then

selectedTaskt+1 ← random(K) . pick random task
else

selectedTaskt+1 ← designatedIndex, where feedbackIn[childId[designatedIndex]]==1
. a single one will be set to 1

end if
send newTaskModel[] to myManager . via aggregOut

end procedure

Algorithm 8 Mid-manager Model Strategy
procedure midmanagerModel

feedbackIn[][]← feedbackOut[][] of myManager
for each child c in children do

workersPerBranch[c]← the number of workers for the sub-tree of child c
. based on the child’s taskModel (aggregIn[c])

end for
if feedbackIn[][] == null then

set equal goals for each taskid, with workersPerBranch[c] as the total tasks to perform
else

goalModel← feedbackIn[child− id]
for each goali of goalModel do

for each childj of children do
if goali < workersPerBranch[childj] then

allocate all tasks in goali to childj
decrement workersPerBranch[childj] by goali
set goali to 0 . this goal is now covered

else
allocate as many tasks as workersPerBranch[childj] to childj
decrement goali by workersPerBranch[childj]

. this goal is only partially covered by this child,
. the rest will be assigned to the other children

set workersPerBranch[childj] to 0 . this child can be assigned no more tasks
end if

end for
end for

end if
calculate and send aggregOut[] to myManager . taskModel sum-up of all children taskModels

end procedure

37

Algorithm 9 Worker Basic Strategy
procedure workerBasic

feedbackIn← feedbackOut of myManager . the error for task1
randomFloat← random ∈ [0, 1)
equalError ← feedbackIn/childrenPerManager
if randomFloat < equalError then

selectedTask ← the other task
end if
send selectedTask to myManager

end procedure

Algorithm 10 Mid-manager Basic Strategy
procedure midManagerBasic

feedbackIn← feedbackOut of myManager
feedbackOut← feedbackIn/childrenPerManager
aggregIn← aggregOut
send aggregOut to myManager

end procedure

38

A.2 Result Tables

Strategy 8 task0
8 task1

12 task0
4 task1

15 task0
1 task1

16 task0
0 task1

Blackboard 14 32.2 20.6 15
Rewards 2.5 3.2 4.1 4
Model 0.7 4 4 4
ModelRew 1.5 3.1 3.4 3.6
Basic 44 352.4 44081 not converging

Table 4: Average convergence steps for |W | = 16 workers, C = 2, and different goal task distributions

Strategy N=14
C=2

N=9
C=3

N=8
C=4

N=7
C=5

N=6
C=6

N=6
C=7

N=6
C=8

N=5
C=9

N=5
C=10

N=4
C=50

N=3
C=100

Blackboard 96 125 357 320 159 214 326 117 60 194 64
Rewards 12 12 12 12 12 12 12 12 12 12 12
Model 13 8 7 6 5 5 5 4 4 3 2
ModelRew 12 8 7 6 5 5 5 4 4 3 2

Table 5: Average convergence steps for |W | = 5000 workers, goals = [4000, 1000], and various children-per-
managers C, leading to different number of levels N

Strategy |W | = 16
goals = [12, 4]

|W | = 64
goals = [48, 16]

|W | = 256
goals = [192, 64]

|W | = 1024
goals = [768, 256]

|W | = 4096
goals = [3072, 1024]

Blackboard 10.9 32.4 54.5 73.8 163.6
Rewards 3.1 5.5 7.5 9.3 11.2
Model 2 3 4 5 6
ModelRew 1.8 2.9 4 5 6

Table 6: Average convergence for increasing number of workers |W |, C = 4, and goals = [0.25 ∗ |W |, 0.75 ∗
|W |]

References
[1] Kirstie Bellman et al. “Self-improving system integration-status and challenges after five years of

SISSY”. In: 2018 IEEE 3rd International Workshops on Foundations and Applications of Self* Systems
(FAS* W). IEEE. 2018, pp. 160–167.

[2] Gordon Blair. “Complex distributed systems: The need for fresh perspectives”. In: 2018 IEEE 38th
International Conference on Distributed Computing Systems (ICDCS). IEEE. 2018, pp. 1410–1421.

[3] Herbert A Simon. “The architecture of complexity”. In: Facets of systems science. Springer, 1991,
pp. 457–476.

[4] Herbert A Simon. The sciences of the artificial. MIT press, 2019.

[5] Arthur Koestler. “The ghost in the machine.” In: (1968).

[6] Howard Hunt Pattee. Hierarchy theory. Braziller., 1973.

[7] Valerie Ahl and TFH Allen. “Hierarchy theory: A vision, vocabulary and epistemology”. In: Journal of
Ecological Anthropology 3 (1999), pp. 85–86.

39

[8] GAJM Jagers op Akkerhuis. “The operator hierarchy: a chain of closures linking matter, life and
artificial intelligence”. In: (2010).

[9] Ada Diaconescu et al. “Hierarchical self-awareness and authority for scalable self-integrating systems”.
In: 2018 IEEE 3rd International Workshops on Foundations and Applications of Self* Systems (FAS*
W). IEEE. 2018, pp. 168–175.

[10] Ada Diaconescu, Louisa Jane Di Felice, and Patricia Mellodge. “Multi-Scale Feedbacks for Large-Scale
Coordination in Self-Systems”. In: 2019 IEEE 13th International Conference on Self-Adaptive and
Self-Organizing Systems (SASO). IEEE. 2019, pp. 137–142.

[11] Timothy FH Allen and Thomas B Starr. Hierarchy: perspectives for ecological complexity. University
of Chicago Press, 2017.

[12] Jianguo Wu. “Hierarchy theory: an overview”. In: Linking ecology and ethics for a changing world.
Springer, 2013, pp. 281–301.

[13] Sylvain Frey et al. “A generic holonic control architecture for heterogeneous multiscale and multiob-
jective smart microgrids”. In: ACM Transactions on Autonomous and Adaptive Systems (TAAS) 10.2
(2015), pp. 1–21.

[14] Holger Prothmann et al. “Organic traffic control”. In: Organic Computing—A Paradigm Shift for Com-
plex Systems. Springer, 2011, pp. 431–446.

[15] Robert I Davis and Alan Burns. “Resource sharing in hierarchical fixed priority pre-emptive systems”.
In: 2006 27th IEEE International Real-Time Systems Symposium (RTSS’06). IEEE. 2006, pp. 257–270.

[16] Volker Grimm et al. “A standard protocol for describing individual-based and agent-based models”. In:
Ecological modelling 198.1-2 (2006), pp. 115–126.

[17] Volker Grimm et al. “The ODD protocol: a review and first update”. In: Ecological modelling 221.23
(2010), pp. 2760–2768.

[18] Stanley N Salthe. Evolving hierarchical systems. Columbia University Press, 2010.

[19] Francis Heylighen. “Relational Closure: a mathematical concept for distinction-making and complexity
analysis”. In: Cybernetics and systems 90 (1990), pp. 335–342.

[20] Stuart A Kauffman. “Autocatalytic sets of proteins”. In: Journal of theoretical biology 119.1 (1986),
pp. 1–24.

[21] Earl H McKinney Jr and Charles J Yoos. “Information about information: A taxonomy of views”. In:
MIS quarterly (2010), pp. 329–344.

[22] Benjamin Blonder and Anna Dornhaus. “Time-ordered networks reveal limitations to information flow
in ant colonies”. In: PloS one 6.5 (2011).

[23] Henry Tutwiler Wright. The administration of rural production in an early Mesopotamian town. 38.
University of Michigan, 1969.

[24] Henry T Wright. “Recent research on the origin of the state”. In: Annual Review of Anthropology 6.1
(1977), pp. 379–397.

[25] Gregory A Johnson. “Organizational structure and scalar stress”. In: Theory and explanation in ar-
chaeology (1982), pp. 389–421.

[26] Herbert A Simon. “Decision-making and administrative organization”. In: Public Administration Review
4.1 (1944), pp. 16–30.

[27] Richard L Meier. “Communications stress”. In: Annual Review of Ecology and Systematics 3.1 (1972),
pp. 289–314.

[28] Thomas W Malone. “Modeling coordination in organizations and markets”. In: Management science
33.10 (1987), pp. 1317–1332.

40

[29] Tom De Wolf and Tom Holvoet. “Design patterns for decentralised coordination in self-organising
emergent systems”. In: International Workshop on Engineering Self-Organising Applications. Springer.
2006, pp. 28–49.

[30] Ada Diaconescu et al. “Hierarchical Self-Awareness and Authority for Scalable Self-Integrating Sys-
tems”. In: 2018 IEEE 3rd International Workshops on Foundations and Applications of Self* Sys-
tems (FAS*W), Trento, Italy, September 3-7, 2018. IEEE, 2018, pp. 168–175. doi: 10.1109/FAS-
W.2018.00043. url: https://doi.org/10.1109/FAS-W.2018.00043.

[31] Jacob Beal, Jeffrey Berliner, and Kevin Hunter. “Fast Precise Distributed Control for Energy Demand
Management”. In: Sixth IEEE International Conference on Self-Adaptive and Self-Organizing Systems,
SASO 2012, Lyon, France, September 10-14, 2012. IEEE Computer Society, 2012, pp. 187–192. doi:
10.1109/SASO.2012.12. url: https://doi.org/10.1109/SASO.2012.12.

[32] Marco Dorigo, Eric Bonabeau, and Guy Theraulaz. “Ant algorithms and stigmergy”. In: Future Gen-
eration Computer Systems 16.8 (2000), pp. 851–871.

[33] Adrian Bejan and Sylvie Lorente. “The constructal law of design and evolution in nature.” In: Philo-
sophical transactions of the Royal Society of London. Series B, Biological sciences 365.1545 (2010),
pp. 1335–47. doi: doi:10.1098/rstb.2009.0302.

[34] Ada Diaconescu et al. “Architectures for Collective Self-aware Computing Systems”. In: Self-Aware
Computing Systems. Ed. by Samuel Kounev et al. Springer International Publishing, 2017, pp. 191–
235. doi: 10.1007/978-3-319-47474-8_7. url: https://doi.org/10.1007/978-3-319-47474-
8%5C_7.

[35] Hartmut Schmeck et al. “Organic Computing - A Paradigm Shift for Complex Systems”. In: ed. by
Christian Müller-Schloer, Hartmut Schmeck, and Theo Ungerer. Springer, 2011, pp. 5–37. doi: 10.
1007/978-3-0348-0130-0_1. url: https://doi.org/10.1007/978-3-0348-0130-0%5C_1.

[36] Jeff Kramer and Jeff Magee. “A Rigorous Architectural Approach to Adaptive Software Engineering”.
In: J. Comput. Sci. Technol. 24.2 (2009), pp. 183–188. doi: 10.1007/s11390- 009-9216- 5. url:
https://doi.org/10.1007/s11390-009-9216-5.

[37] Rogério de Lemos et al. “Software Engineering for Self-Adaptive Systems: A Second Research Roadmap”.
In: Software Engineering for Self-Adaptive Systems II - International Seminar, Dagstuhl Castle, Ger-
many, October 24-29, 2010 Revised Selected and Invited Papers. Ed. by Rogério de Lemos et al.
Vol. 7475. Lecture Notes in Computer Science. Springer, 2010, pp. 1–32. doi: 10.1007/978- 3-
642-35813-5_1. url: https://doi.org/10.1007/978-3-642-35813-5%5C_1.

[38] Rodney A. Brooks. “A robust layered control system for a mobile robot”. In: IEEE J. Robotics and
Automation 2.1 (1986), pp. 14–23. doi: 10.1109/JRA.1986.1087032. url: https://doi.org/10.
1109/JRA.1986.1087032.

[39] W. Findeisen. Hierarchical Control Systems: An Introduction. IIASA Professional Paper. IIASA, Lax-
enburg, Austria, Apr. 1978. url: http://pure.iiasa.ac.at/id/eprint/923/.

[40] Gordon S. Blair, Thierry Coupaye, and Jean-Bernard Stefani. “Component-based architecture: the
Fractal initiative”. In: Annales des Télécommunications 64.1-2 (2009), pp. 1–4. doi: 10.1007/s12243-
009-0086-1. url: https://doi.org/10.1007/s12243-009-0086-1.

[41] Sebastian Rodriguez et al. “Holonic Multi-Agent Systems”. In: Self-organising Software - From Natural
to Artificial Adaptation. Ed. by Giovanna Di Marzo Serugendo, Marie-Pierre Gleizes, and Anthony
Karageorgos. Natural Computing Series. Springer, 2011, pp. 251–279. doi: 10.1007/978-3-642-
17348-6_11. url: https://doi.org/10.1007/978-3-642-17348-6%5C_11.

[42] Christopher Landauer and Kirstie L. Bellman. “New architectures for constructed complex systems”.
In: Appl. Math. Comput. 120.1-3 (2001), pp. 149–163. doi: 10.1016/S0096-3003(99)00240-4. url:
https://doi.org/10.1016/S0096-3003(99)00240-4.

41

[43] Ada Diaconescu et al. “Goal-Oriented Holonics for Complex System (Self-)Integration: Concepts and
Case Studies”. In: 10th IEEE International Conference on Self-Adaptive and Self-Organizing Systems,
SASO 2016, Augsburg, Germany, September 12-16, 2016. Ed. by Giacomo Cabri, Gauthier Picard,
and Niranjan Suri. IEEE Computer Society, 2016, pp. 100–109. doi: 10.1109/SASO.2016.16. url:
https://doi.org/10.1109/SASO.2016.16.

[44] Arthur Koestler. “Beyond atomism and holism—the concept of the holon”. In: Perspectives in Biology
and Medicine 13.2 (1970), pp. 131–154.

[45] Johannes van der Horst and Jason Noble. “Distributed and centralized task allocation: When and where
to use them”. In: 2010 Fourth IEEE International Conference on Self-Adaptive and Self-Organizing
Systems Workshop. IEEE. 2010, pp. 1–8.

[46] Ahmad Esmaeili et al. “A socially-based distributed self-organizing algorithm for holonic multi-agent
systems: Case study in a task environment”. In: Cognitive Systems Research 43 (2017), pp. 21–44.

[47] Alejandro Cornejo et al. “Task allocation in ant colonies”. In: International Symposium on Distributed
Computing. Springer. 2014, pp. 46–60.

[48] L. Urwick L. Gulick. “Papers on the Science of Administration”. In: Annual Review of Ecology and
Systematics (1937).

[49] Jessica Flack. “Coarse-graining as a downward causation mechanism”. In: Philosophical Transactions
of The Royal Society A Mathematical Physical and Engineering Sciences 375 (Dec. 2017), p. 20160338.
doi: 10.1098/rsta.2016.0338.

42

