Hugues Randriambololona 
  
Harder-Narasimhan theory for linear codes (with an appendix on Riemann-Roch theory)

In this text we develop some aspects of Harder-Narasimhan theory, slopes, semistability and canonical ltration, in the setting of combinatorial lattices.

Of noticeable importance is the Harder-Narasimhan structure associated to a Galois connection between two lattices. It applies, in particular, to matroids.

We then specialize this to linear codes. This could be done from at least three dierent approaches: using the sphere-packing analogy, or the geometric view, or the Galois connection construction just introduced. A remarkable fact is that these all lead to the same notion of semistability and canonical ltration.

Relations to previous propositions toward a classication of codes, and to Wei's generalized Hamming weight hierarchy, are also discussed.

Last, we study the two important questions of the preservation of semistability (or more generally the behaviour of slopes) under duality, and under tensor product. The former essentially follows from Wei's duality theorem for higher weightsand its matroid versionwhich we revisit in an appendix, developing analogues of the Riemann-Roch, Serre duality, Cliord, and gap and gonality sequence theorems. Likewise the latter is closely related to the bound on higher weights of a tensor product, conjectured by Wei and Yang, and proved by Schaathun in the geometric language, which we reformulate directly in terms of codes. From this material we then derive semistability of tensor product.

First approach: the sphere-packing analogy

A powerful guiding principle in arithmetic geometry is the analogy between number elds and function elds. This analogy already manifests itself when one considers linear algebra over these elds: it then translates into common properties shared by euclidean or hermitian lattices over rings of integers of number elds, and vector bundles over curves. The main motivation of the present work is to emphasize how some of these similarities extend to linear codes.

This will certainly be no surprise for anyone familiar with the subject. Indeed, many connections are known between codes and lattices on one side, and between codes and curves on the other. However, there might be a deeper explanation for this phenomenon.

Shortly said, a linear code is just a subspace of a nite dimensional L 1 space over a trivially valued eld. Following the philosophy of Arakelov theory, putting a metric on a linear object can be seen as a replacement for an integral structure. From this point of view, one could then argue that coding theory is nothing but linear algebra over a certain combinatorial base object of dimension one, hence of arithmetic nature.

The corpus of results that we would like to borrow from number theory and algebraic geometry into coding theory consists of two parts: rst of all, Harder-Narasimhan theory, and to a lesser extent, Riemann-Roch theory.

Harder and Narasimhan [START_REF] Harder | On the cohomology groups of moduli spaces of vector bundles on curves[END_REF] rst introduced slopes and the canonical ltration as a tool in the computation of the number of points (and more generally the étale cohomology) of certain moduli spaces over nite elds. The analogue for euclidean and hermitian lattices was then developed by Stuhler [START_REF] Stuhler | Eine Bemerkung zur Reduktionstheorie quadratischer Formen[END_REF] and

Grayson [START_REF] Grayson | Reduction theory using semistability[END_REF]. The theory subsequently saw multiple extensions, and propositions toward a more unied understanding were made, especially in a categorical framework [1][8].

Our aim is more modest. We will completely ignore functoriality issues, and focus on the more elementary combinatorial aspects. For this we rst develop the theory in the context of combinatorial lattices 1 : what makes Harder-Narasimhan theory work is the existence of certain features, such as the so-called second isomorphism theorem, and also rank and degree functions satisfying Grayson's parallelogram constraint. It turns out these are well captured by a classical notion in combinatorial lattice theory, that of (semi)modularity. This allows us to present Harder-Narasimhan theory under minimalist hypotheses.

2 As an illustration, we then explain how a Galois connection between two lattices canonically produces a Harder-Narasimhan structure on them.

Specializing to codes, the most natural approach is perhaps to take inspiration from the analogy with euclidean lattices, where the degree function is -log of the covolume of a sublattice. We claim that the right analogue of the covolume is the support size of a subcode. This allows us to dene slopes, the canonical ltration of a code, and a notion of semistability, using the degree function

deg(C ) = n -w(C )
for a subcode C of a [n, k]-code C. However other approaches are possible, for instance, via algebraic geometry using the equivalence with congurations of points in a projective space, or via our combinatorial lattice construction using a certain natural Galois connection. A very satisfactory result is that all these approaches lead to the same theory.

Our denition of the degree function from the support size implies a close link with Wei's generalized weight hierarchy d i (C) from [START_REF] Wei | Generalized Hamming weights for linear codes[END_REF]: the canonical polygon of C is the upper convex envelope of the set of points {(i, n -d i (C)) : 0 ≤ i ≤ k}.

If this polygon has N sides, the code admits a canonically dened N -step ltration

0 = C 0 C 1 • • • C N = C.
However, for codes used in practical applications, this will essentially always be trivial (N = 1): these codes are stable, and our construction becomes void.

Thus it is to be expected that true coding specialists will nd the present work pointless. Probably, meaningful uses of the theory would appear only when considering questions involving the class of all codes, good and bad.

In most Harder-Narasimhan categories, semistability is preserved under duality. We show it is true for codes, and more generally, we explain how the slopes and canonical ltration of C and C ⊥ are related.

Less clear is the preservation of semistability under tensor product. It is known to be true for vector bundles over curves in characteristic zero, but false in positive characteristic, where counter-examples have been constructed [START_REF] Gieseker | Stable vector bundles and the Frobenius morphism[END_REF]. For euclidean and hermitian lattices the question has been popularized by Bost and is still open, despite recent progress [START_REF] Bost | Concerning the semistability of tensor products in Arakelov geometry[END_REF][16] that allow to settle low dimensional cases, or lattices admitting a large group of automorphisms. We show it holds for codes, where it is closely related to Schaathun's lower bound on higher weights of a tensor product. Schaathun's proof [START_REF] Schaathun | The weight hierarchy of product codes[END_REF] is written in the geometric language, in terms of projective systems of points. We reformulate (and somehow simplify) the proof, directly in terms of codes, and then derive semistability of tensor product, with the hope that it could provide inspiration for new advances in the euclidean lattice situation.

The Riemann-Roch and Serre duality theorems certainly form the core of the theory of algebraic curves, on which almost all other results are based. In particular the Riemann-Roch theorem is closely related to the functional equation of the zeta function of a curve [46][48, 5.1]. Analogues for euclidean and hermitian lattices over integers of number elds have been developed at various levels of sophistication, based on the functional equation of the theta function [START_REF] Tate | Fourier analysis in number elds, and Hecke's zeta-functions[END_REF], or using the language of Arakelov theory [START_REF] Szpiro | Degrés, intersections, hauteurs. In: Séminaire sur les pinceaux arithmétiques. La conjecture de Mordell[END_REF][41] [START_REF] Soulé | Hermitian vector bundles on arithmetic varieties[END_REF], or a combination of both [START_REF] Roessler | The Riemann-Roch theorem for arithmetic curves[END_REF][40] [START_REF] Groenewegen | An arithmetic analogue of Cliord's theorem[END_REF][34] [START_REF] Bost | Theta invariants of euclidean lattices and innite-dimensional hermitian vector bundles over arithmetic curves[END_REF] (references in chronological order).

Linear codes also admit zeta functions with a functional equation [START_REF] Duursma | Weight distributions of geometric Goppa codes[END_REF], and we can see the MacWilliams relation for the weight enumerator as an analogue of the functional equation of the theta function. This suggests that some sort of Riemann-Roch theory should exist also for codes. And indeed, in an appendix that can be read independently, we propose a denition of H 0 and H 1 spaces for codes that satisfy analogues of Serre duality and Riemann-Roch (see Theorems 48 and 49), and seem to t well in this framework. Maybe these notions are not entirely new: previous occurrences can be hinted, for instance, in [START_REF] Duursma | Combinatorics of the two-variable zeta function[END_REF].

However our version is more precise and makes the analogy very explicit.

This Riemann-Roch theory can serve as a nice way to present the behaviour of slopes and canonical ltration under duality. It can also be used to reprove Wei's duality theorem for higher weights [START_REF] Wei | Generalized Hamming weights for linear codes[END_REF].

Closely related to linear codes is the notion of matroid. Whenever possible, we tried to explain how our theory extends in this framework. Matroids also admit slopes and a canonical ltration, hence a notion of semistability. They satisfy a form of Riemann-Roch theory, from which duality results for their slopes and canonical ltration can be derived, extending those for codes. We do not try to extend the notion of tensor product to matroids, although this certainly is an interesting question.

Satisfactorily, matroid theory recently gained interest among algebraic and arithmetic geometers (we refer to [START_REF] Katz | Matroid theory for algebraic geometers[END_REF] for an introduction to this topic), especially thanks to its interplay with non-archimedean and tropical geometry.

Relevant in this context is the Riemann-Roch theorem for graphs of [START_REF] Baker | Riemann-Roch and Abel-Jacobi theory on a nite graph[END_REF], and its many further generalizations. To any graph there is an associated matroid, however, it is unclear whether our Riemann-Roch theorem for matroids and this Riemann-Roch theorem for graphs could be related. Last, a very elaborate cohomology theory for matroids was recently introduced in [START_REF] Adiprasito | Hodge theory for combinatorial geometries[END_REF]. Again, to which extent our work could possibly relate to it remains unclear.

We will borrow some notations commonly used in combinatorial theory. We let [n] = {1, . . . , n} be the standard set with n elements. Given a set S, we identify S n with S [n] . We also let 2 S stand for the set of all subsets of S, and S n for the set of its subsets of cardinality n.

Most of the content of this text was known to the author since at least half a dozen years. Impetus for writing it down and making it publicly available was provided by ANR-14-CE25-0015 project Gardio and ANR-15-CE39-0013 project Manta.

1. Harder-Narasimhan theory for combinatorial lattices Basic denitions.

We recall that a combinatorial lattice (L, ⊆, ∧, ∨) is a poset in which any two elements admit a meet and a join. Here the symbol ⊆ stands for an abstract partial order relation, although in many examples it will be set inclusion, hence our notation. We will use the book [START_REF] Birkho | Lattice theory[END_REF] as our main reference on this topic.

A lattice L is said to be of nite length if there is a nite upper bound on the length of chains in L. Unless otherwise specied, this will always be the case in this work. Then L admits a minimal element, say 0 L , and also a maximal element, say 1 L . We dene the rank rk(x) of an element x ∈ L as the maximal length of a chain from 0 L to x. Note that our terminology here departs slightly from [START_REF] Birkho | Lattice theory[END_REF] and the standard literature, where our notion of rank is more commonly called height. Given x, y ∈ L with y ⊆ x, we will let x/y stand for the sublattice of L made of all z with y ⊆ z ⊆ x. Sometimes, by abuse of notation, it will also be tempting to let x stand for x/0 L ; we might use this licence occasionally, although we will refrain from doing so too often (observe it makes the notations y ⊆ x and y ∈ x interchangeable). Likewise, we might occasionally write L/y for 1 L /y.

In this work we will only consider modular lattices [3, I.7]. There are various equivalent characterizations of this important notion. We will use the one from [START_REF] Birkho | Lattice theory[END_REF]II.8,Th. 16]. First we recall that a function f : L -→ R is said lower semimodular if for any x, y ∈ L we have

f (x) + f (y) ≤ f (x ∨ y) + f (x ∧ y). ( 1 
)
Dually f is upper semimodular if -f is lower semimodular. And f is modular if it is both lower and upper semimodular, that is, if for any x, y ∈ L we have

f (x) + f (y) = f (x ∨ y) + f (x ∧ y). (2)
Then, a lattice L of nite length is modular if and only if it satises the following two conditions:

• the rank function rk : L -→ Z is modular, and moreover

• (Jordan-Dedekind) all maximal chains between two y ⊆ x in L have the same length, necessarily equal to rk(x) -rk(y).

It is known that for any x, y in a modular lattice, we have a natural identication (x ∨ y)/y x/(x ∧ y) Lemma 2. Suppose (L, deg) is a Harder-Narasimhan lattice, and let L be an- other modular lattice of nite length together with a morphism L -→ L (meaning that it respects meet and join). Then pulling back the degree function to L makes it into a Harder-Narasimhan lattice.

In particular, for any elements y ⊆ x in L, the sublattice x/y is a Harder-Narasimhan lattice.

Proof. Clear.

To any x ∈ L we associate a point p x in the real plane, with coordinates p x = (rk(x), deg(x)). Graphically, the modularity and semimodularity relations where by abuse of notation we set rk(L) = rk(1 L ). Accordingly, given y x in 3 Actually, in Grayson's original paper the constraint goes in the opposite direction. This is because his sign convention for the degree function makes it upper semimodular instead of lower semimodular.

L, the slope from y to x is

µ(x/y) = deg(x) -deg(y) rk(x) -rk(y) (4) 
that is, the slope of the line segment joining p y to p x . We also dene the slope of x = 0 L to be µ(x/0 L ) and the co-slope of x = 1 L to be µ(1 L /x).

Lemma 3. Let (L, deg) be a Harder-Narasimhan lattice. Then the degree function deg is bounded from above.

Proof. We proceed by induction on the length n = rk(L) of L. can be arbitrarily large when deg(x) is. This means precisely that E r+1 is unbounded, contradicting the maximality of r.

E r = {deg(x) : x ∈ L, rk(x) = r} is unbounded (observe r ≤ n -1 since E n = {deg(1 L )} is nite). Now x
This boundedness allows us to dene a concave, piecewise linear function

P L : [0, rk(L)] -→ R (5)
as the inmum of all linear functions whose graph lies above the set {p x : x ∈ L}.

The graph of P L is then called the canonical polygon of L.

Let N be the number of sides of this polygon, and label its vertices (i α , P L (i α )), for 0 ≤ α ≤ N , according to increasing rk-coordinate Actually, depending on the authors, there are two conicting labeling schemes for these successive slopes. One rst variant would be to dene the i-th slope of L as P L (i) -P L (i -1), for 1 ≤ i ≤ rk(L). This gives a non-increasing sequence, with repetition allowed. The other variant, which is the one we will adopt, is to extract only the set of distinct values from this sequence. So, for 1 ≤ α ≤ N , we dene the α-th slope of L as

0 = i 0 < i 1 < • • • < i N = rk(L).
µ α (L) = P L (i α ) -P L (i α -1) = P L (i α ) -P L (i α-1 ) i α -i α-1 . (7) 
This gives a strictly decreasing sequence. We also set µ max = µ 1 and µ min = µ N .

By construction we then have

µ max (L) ≥ µ(L) = 1 rk(L) 1≤α≤N (i α -i α-1 )µ α (L) ≥ µ min (L). ( 8 
)
Many examples of Harder-Narasimhan lattices satisfy a Northcott-type property, which reads that for any real B, there are only nitely many x ∈ L with deg(x) ≥ B. Thus, under this hypothesis, for any i, the supremum sup rk(x)=i deg(x) is attained. In particular, for any α, there is an x α ∈ L with rk(x α ) = i α and deg(x α ) = P L (i α ); that means p xα is the corresponding vertex of the canonical polygon. It turns out this last assertion holds unconditionally, as will be seen in Theorem 6 below. Lemma 5. Let x, y ∈ L satisfy rk(y) = i β ≤ rk(x) = i α but y ⊆ x. Suppose deg(x) ≥ P L (i α ) -ε for some ε > 0. Then we have deg(y)

≤ P L (i β ) -(µ β (L) - µ α+1 (L)) + ε.
Proof. This is a consequence of the parallelogram constraint (3). Indeed, since y ⊆ x, we have rk(x ∧ y) < i β , so we can write rk(x ∧ y) = i β -k with k ≥ 1, and then rk(x ∨ y) = i α + k. By concavity of P L and by denition of the slopes we deduce deg(x ∧ y) ≤ P L (i β ) -kµ β (L) and deg(x ∨ y) ≤ P L (i α ) + kµ α+1 (L). From semimodularity of the degree we then conclude deg(y)

≤ deg(x ∧ y) + deg(x ∨ y) -deg(x) ≤ P L (i β ) -k(µ β (L) -µ α+1 (L)) + ε.
Theorem 6 (compare [START_REF] Grayson | Reduction theory using semistability[END_REF]Th. 1.18]). Let L be a Harder-Narasimhan lattice.

(i) For any α, there is an

x α ∈ L with rk(x α ) = i α and deg(x α ) = P L (i α ).
Moreover this x α is unique, and in fact any y = x α with rk(y) = i α is subject to the gap condition

deg(y) ≤ P L (i α ) -(µ α (L) -µ α+1 (L)).
(ii) These x α form a chain, i.e. for β ≤ α we have x β ⊆ x α .

Proof. The rst assertion follows from Lemma 5 with β = α and ε → 0. Likewise for the second assertion, if we set x = x α and y = x β and take ε small enough, then from x β ⊆ x α we would get a contradiction in Lemma 5.

Denition 7. This chain

0 L = x 0 x 1 • • • x N = 1 L , with p xα = (i α , P L (i α ))
, is called the canonical ltration of 1 L (or of L). Denition 8. We say L is semistable if its canonical ltration is trivial, which means L has only one slope (N = 1), or equivalently, if any x = 0 L , 1 L has slope µ(x/0 L ) ≤ µ(L), or equivalently, co-slope µ(1 L /x) ≥ µ(L).

Moreover we say L is stable if any x = 0 L , 1 L has slope µ(x/0 L ) < µ(L), or equivalently, co-slope µ(1 L /x) > µ(L).

Proposition 9. Let L be a Harder-Narasimhan lattice.

(i) Let x ∈ L, x = 0 L , 1 L , with µ min (x/0 L ) ≥ µ max (1 L /x).
Then the canonical polygon of L can be obtained by pasting together those of x/0 L and 1 L /x.

(ii) Let x ∈ L, x = 0 L , 1 L . Then x is part of the canonical ltration of L if and only if µ min (x/0 L ) > µ max (1 L /x). (iii) A chain 0 L = x 0 x 1 • • • x N = 1 L is the canonical ltration of L if and only if all x i /x i-1 are semistable with µ(x i+1 /x i ) > µ(x i /x i-1 ).
Proof. 

b + cµ 1 > • • • > b + cµ N .
As a consequence, as soon as one of these Harder-Narasimhan lattice is semistable (resp. stable), then all of them are.

Proof. Clear.

We will say (L, deg) is normalized if deg(0 L ) = 0. We will say it is conormalized if deg(1 L ) = 0. Thanks to the second part of the Lemma, we see that it is always possible to modify the degree function in order to force one, or even both of these conditions, without changing the essential properties of the lattice.

Example 11. We recall that a matroid [START_REF] Whitney | On the abstract properties of linear independence[END_REF][21] is a pair M = (E, I) where E is a set, and I ⊆ 2 E a collection of subsets of E (the independent sets), such that:

• ∅ ∈ I;

• if I ∈ I and I ⊆ I, then I ∈ I;

• if I 1 , I 2 ∈ I and #I 1 < #I 2 , then there is some e ∈ I 2 \ I 1 such that I 1 ∪ {e} ∈ I.
For any subset J ⊆ E (not necessarily independent) we set r(J) = max{#I :

I ∈ I, I ⊆ J}. (9) 
It is easily seen [START_REF] Oxley | Matroid theory[END_REF]Lemma 1.3.1] that this function r is upper semimodular.

As a consequence, if E is nite, the lattice L E of all subsets of E is modular of nite length, and becomes a Harder-Narasimhan lattice thanks to the degree function

deg(J) = k -r(J) (10) 
where k could be any arbitrary constant; we will set k = r(E), which makes deg nonnegative and co-normalized.

We observe a quite unfortunate conict between the well-established terminology of the domain and ours. Indeed, r(J) is traditionally called the rank of J, while for us the rank of J in L E is #J. Worse, some authors in matroid theory call #J the degree of J! An explanation for this inversion of terms will come from Remark 21 below.

Example 12. Let E be a vector bundle, i.e. a locally free sheaf of nite rank, on a projective curve over a eld. Given a subsheaf F ⊆ E, we let F sat be the smallest subsheaf of E containing F such that E/F sat is locally free. We say F is saturated if F = F sat . The saturated subsheaves of E form a modular lattice L E of nite length, whose meet and join are given by F ∧ F = F ∩ F and F ∨ F = (F + F ) sat . Then, the usual degree function for vector bundles is lower semimodular on L E , so it makes it into a Harder-Narasimhan lattice.

Its canonical ltration was rst introduced by Harder and Narasimhan [START_REF] Harder | On the cohomology groups of moduli spaces of vector bundles on curves[END_REF] as a tool in the computation of the number of points (and more generally the étale cohomology) of certain moduli spaces over nite elds.

Example 13. Let E be a euclidean lattice, i.e. a free Z-module of nite rank, equipped with a positive denite scalar product. Given a submodule F ⊆ E, we let F sat be the smallest submodule of E containing F such that E/F sat is torsion-free. We say F is saturated if F = F sat . The saturated submodules of E form a modular lattice L E of nite length, whose meet and join are given by F ∧ F = F ∩ F and F ∨ F = (F + F ) sat . Then, the arithmetic degree function deg(F ) = -log covol(F ) is lower semimodular on L E , so it makes it into a

Harder-Narasimhan lattice. The analogy with Example 12 was rst noticed by

Stuhler [START_REF] Stuhler | Eine Bemerkung zur Reduktionstheorie quadratischer Formen[END_REF] and used to revisit certain results in reduction theory. It was then generalized by Grayson [18] in order to study the cohomology of arithmetic groups, by constructing manifolds with boundary on which the group naturally acts, alternative to those of [START_REF] Borel | Corners and arithmetic groups[END_REF].

Remark 14. In both Examples 12 and 13 the rank and degree functions on L E naturally extend to the lattice L E of all (possibly non-saturated) submodules of E, and they still satisfy the parallelogram constraint (3). As a consequence, although L E is not of nite length so our Denition 1 does not apply, slopes and the canonical ltration are still well dened for L E , and they coincide with those of L E . In fact the map F → F sat from L E onto L E is a morphism of lattices, and it is interesting to note that the degree function becomes modular when restricted to its bers. Continuing in this spirit it is possible to generalize our theory to lattices that are not of nite length. Moreover, adding suitable topological conditions, it is even possible to allow the degree function to be R-valued instead of Z-valued. We will not elaborate on these ideas since they are not needed in the sequel.

Remark 15. In most Harder-Narasimhan categories (in the sense of [START_REF] Chen | Harder-Narasimhan categories[END_REF]), the lattice of subobjects of an object is a Harder-Narasimhan lattice in our sense.

However, this fails for [8, Ex. 2], the category of vector spaces with two hermitian norms. Actually, the degree function in this category does not satisfy our semimodularity condition, which [START_REF] Chen | Harder-Narasimhan categories[END_REF] omitted in its denitions. This omission leads to certain problems, for instance, the proof of [8, Prop. 4.5] is incorrect (the equality in [8, p. 195, l. 10] holds only if the exact sequence lies in E A , which is not assumed). A corrected version had been planned [9].

Still, vector spaces with two norms enjoy certain properties very close to ours, and it would be intesting to investigate whether a weaker version of Harder-Narasimhan theory could be developed in order to reect this.

Modular lattices under a Galois connection.

We recall [3, V.8] that a Galois connection between two lattices L and M is a pair of order-reversing4 maps (.) • : L → M and (.)

• : M → L such that any x in L or M satises x ⊆ x •• . (11) 
It then follows that

x • = x ••• , hence the map x → x = x •
• is a closure operator on L and on M , i.e. it satises x ⊆ x and x = x. We say x is closed if x = x, which happens precisely when x is of the form x = a • for some a (e.g. a = x • ). It is also easily shown that for any l ∈ L and m ∈ M we have

l ⊆ m • ⇐⇒ m ⊆ l • , (12) 
and in fact one could show conversely that this property entirely characterizes Galois connections, i.e. that [START_REF] Dolgachev | Lectures on invariant theory[END_REF] implies the conditions in the denition.

Proposition 16. Let L, M be given with such a Galois connection, and take x, y ∈ L or x, y ∈ M . Then we have

x • ∨ y • ⊆ (x ∧ y) • (13) 
and

x • ∧ y • = (x ∨ y) • . (14) 
Proof. Since (.)

• is order-reversing we get x • ⊆ (x ∧ y) • and y • ⊆ (x ∧ y) • , hence (13). Likewise we get x • ⊇ (x ∨ y) • and y • ⊇ (x ∨ y) • , hence x • ∧ y • ⊇ (x ∨ y) • (15) 
which is half of ( 14).

On the other hand by ( 11) and ( 13) we have

x ∨ y ⊆ x •• ∨ y •• ⊆ (x • ∧ y • ) • . ( 16 
)
Applying [START_REF] Dolgachev | Lectures on invariant theory[END_REF] we deduce x • ∧ y • ⊆ (x ∨ y) • and conclude.

As a consequence we get that the subset L cl of closed elements in L is a lattice with meet x ∧ y and join x ∨ y, so the natural map (.) : L → L cl becomes a morphism of lattices (although we will make no use of it, it is amusing to note the analogy with the map (.) sat : L E → L E of Remark 14). Moreover, (.) • then becomes an anti-isomorphism between the lattices L cl and M cl . Theorem 17. Let L, M be two modular lattices of nite length. Let rk L be the natural rank function of L, and rk M that of M . Suppose given a Galois connection (.) • between L and M . Then the degree functions

deg L (l) = rk M (l • )
and deg M (m) = rk L (m • ), for l ∈ L and m ∈ M , make L and M into Harder-Narasimhan lattices.

Proof. The roles of L and M being symmetric, it suces to show that deg L is lower semimodular. And indeed, for x, y ∈ L we nd

deg L (x) + deg L (y) = rk M (x • ) + rk M (y • ) = rk M (x • ∨ y • ) + rk M (x • ∧ y • ) ≤ rk M ((x ∧ y) • ) + rk M ((x ∨ y) • ) = deg L (x ∧ y) + deg L (x ∨ y) (17)
where we used that rk M is modular and the intermediate inequality comes from Proposition 16.

Because of the identity x

••• = x • , we observe that all l ∈ L satisfy deg L (l) = deg L (l) (18) and likewise deg M (m) = deg M (m) for all m ∈ M .
It is easily seen (say from ( 12)) that we have 0 • L = 1 M and 0 • M = 1 L , hence 1 L and 1 M are closed. From this we also nd 1 • M = 0 L and 1 • L = 0 M , which motivates the following:

Denition 18. We say that L is separated (with respect to the given Galois

connection) if 1 • M = 0 L , or equivalently, if 0 L = 0 L is closed.
And we say the Galois connection is separated if both L and M are.

Any Galois connection between L and M induces (by restriction) a separated Galois connection between L/0 L and M/0 M . So by Theorem 17 it denes a degree function on L/0 L (resp. on M/0 M ), which is just a translate of the restriction of the degree function of L (resp. of M ). Moreover, an element

x in L/0 L (resp. in M/0 M ) is closed if and only if it is closed in L (resp. in M ).
Lemma 19. We have µ max (L) ≤ 0 and deg M (1 M ) ≥ 0. Moreover, the following assertions are equivalent:

• µ max (L) = 0 • deg M (1 M ) > 0 • L is not separated.
If any of these assertions holds, the rst nonzero element of the canonical ltration of L is 0 L , with slope 0, and rank rk L (0 L ) = deg M (1 M ). And then the subsequent elements of the canonical ltration of L, and its subsequent slopes, are those of L/0 L (relative to the induced separated Galois connection).

Proof. Let 0 L = x 0 x 1 • • • x N = 1 L be the canonical ltration of L. Then x • 1 ⊆ x • 0 , so deg L (x 1 ) = rk L (x • 1 ) ≤ rk L (x • 0 ) = deg L (x 0 ), hence µ 1 ≤ 0. Moreover if µ 1 = 0, which means deg L (x 1 ) = deg L (x 0 ), then necessarily x • 1 = x • 0 = 1 M , hence 1 • M ⊇ x 1 , and deg M (1 M ) = rk L (1 • M ) ≥ rk L (x 1 ) > 0. In turn if deg M (1 M ) = rk L (1 • M ) > 0, then 0 L = 1 • M 0 L , so L is not separated. Last, if L is not separated, then µ 1 ≥ µ(0 L /0 L ) = 0, so µ 1 = 0.
This shows the equivalence of the three conditions. Now if any of them holds, say the rst one, then x 1 is the largest element of In particular, if the Galois connection is separated, these canonical polygons are dened, respectively, by functions

L with x • 1 = 1 M , which means x 1 = 1 • M = 0 L .
P L,M : [0, rk(L)] → [0, rk(M )] and P M,L : [0, rk(M )] → [0, rk(L)],
that are inverse of each other.

More precisely, suppose that the Galois connection is separated, and let L have canonical ltration

0 L = x 0 x 1 • • • x N = 1 L with slopes µ 1 > • • • > µ N .
Then the x α are closed, the µ α are negative, and M has canonical ltration

0 M = x • N x • N -1 • • • x • 0 = 1 M with slopes µ -1 N > • • • > µ -1 1 .
In particular, L is semistable if and only if M is.

Proof (abridged). Direct consequence of the symmetry between (L, deg L ) and

(M, deg M ) in Theorem 17.
Proof (detailed). Thanks to Lemma 19, the rst assertion reduces to the second.

So we suppose the Galois connection is separated (and in particular 0 L = x 0 is closed). By Lemma 19 again, we deduce µ 1 < 0, hence all µ α < 0.

For any real ν > 0 consider the function Φ L,ν on L dened by

Φ L,ν (l) = ν rk L (l) + deg L (l), (19) 
which we might also view as the linear form (ξ, η) → νξ + η on the real plane, evaluated at the point p l = (rk L (l), deg L (l)).

Observe the following Fact: if l is not closed, then rk L (l) > rk L (l), while deg L (l) = deg L (l) by ( 18), hence Φ L,ν (l) > Φ L,ν (l). That µ α is the α-th slope of the canonical polygon of L means that there is a certain constant c α such that all l ∈ L satisfy Φ L,-µα (l) ≤ c α [START_REF] Mumford | Geometric invariant theory[END_REF] and that equality is eectively attained for at least two l, the smallest of which being x α-1 , and the largest x α .

Since Φ L,-µα (x α ) = c α but Φ L,-µα (x α ) > c α is forbidden, then from the Fact just above we deduce that x α = x α is closed.

Last take m ∈ M , and write [START_REF] Mumford | Geometric invariant theory[END_REF] in the form

(-µ α ) rk L (l) + rk M (l • ) ≤ c α . (21) 
Setting l = m • we then nd

rk L (m • ) + (-µ -1 α ) rk M (m •• ) ≤ (-µ -1 α )c α , (22) 
and since rk M (m)

≤ rk M (m •• ) we deduce Φ M,-µ -1 α (m) ≤ c α (23) 
with c α = (-µ -1 α )c α . Moreover a necessary and sucient condition for equality in [START_REF] Schaathun | The weight hierarchy of product codes[END_REF] is that l = m • reaches equality in [START_REF] Mumford | Geometric invariant theory[END_REF] and m = m •• is closed. Thus we see that equality is attained for at least two m, the smallest of which being x • α , and the largest x • α-1 . This means precisely that µ -1 α is a slope of M , and x • α and x • α-1 the corresponding successive elements of its canonical ltration.

Remark 21. In the proof of Theorem 17, we observe that (17) still works if rk M is only assumed lower semimodular, instead of modular. We deduce:

Let (.) • be a Galois connection between a modular lattice L of nite length and a lower semimodular lattice M . Then the degree function

deg L (l) = rk M (l • ) (24)
makes L into a Harder-Narasimhan lattice.

Now let E be a nite matroid, and let L E, be its lattice of ats [21, 1.7]. It is known that L E, is upper semimodular, so the opposite lattice L opp E, is lower semimodular. Let then L E be the (modular) lattice of all subsets of E. We dene a Galois connection between L E and L opp E, as follows: in one direction, we map any X ∈ L E to its closure (or span) in L opp E, ; in the other direction, we just use the forgetful map, i.e. the natural inclusion L opp E, → L E . Observe these maps are order reversing, by denition of the opposite lattice.

It is then easily seen that, under this Galois connection, the degree function on L E given by [START_REF] Slepian | Some further theory of group codes[END_REF] coincides with [START_REF] Conway | Sphere packings, lattices and groups (3rd ed)[END_REF] in Example 11.

Linear codes

From now on we will use the following notations:

• n ≥ 1 is an integer;

• [n] = {1, . . . , n} is the standard set with n elements • F is a eld;

• |.| is the trivial absolute value on F, so |0| = 0 and |x| = 1 for x ∈ F × ;

• . is the corresponding L 1 norm on the standard F-vector space F n , also called the Hamming norm.

It follows that for x = (x 1 , . . . , x n ) ∈ F n we have

x = |x 1 | + • • • + |x n | = # Supp(x) (25) 
where Supp(x) = {i ∈ [n] : x i = 0} is the support of x. Now we recall that a (linear) code of length n and dimension k over F,

sometimes called a [n, k]-code, is a k-dimensional vector subspace C ⊆ F n (26)
equipped with the induced norm. Beside its length and dimension, another important parameter of a code is its minimal distance

d min (C) = λ 1 (C) = min c∈C\{0} c . (27) A [n, k]-code with minimum distance d is also called a [n, k, d]-code.
The denition of a code we just gave was oriented in a way to stress some similarity with certain branches of arithmetic geometry (e.g. Arakelov, Berkovich, or tropical geometry), where metrics are introduced in order to reect a certain integral structure in the objects considered. However, this analogy is certainly not perfect. For instance, arithmeticians tend to favor metrics that satisfy the ultrametric inequality. We observe that in our case, although the trivial absolute value |.| is ultrametric, the Hamming norm . , as a L 1 norm, is not.

First approach: the sphere-packing analogy.

Many deep connections exist between the theory of codes and that of euclidean lattices. Classical references on this topic are [10][14]. Perhaps the similarity between these objects becomes the most striking when both are viewed as dening regular packings: of Hamming spheres in F n for codes, and of euclidean spheres in R n for lattices. In both cases, a central problem is then that of the determination of the densest such packings. However, many other notions and problems, either purely mathematical or more algorithmic, can be formulated in a very similar way in both contexts, and are equally interesting. Let us just mention Minkowski's successive minima, which generalize the notion of the minimum distance of a lattice, and whose analogues, the successive minima of our

[n, k]-code C, can be dened as

λ i (C) = min{t > 0 : dim F C ∩ B . (0, t) ≥ i} (28) 
for 1 ≤ i ≤ k. On the other hand, as discussed in [START_REF] Borek | Successive minima and slopes of hermitian vector bundles over number elds[END_REF][6] [START_REF] Bost | Hermitian vector bundles and extension groups on arithmetic schemes. I. Geometry of numbers[END_REF], slopes of euclidean lattices are known to be closely related to successive minima, while enjoying better functorial properties. Our aim here will be to nd the analogue of this theory for codes. That is, we want to dene a suitable degree function that makes the lattice L C of linear subspaces of C into a Harder-Narasimhan lattice, in a way as close as possible to Example 13.

In Example 13, the degree of F ⊆ E is an elementary function of its covolume covol(F ). When F has rank 1, this covolume is just the norm of a generating vector. Now for a subcode C ⊆ C of dimension 1, all generating vectors have the same norm, which is also the cardinality of their common support. This suggests more generally that the analogue of the covolume for an arbitrary subcode C ⊆ C should be the cardinality of its support

Supp(C ) = c∈C Supp(c) = {i ∈ [n] : ∃c = (c 1 , . . . , c n ) ∈ C , c i = 0}. (29)
And then the degree should be an elementary function of this support size. Denition 22. Let C ⊆ F n be a [n, k]-code. We dene the degree of a linear subcode C ⊆ C by the formula deg(C ) = n -w(C ) [START_REF] Wei | On the generalized Hamming weights of product codes[END_REF] where w(C ) = # Supp(C ) is its support size.

In fact, since degree functions diering only by an additive constant dene the same slopes (Lemma 10), we could equally well have used -w(C ) in Denition 22 instead of n -w(C ). Still, for reasons that will appear later, we will keep this choice, even if a peculiar consequence is that the zero subcode then has degree deg(0) = n.

Proposition 23. This degree function deg : L C -→ {0, . . . , n} is lower semimodular, so it makes L C into a Harder-Narasimhan lattice. Proof. Observe that for linear subcodes C , C ⊆ C we have

Supp(C + C ) = Supp(C ) ∪ Supp(C ) Supp(C ∩ C ) ⊆ Supp(C ) ∩ Supp(C ). (31) 
It follows that C → w(C ) is upper semimodular, and we conclude.

We dene the eective rate of a nonzero subcode C ⊆ C as

R(C ) = dim F (C ) w(C ) . ( 32 
)
Observe that if C itself has full support, i.e. if Supp(C) = [n], then R(C) = k/n is its rate in the usual sense. In fact coordinates outside Supp(C) play no role, so we can always reduce to this case.

Proposition 24. The slope of a nonzero

C ⊆ C is µ(C /0) = -R(C ) -1 . (33) 
Consequently, C is semistable (resp. stable) i for all 0 C C we have

R(C ) ≤ R(C) (resp. R(C ) < R(C)). (34) 
Proof. Direct from the denitions.

Sometimes it is useful to reformulate (34) as follows:

C is semistable i all C satisfy w(C ) ≥ dim(C ) R(C) , (35) 
and similarly with > for stability. In particular, the minimum distance of a stable code satises the (admittedly unimpressive) lower bound

d min (C) > 1 R(C) . (36) 
Remark 25. In Example 13, take F ⊆ E and set l = rk(F ). Then we have Second approach: the geometric view.

covol(F ) = v 1 ∧ • • • ∧ v l
Roughly speaking, the geometric view on coding theory, developed by the Russian school, aims at seeing any code as an evaluation code. A standard reference on the topic is [START_REF] Tsfasman | Algebraic-geometric codes[END_REF].

Let C ⊆ F n be a [n, k]-code. We can view C as an abstract k-dimensional vector space equipped with n linear forms π 1 , . . . , π n , where π i : C → F is the i-th coordinate projection. It is easily seen that π 1 , . . . , π n span the dual vector space C ∨ . Now, to make things simpler, we shall assume that C has dual distance at least 3, which means that these π i are nonzero and pairwise nonproportional. As a consequence they dene n distinct points π 1 , . . . , π n in the projective space P(C) = Proj S • C P k-1 that parameterizes hyperplanes in C (or equivalently, lines in C ∨ ). One can then show that the set of points Π = {π 1 , . . . , π n } ⊆ P(C) [START_REF] Duursma | Weight distributions of geometric Goppa codes[END_REF] uniquely determines C up to linear code equivalence, i.e. up to the natural action of S n (F × ) n , the group of linear isometries of F n . This might be thought as a reformulation of the celebrated MacWilliams extension theorem, a proof of which along these lines can be found in [START_REF] Assmus | The category of linear codes[END_REF]Prop. 3.1].

In case C only has dual distance 2 (i.e. C has full support, so the π i still are nonzero, but some of them can be proportional), then things work the same provided we consider Π as a multiset, counting the now possibly nondistinct π i according to their multiplicity.

Finite congurations of points in a projective space can be classied thanks to geometric invariant theory (GIT), which provides in particular its own notion of (semi)stability. Recall (see e.g. The conguration of points Π ⊆ P(C) is semistable (resp. stable) if and only if for all linear subspaces ∅ = V P(C) we have

#(Π ∩ V ) dim(V ) + 1 ≤ n k (resp. <). (38) 
This could be extended in order to t into our framework:

As follows from ( 41), the Harder-Narasimhan structure just constructed on L [n] is given by the degree function

deg(J) = dim(C [n]\J ). (42) 
Actually this can be related to another classical construction. We can view the inclusion C ⊆ F n as a length 1 ltration on the vector space F n , from which we get (see e.g. [8, Ex. 1], or [START_REF] Faltings | Diophantine approximations on projective spaces[END_REF][26] for the original works) a degree function

deg(V ) = dim(C ∩V ) for V in the lattice L F n of all vector subspaces of F n . Now mapping J ⊆ [n] to F J ⊆ F n embeds L [n]
as a sublattice of L F n , so this degree function pulls back by Lemma 2. Last the involution J →

[n] \ J identies L [n] and (L [n]
) opp ; applying Lemma 10 we retrieve [START_REF] Groenewegen | An arithmetic analogue of Cliord's theorem[END_REF].

We mention yet another interpretation, in terms of matroids: if [n] is viewed as the index set of the columns of a given generating matrix G of C, then [START_REF] Groenewegen | An arithmetic analogue of Cliord's theorem[END_REF] coincides with the degree function [START_REF] Conway | Sphere packings, lattices and groups (3rd ed)[END_REF] of the corresponding matroid. Indeed, the row-span of the submatrix G J of columns of G indexed by J is π J (C), where π J : F n → F J is the natural projection, so r(J) = rk(G J ) = dim π J (C), and

k -r(J) = dim ker(π J | C ) = dim(C [n]\J ) (43) 
as claimed.

Discussion.

We have just introduced three Harder-Narasimhan structures on the lattice L C of linear subcodes of C:

• one given by Denition 22

• one deduced from Proposition 26, through the natural identication L C = (L P(C) ) opp and Lemma 10

• one deduced from the cosupport Galois connection of Denition 27, through Theorem 17.

Proposition 29. These three Harder-Narasimhan structures on L C coincide.

Proof. Keep all the notations introduced before. It is well known (see e.g. the proof of [28, Th.

2.1]) that if V ⊆ P(C) is a l-codimensional linear subspace, corresponding to a l-dimensional subcode C ⊆ C, then w(C ) = n -#(Π ∩ V ), or #(Π ∩ V ) = n -w(C ). ( 44 
)
This gives equality of the rst and second Harder-Narasimhan structures.

On the other hand we have (C )

• = [n] \ Supp(C ) hence rk L [n] ((C ) • ) = #((C ) • ) = n -w(C ), (45) 
which gives equality of the rst and the third.

Relationships between the various mathematical objects encountered in this

work can be summarized by the following diagram: Remark 30 (thanks to a suggestion of Bost). In the discussion following [START_REF] Groenewegen | An arithmetic analogue of Cliord's theorem[END_REF] we saw how the degree function on the Galois dual lattice L [n] could be deduced from the formalism of (multi-)ltered vector spaces of Faltings-Wüstholz and Totaro, applied to the length 1 ltration C ⊆ F n . It turns out this theory can also be applied directly to the lattice L C : consider the collection of length 1 ltrations H i ⊆ C, for 1 ≤ i ≤ n, where H i = ker π i | C is the i-th coordinate hyperplane. This makes C into a multi-ltered vector space, with associated degree function A still largely open problem is that of the classication of codes (say up to linear isometries), or at least the description of a certain structure theory from which one could easily identify good codes [24][2]. Since the geometric view on linear codes makes them equivalent with projective congurations of points, GIT appears as a natural tool toward this goal. Arguably one could see the present work as a rst step in this direction. Actually, zero-th step would probably be a more accurate description: indeed, as could be hinted from [START_REF] Bost | Theta invariants of euclidean lattices and innite-dimensional hermitian vector bundles over arithmetic curves[END_REF], codes used for real world error correction will invariably tend to be stable. • The binary [3, 2, 2]-code is stable and critical.

deg (V ) = 1≤i≤n dim(V ∩ H i ) for V ⊆ C. However we have dim(V ∩ H i ) = dim(V ) if V ⊆ H i , i.e. if i ∈ Supp(V ), and dim(V ∩ H i ) = dim(V ) -1 else. It follows deg (V ) = n dim(V ) -w(V ) = deg(V ) + n dim(V ) -n,
• The q-ary k-dimensional simplex code, of length q k -1 q-1 , whose associated projective conguration is the set of all points in P k-1 (F q ), is stable but not critical as soon as k ≥ 3. In fact, its spectrum is the set of all (classes of ) k-dimensional critical codes.

• The binary [9,[START_REF] Bost | Hermitian vector bundles and extension groups on arithmetic schemes. I. Geometry of numbers[END_REF]-code C with generating matrix

         
1 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 1 0 1 0 1 0 0 0 0 1 Given an (increasing) ltration Fil . on an object X in an abelian category, it is customary to dene an associated graded object by considering the subsequent quotients gr t X = Fil t X/ Fil t-1 X. Unfortunately, the category of linear codes [START_REF] Assmus | The category of linear codes[END_REF] is not abelian: in general it lacks a good notion of quotient code. Still, a nice quotient can be dened for subcodes dened by a support condition:

          is critical (it is
given subsets S ⊆ S ⊆ [n] we dene formally C S /C S = π S \S (C S ). This is compatible with our convention for (combinatorial) lattices, since subcodes of π S \S (C S ) identify with intermediary subcodes between C S and C S . Now let C be a [n, k]-code with full support, with canonical ltration

0 = C 0 C 1 • • • C N = C and associated slopes µ 1 > • • • > µ N .
By Proposition 20 the C α are closed, i.e.

they satisfy C α = C Supp(Cα) , so the above applies and we can dene

gr α (C) = π Tα (C α ) (46) 
where

T α = Supp(C α )\Supp(C α-1 ). If C α has parameters [n α , k α ], then gr α (C) has parameters [n α -n α-1 , k α -k α-1 ] and is semistable of slope µ α = -nα-nα-1 kα-kα-1 .
This gives a way to extract possibly good, i.e. semistable codes, from assuredly bad ones.

The same works for matroids: if M = (E, I) has canonical ltration

∅ = J 0 J 1 • • • J N = E with associated slopes µ 1 > • • • > µ N , we set gr α (M) = (T α , I ∩ 2 Tα ) (47) 
where T α = J α \ J α-1 . This is a semistable matroid, of slope µ α .

Last, there is an obvious link between our constructions and Wei's theory of generalized Hamming weights [START_REF] Wei | Generalized Hamming weights for linear codes[END_REF]. Recall that the i-th weight of a (full support)

[n, k]-code C is d i (C) = min{w(C ) : C ⊆ C, dim(C ) = i} (48) so 0 = d 0 (C) < d 1 (C) = d min (C) < • • • < d k (C) = n. The C ⊆ C
for which the min is attained in (48) will be called minimum weight subcodes (of dimension i). One should keep in mind that, for a given i, there need not be a unique such subcode. More generally, two arbitrary minimum weight subcodes (of dierent dimension) need not be included one in the other. A code is said to satisfy the chain condition [START_REF] Wei | On the generalized Hamming weights of product codes[END_REF], or to be chained, if it admits a complete ltration by minimum weight subcodes.

From [START_REF] Wei | On the generalized Hamming weights of product codes[END_REF] and [START_REF] Stichtenoth | Algebraic function elds and codes[END_REF] we see that the canonical polygon of C is entirely determined by its weight hierarchy, or more precisely:

Lemma 31. The canonical polygon of C is the upper convex envelope of the set of points

{(i, n -d i (C)) : 0 ≤ i ≤ k}.
In particular, the vertices of the canonical polygon form a subset of this set of points, and the subcodes in the canonical ltration of C are minimum weight subcodes. Thus, even if C is not chained, our theory (especially Theorem 6) allows to extract a subsequence of dimensions, and corresponding minimum weight subcodes, that form a (partial) ltration, in a canonical way. For instance, if C is totally unstable, i.e. if it admits k dierent slopes, then it is chained. However, this example is rather extreme: as already noted, on the contrary, good codes tend to be stable. And it is possible for a code to be both stable and chained: such is the simplex code introduced a few paragraphs above, or also its ane counterpart, the Reed-Muller code of order 1.

As in the setting of vector bundles on curves, or in that of euclidean or hermitian lattices over number elds, an important question is that of the behaviour of the canonical polygon (and in particular, the preservation of semistability)

under basic operations such as extension of scalars, duality, and tensor product.

The rst one is almost immediate:

Proposition 32. The canonical polygon of C, its canonical ltration, and its slopes, are preserved by extension of scalars.

Proof. Invariance of the weight hierarchy of C under extension of scalars.

Slopes and duality

Recall In this section we will give the relation between the canonical polygon of a code C and that of its dual code C ⊥ . Thanks to Lemma 31, this could be deduced from Wei's duality theorem [START_REF] Wei | Generalized Hamming weights for linear codes[END_REF], which gives the relation between the weight hierarchy of C and that of C ⊥ . However, it turns out it is slightly easier to work rst from the other side of our cosupport Galois connection (40) [START_REF] Gillet | On the number of lattice points in convex symmetric bodies and their duals[END_REF], in terms of matroids. Actually, our proof does not require the matroid to come from a code, so what we will rst state is a duality result for slopes of general matroids. This will then be translated back to codes thanks to Proposition 20.

that if C ⊆ F n is a [n, k]-code, then its dual code C ⊥ ⊆ F n is the [n, n -k]-code
A remarkable fact is that, although the proof uses only arguments from elementary linear algebra, these can be reinterpreted as part of some sort of Riemann-Roch theory, as developed in the Appendix at the end of this work.

We say that a nite matroid M = (E,

I) is a [n, k]-matroid if it has cardi- nality #E = n and rank r(E) = k. Recall [21, 2.1] that the dual matroid M * of M is then the [n, n -k]
-matroid with the same underlying set E but whose bases (maximal independent sets) are the complements of those of M.

For instance, the matroid M associated with a [n, k]-code C is a [n, k]matroid, and its dual matroid M * is then the matroid associated with the dual code C ⊥ . Theorem 34. Let M = (E, I) be a [n, k]-matroid. Suppose that, relative to M and the associated degree function [START_REF] Conway | Sphere packings, lattices and groups (3rd ed)[END_REF], the lattice L E has canonical polygon

P M : [0, n] -→ R, (49) 
with slopes

µ 1 > • • • > µ N (in the real interval [-1, 0]).
Then, relative to the dual matroid M * , the lattice L E has canonical polygon

P M * : [0, n] -→ R x → P M (n -x) + n -x -k, (50) 
with slopes

-1 -µ N > • • • > -1 -µ 1 .
Moreover, if the vertices of [START_REF] Szpiro | Degrés, intersections, hauteurs. In: Séminaire sur les pinceaux arithmétiques. La conjecture de Mordell[END_REF] correspond to the canonical ltration

∅ = J 0 J 1 • • • J N = E, (51) 
then those of [START_REF] Tate | Fourier analysis in number elds, and Hecke's zeta-functions[END_REF] correspond to the dual ltration

∅ = (E \ J N ) • • • (E \ J 1 ) (E \ J 0 ) = E. (52) 
Proof. By denition the canonical polygon of M is the upper convex envelope of the set of points (#J, deg(J))

for J ∈ L E , where by [START_REF] Conway | Sphere packings, lattices and groups (3rd ed)[END_REF] we have deg(J) = k -r(J). Hence it is also the the upper convex envelope of the set of points

(j, f M (j))
where for 0 ≤ j ≤ n we set

f M (j) = max{deg(J) : J ⊆ E, #J = j}.
Likewise the canonical polygon of M * is the upper convex envelope of the set of points

(j, f M * (j))
where f M * (j) = max{deg * (J) : Letting J vary in this last equality, with #J = j xed, we then nd that the maximum is attained in the left-hand and right-hand side for the same J, with value 

J ⊆ E, #J = j}, deg * (J) = n -k -r * (J).
f M * (j) = f M (n -j) + n -j -k (which
0 = C 0 C 1 • • • C N = C
with slopes

µ 1 > • • • > µ N (in R <-1 ). Then C ⊥ has canonical ltration 0 = (C ⊥ ) [n]\Supp(C N ) • • • (C ⊥ ) [n]\Supp(C1) (C ⊥ ) [n]\Supp(C0) = C ⊥ with slopes -1 + (µ N + 1) -1 > • • • > -1 + (µ 1 + 1) -1 .
Proof. Let M be the matroid associated with C, so M * is the matroid associated with C ⊥ . From the canonical ltration and slopes of C, we can deduce those of M thanks to Proposition 20. We then deduce those of M * thanks to Theorem 34, and nally we deduce those of C ⊥ back thanks to Proposition 20 again.

From this last result, the case where C or C ⊥ does not have full support is also easily treated, e.g. thanks to the standard decomposition [2, eq. ( 2)], and our Lemma 19 (or also Proposition 24). For instance, we see that C ⊥ does not have full support if and only if µ max (C) = -1, in which case the rst step of the canonical ltration of C is the subcode V ⊆ C generated by the codewords of weight 1.

Corollary 37. A linear code C is semistable if and only if its dual C ⊥ is.

Semistability and tensor product

Given a

[n A , k A ]-code A ⊆ F n A and a [n B , k B ]-code B ⊆ F n B , we can form their tensor product A ⊗ B ⊆ F n A ⊗ F n B F n A n B which is thus a [n A n B , k A k B ]-code, of rate R(A ⊗ B) = R(A) R(B).
From the geometric point of view, if A corresponds to a collection of n A points Π A ⊆ P k A -1 , and B to a collection of n B points Π B ⊆ P k B -1 , then A⊗B corresponds to the image of Π A ×Π B under the Segre embedding

P k A -1 × P k B -1 → P k A k B -1 . It is easily shown that if A has minimum distance d 1 (A) = d A and B has minimum distance d 1 (B) = d B , then A ⊗ B has minimum distance d 1 (A ⊗ B) = d A d B .
An interesting problem is the derivation of similar estimates for the higher weights d r (A ⊗ B). In [START_REF] Schaathun | The weight hierarchy of product codes[END_REF], Schaathun proved an important lower bound on these quantities.

For 0 ≤ r ≤ k A k B , set d * r (A ⊗ B) = min s i=1 (d i (A) -d i-1 (A))d ti (B) : 1 ≤ t s ≤ • • • ≤ t 1 ≤ k B , s ≤ k A , s i=1 t i = r = min k A i=1 (d i (A) -d i-1 (A))d ti (B) : 0 ≤ t k A ≤ • • • ≤ t 1 ≤ k B , k A i=1 t i ≥ r
(observe that the minimum in the second line is the same as in the rst: this is because the d i (A) and d i (B) form monotonously increasing sequences).

Theorem 38 ([23]). With the notations above, for any subcode C ⊆ A ⊗ B of dimension dim(C) = r, we have w(C) ≥ d * r (A ⊗ B). Or equivalently,

d r (A ⊗ B) ≥ d * r (A ⊗ B).
Previously, in [START_REF] Wei | On the generalized Hamming weights of product codes[END_REF], Wei and Yang had proved inequality in the other direction when both A and B are chained (hence Schaathun's bound implies equality in this case).

Thanks to Lemma 31, a lower bound on the weight hierarchy is the same as an upper bound on the canonical polygon.

It is then no surprise that Schaathun's bound will be the key ingredient to our:

Theorem 39. Suppose the linear codes A and B are semistable. Then their tensor product A ⊗ B is semistable.

The analogue of Theorem 39 is known to be true for vector bundles over curves in characteristic zero, but false in positive characteristic, where counterexamples have been constructed [START_REF] Gieseker | Stable vector bundles and the Frobenius morphism[END_REF]. For euclidean lattices (or more generally hermitian lattices, or adelic vector bundles over number elds) the question has been popularized by Bost and is still open, despite recent progress [6][16] that allow to settle low dimensional cases, or lattices admitting a large group of automorphisms.

Schaathun's proof of Theorem 38 was written in terms of systems of points in a projective space, using the geometric view on coding theory. We propose here a reformulation directly in terms of codes.

Because of the close links between lattices of codes, it is not unreasonable to hope that this reformulation could provide inspiration for new approaches on the semistability conjecture for tensor products of lattices. Moreover the proof we will give here will appear to be shorter and marginally simpler than

Schaathun's original one, although closer inspection would reveal the ideas remain fundamentally the same.

First we introduce some notation. For any j ∈ [n B ], let π j : F n B → F be the j-th standard projection. Tensoring with F n A then gives us

π j : F n A ⊗ F n B -→ F n A .
It is customary to identify F n A ⊗ F n B with the space F n A ×n B of matrices with n A rows and n B columns. The projection π j is then just the linear map that associates to each such matrix its j-th column. Under this identication, A ⊗ B becomes the space of matrices all of whose columns are in A and all of whose rows are in B. Thus, for any subcode C ⊆ A⊗B, we see that π j (C) is a subcode of A. Moreover, the support size of C can be computed as 

≤ t k A ≤ • • • ≤ t 1 ≤ k B such that w(C) ≥ k A i=1 (d i (A) - d i-1 (A))d ti (B) and
≤ i ≤ k A , J i = {j ∈ [n B ] : dim( π j (C)) ≥ i} and t i = dim(B Ji ).
Then we have

w(C) ≥ k A i=1 (d i (A) -d i-1 (A))d ti (B) (54) and k A i=1 t i ≥ dim(C). (55)
Proof (of Lemma 40, hence also of Theorem 38). For 1 ≤ i ≤ k A we have, by the very denition of higher weights,

w( π j (C)) ≥ d i (A) for j ∈ J i (56) 
and

#J i ≥ w(B Ji ) ≥ d ti (B). (57) 
This works also for i = 0 and i 

= k A + 1 if we set J 0 = [n B ], t 0 = k B , and J k A +1 = ∅, t k A +1 = 0. The decreasing ltration [n B ] = J 0 ⊇ J 1 ⊇ • • • ⊇ J k A ⊇ J k A +1 = ∅ then allows to rewrite (53) as w(C) = k A i=0 j∈Ji\Ji+1 w( π j (C)) ≥ k A i=0 d i (A)(#J i -#J i+1 ) by (56) = k A i=1 (d i (A) -d i-1 (A))#J i summation by parts ≥ k A i=1 (d i (A) -d i-1 (A))d ti (B)
S i ⊆ J i \ J i+1
such that the projection π Si induces a bijection 

B Ji /B Ji+1 ∼ -→ F Si (this is possible since, by denition, B Ji = B ∩ F Ji ⊆ F Ji so, passing to the quotient, π Ji\Ji+1 induces an injection B Ji /B Ji+1 → F Ji\Ji+1 ). Then necessarily, #S i = dim(B Ji /B Ji+1 ) = t i -t i+1 . Considering the ltration B = B J0 ⊇ B J1 ⊇ • • • ⊇ B J k A ⊇ B J k A +1 = 0, we see that the disjoint union S = S 0 S 1 • • • S k A is
dim( π j (C)) = i for j ∈ S i ⊆ J i \ J i+1 , we conclude dim(C) ≤ k A i=0 j∈Si dim( π j (C)) = k A i=0 i#S i = k A i=0 i(t i -t i+1 ) = k A i=1 t i .
We can now proceed to our proof of the semistability theorem for tensor products of codes. This can be derived either as a consequence of Theorem 38, or slightly more directly, by reworking part of the proof of Lemma 40. We propose the latter:

Proof of Theorem 39. Let C ⊆ A ⊗ B be any subcode, and let then the J i and the t i be given by Lemma 40. Thanks to [START_REF] Bost | Theta invariants of euclidean lattices and innite-dimensional hermitian vector bundles over arithmetic curves[END_REF]

, semistability of A implies w( π j (C)) ≥ dim( π j (C))/ R(A) ≥ i/ R(A) for j ∈ J i , (58) 
and semistability of B implies

#J i ≥ w(B Ji ) ≥ t i / R(B). (59) 
The computation in the rst half of the proof of Lemma 40 then becomes:

w(C) = k A i=0 j∈Ji\Ji+1 w( π j (C)) ≥ 1 R(A) k A i=0 i(#J i -#J i+1 ) by (58) = 1 R(A) k A i=1 #J i summation by parts ≥ 1 R(A) R(B) k A i=1 t i ≥ dim(C) R(A ⊗ B)
by ( 59) and (55).

Using [START_REF] Bost | Theta invariants of euclidean lattices and innite-dimensional hermitian vector bundles over arithmetic curves[END_REF] again, this means precisely that A ⊗ B is semistable.

Remark 41. We have shown that semistability is preserved under many natural operations on codes, such as extension of scalars, duality, and tensor product.

Here is an operation that does not preserve it: although componentwise product of codes is closely related to tensor product [22, 1.10], it is easily checked (e.g. using Proposition 24) that the binary [START_REF] Borel | Corners and arithmetic groups[END_REF][START_REF] Assmus | The category of linear codes[END_REF]-code C, with generator matrix

1 0 0 1 1 0 1 1 1 1
is semistable, and even stable, while its square C 2 , with generator matrix

  1 0 0 0 0 0 1 1 0 0 0 0 0 1 1   is unstable.
Remark 42. In Remark 30 we saw that codes could be seen as multi-ltered spaces in the sense of Faltings-Wüstholz and Totaro, in a way that preserves the canonical ltration. Moreover these authors also proved in characteristic zero, a tensor product of semistable multi-ltered spaces is semistable (in [START_REF] Faltings | Diophantine approximations on projective spaces[END_REF]Th. 4.1] this is done by reducing to the case of vector bundles on curves, and in [START_REF] Totaro | Tensor products of semistables are semistable[END_REF] this is done in a somehow more elementary way, although still relying on the GIT machinery).

However one should be careful: the tensor product of codes does not coincide with the tensor product of multi-ltered spaces! A rst point is that [START_REF] Faltings | Diophantine approximations on projective spaces[END_REF][26] consider two spaces with the same number n of ltrations, and produce a tensor product also with n ltrations. From this perspective, the theory is more similar to that of componentwise products of the preceding remark, than to that of tensor products, where A has n A ltrations, B has n B , and A ⊗ B has n A n B . This rst objection is easily bypassed. Indeed, let A be equipped with the n A ltrations A ⊇ H i , and B with the n B ltrations B ⊇ K j . Then we can repeat n B times each H i , and repeat n A times each K j . Doing so, A and B get the same number n A n B of ltrations, and their tensor product as multi-ltered spaces is then equipped with the n A n B ltrations

A ⊗ B ⊇ (H i ⊗ B) + (A ⊗ K j ) ⊇ H i ⊗ K j of length 2.
However, the multi-ltered space associated with the tensor product code only corresponds to the truncated ltrations

A ⊗ B ⊇ (H i ⊗ B) + (A ⊗ K j )
of length 1. In matrix form, codewords in (H i ⊗B)+(A⊗K j ) are those vanishing at position (i, j), as expected, while codewords in H i ⊗K j are those whose whole i-th row and j-th column are identically zero.

Thus our result and the one in [START_REF] Faltings | Diophantine approximations on projective spaces[END_REF][26] are of a quite dierent nature. It is unclear whether one could be deduced from the other. Still it would be interesting to try to adapt the method of proof of our Theorem 39, which holds in arbitrary characteristic, to tensor products of multi-ltered spaces.

Appendix: A Riemann-Roch theory for linear codes and matroids Subspace pair cohomology.

We introduce cohomology groups associated to triples (V, A 1 , A 2 ) where:

• V is a vector space, • A 1 , A 2 ⊆ V are two linear subspaces. Denition 43. Given such a triple (V, A 1 , A 2 ) we set H 0 (V ; A 1 , A 2 ) = A 1 ∩ A 2 (60) and H 1 (V ; A 1 , A 2 ) = V /(A 1 + A 2 ), (61) 
of dimension, respectively:

h 0 (V ; A 1 , A 2 ) = dim(H 0 (V ; A 1 , A 2 )), h 1 (V ; A 1 , A 2 ) = dim(H 1 (V ; A 1 , A 2 )).
It turns out these H 0 and H 1 can be identied with the cohomology groups of any of the following two quasi-isomorphic complexes of length 2:

0 -→ A 1 ⊕ A 2 -→ V -→ 0, (62) 
or 0 -→ V -→ V /A 1 ⊕ V /A 2 -→ 0.

(63) Remark 44. To be more precise, the exact denition of these complexes, together with a quasi-isomorphism between them, and the identication of (60) and (61) with their cohomology groups, all depend on some choice of signs. A possible choice is the following:

0 A 1 ∩A 2 A 1 ⊕A 2 V V/(A 1 +A 2 ) 0 0 A 1 ∩A 2 V V/A 1 ⊕V/A 2 V/(A 1 +A 2 ) 0 ++ i1 +- p2 -+ ++
where the maps are dened as follows: on the top line, the left ++ map sends x ∈ A 1 ∩ A 2 to (x, x) ∈ A 1 ⊕ A 2 , the middle +map sends (a 1 , a 2 ) ∈ A 1 ⊕ A 2 to a 1 -a 2 ∈ V , and the right map is natural projection; on the bottom line, the left map is natural inclusion, the middle -+ maps sends v ∈ V to (the class of ) (-v, v) ∈ V /A 1 ⊕ V /A 2 , and the right ++ map sends (the class of ) (v 1 , v 2 ) ∈ V /A 1 ⊕ V /A 2 to (the class of ) v 1 + v 2 ∈ V /(A 1 + A 2 ); then the vertical i 1 sends (a 1 , a 2 ) ∈ A 1 ⊕ A 2 to a 1 ∈ V , and the vertical p 2 sends v ∈ V to (the class of ) (0, v) ∈ V /A 1 ⊕ V /A 2 . 5

5 It is easily checked this makes everything commute, for instance, the middle square maps (a 1 , a 2 ) ∈ A 1 ⊕ A 2 to (the class of ) (0, a 1 ) ∈ V /A 1 ⊕ V /A 2 .

• A 2 = F J the subspace of adèles with poles in a subset J ⊆ [n] (where we actually identify F J with F J × {0} [n]\J ).

This will allow us to mimic Weil's adelic proof of the Riemann-Roch theorem, as modern coding theorists often learn, for instance, in [START_REF] Stichtenoth | Algebraic function elds and codes[END_REF].

Slightly changing notations, we thus get the following cohomology groups:

H 0 (C, J) = H 0 (F n ; C, F J ) = C ∩ F J = C J , (64) 
the largest (a.k.a. shortened) subcode of C with support in J, and

H 1 (C, J) = H 1 (F n ; C, F J ) = F n /(C + F J ) = F [n]\J /π [n]\J (C), (65) 
where π [n]\J : F n → F [n]\J is the natural projection. The author does not know whether this H 1 has ever been considered in the literature. Its elements can be seen as syndromes, so maybe it could be of use, for instance, in some decoding algorithms.

Lemma 46 provides, for any disjoint J, J ⊆ [n], a long exact sequence 0 → H 0 (C, J) → H 0 (C, J J ) π J -→ F J → H 1 (C, J) → H 1 (C, J J ) → 0 (66)

where we used the symbol as a reminder of the fact that the union is disjoint.

Of course this readily extends to possibly non-disjoint J, J using the equality J ∪ J = J (J \ J).

As before we also set h 0 (C, J) = dim H 0 (C, J) and h 1 (C, J) = dim H 1 (C, J).

Theorem 48. Let C ⊆ F n be a [n, k]-code. Then for any subset J ⊆ [n] we have a canonical identication

H 1 (C, J) = H 0 (C ⊥ , [n] \ J) ∨ .
Proof. This is Lemma 47. We nd it pleasant to think of Theorem 48 as a Serre duality theorem for codes, and of Theorem 49, or (67), as a Riemann-Roch theorem. Seemingly, when C is an AG code dened by evaluation of functions on an algebraic curve, these results partially reect Serre duality and Riemann-Roch on the underlying curve. However we would like to stress that they hold for any arbitrary linear code.

Of course a more direct proof could be given using only elementary linear algebra, for instance by combining lemmas from [START_REF] Forney | Dimension/length proles and trellis complexity of linear block codes[END_REF]. However our main purpose here is not really in the content of these theorems, nor in giving the most ecient proof, but rather on the analogy with the geometric situation. Thus our adelic proof was presented in order to make this analogy even stronger.

Observe that our statements do not involve only the code C but also its dual C ⊥ , and hence become more symmetric when applied to self-dual codes.

Although it is not entirely clear what status self-dual codes enjoy under our chain of analogies (e.g. 2-torsion points in some Jacobian?), they certainly have a great arithmetic signicance. For instance, Construction A of [10, 5.2] (suitably normalized) transforms binary self-dual codes into unimodular integral euclidean lattices. We refer to [START_REF] Ebeling | Lattices and codes[END_REF] for more on this topic. In a more anecdotal way, we observe that self-dual codes also satisfy the following Cliord-like estimate:

h 0 (C, J) ≤ 1 2 #J. (68) 
It is interesting to note that, even if not explicitely stated so, the analogy of Theorems 48 and 49 with Serre duality and Riemann-Roch was already implicit in previous works of other authors. We point out especially [START_REF] Duursma | Combinatorics of the two-variable zeta function[END_REF]: as observed below, the h 0 and h 1 introduced there, p. 123, coincide with ours. A consequence of this observation (and, in the rst place, of the results in [START_REF] Duursma | Combinatorics of the two-variable zeta function[END_REF]) is that this Riemann-Roch theorem for codes implies the functional equation for the Duursma zeta function essentially in the same way that the usual Riemann-Roch theorem implies the functional equation for the zeta function of curves over nite elds.

Generalization to matroids.

It turns out our Theorem 49 admits a generalization, and also a more direct proof, in the context of matroids.

We keep notations as in section 3 of the main text: a nite matroid M = (E, I) is a [n, k]-matroid if it has cardinality #E = n and rank r(E) = k; its dual matroid M * then is a [n, n -k]-matroid. Now, following [START_REF] Duursma | Combinatorics of the two-variable zeta function[END_REF], for any J ⊆ E, we set h 0 (M, J) = r(E) -r(E \ J).

(69)

Our Riemann-Roch theorem for matroids then reads:

Proposition 50. Let M = (E, I) be a [n, k]-matroid. Then for any J ⊆ E we have h 0 (M, J) -h 0 (M * , E \ J) = #J + k -n.

  [3, I.7, Th. 13]. Denition 1. A Harder-Narasimhan lattice is a modular lattice L of nite length equipped with a lower semimodular function deg : L -→ R.

  rk(x) + rk(y) = rk(x ∨ y) + rk(x ∧ y) deg(x) + deg(y) ≤ deg(x ∨ y) + deg(x ∧ y) (3) translate into Grayson's parallelogram constraint [18, Fig. 1.14]: any three points among p x , p y , p x∧y , p x∨y determine a parallelogram, and then the fourth point lies vertically below (if it is p x or p y ) or above (if it is p x∧y or p x∨y ) the fourth vertex of this parallelogram. 3 nontrivial we dene its slope as µ(L) = (deg(1 L ) -deg(0 L ))/ rk(L)

  an a ∈ L of rank rk(a) = 1, and let x ∈ L vary with rk(x) = r and deg(x) arbitrarily large. The sublattice L/a has length n -1, so by our Induction hypothesis we will have x ∈ L/a as soon as deg(x) is large enough. This means a ⊆ x, and forces a ∧ x = 0 L and rk(a ∨ x) = r + 1. But then, by semimodularity, deg(a ∨ x) ≥ deg(x) + deg(a) -deg(0 L )

( 6 )

 6 Note that by construction these i α are integers. Denition 4. The successive slopes of L are the slopes of its canonical polygon.

  Consequence of Theorem 6, as in [18, Cor. 1.29-1.31]. All these constructions behave well under certain ane transformations: Lemma 10. Let (L, deg) be a Harder-Narasimhan lattice, with canonical polygon P L and slopes µ 1 > • • • > µ N . (i) Let L opp be the opposite lattice of L. Then (L opp , deg) is a Harder-Narasimhan lattice. Its canonical polygon is the image of P L under the plane transformation (ξ, η) → (rk(L) -ξ, η). Its canonical ltration is the opposite of that of L, with slopes -µ N > • • • > -µ 1 . (ii) Let a, b ∈ R and c ∈ R >0 be constants. Then (L, a + b rk +c deg) is a Harder-Narasimhan lattice. Its canonical polygon is the image of P L under the plane transformation (ξ, η) → (ξ, a+bξ+cη). It has the same canonical ltration as (L, deg), with slopes

  And then the relation between the canonical ltration of L and that of L/0 L follows from the rst point in Proposition 9. Proposition 20. Under the hypotheses of Theorem 17, the canonical polygons of L and M are image of each other under the reection across the diagonal in the rst quadrant.

  [START_REF] Mumford | Geometric invariant theory[END_REF] Prop. 3.4], [13, Ch. II, Th. 1], or[START_REF] Dolgachev | Lectures on invariant theory[END_REF] Th. 11.2] with all k i = 1):

  The two extremal objects in this diagram belong to the realm of classical algebraic geometry, and can be classied using GIT. It is quite remarkable that the associated Harder-Narasimhan structures, and in particular the notions of slopes, canonical ltration, and semistability, are compatible with this chain of analogies.

  so the two degree functions deg and deg are equivalent up to some ane transformation. In particular, by Lemma 10, they dene the same canonical ltration on C.Moreover, to any multi-ltered vector space (at least in characteristic zero), Faltings-Wüstholz associate a certain vector bundle on a curve, whose stalks are determined by the ltrations, in such a way that this construction preserves semistability[START_REF] Faltings | Diophantine approximations on projective spaces[END_REF] proof of Th. 4.1]. Specializing to the case where the ltrations are of length 1 and dened by hyperplanes, or equivalently, by a conguration of points in the dual projective space, this ts as the dashed line in our diagram.

  an instance of The Construction of [2, p. 621] with the 3-partition X = [9] = {1, 2} ∪ {3, 4} ∪ {5, 6, 7, 8, 9}, X = ∅) but not semistable (its subcode C {5,6,7,8,9} has rate 4/5 > 7/9).

  dened as the orthogonal of C relative to the standard bilinear scalar product on F n . Remark 33. At rst, the word dual might seem misused here, however it has been well established historically. Moreover, C ⊥ enjoys certain properties that make this terminology better suited than one could have rst thought, especially in our context. For instance, say in the binary case, we observe that if Γ C ⊆ R n is the euclidean lattice obtained from C by the so-called Construction A (of[10, 5.2], but suitably normalized, as in[14, 1.3]), then Γ C and Γ C ⊥ are dual lattices in the usual sense.

Now a basic duality

  result for matroids [21, Prop. 2.1.9] reads r * (J) = #J -k + r(E \ J), which we can also write asdeg * (J) = deg(E \ J) + n -#J -k.

  prove Theorem 38, it suces, given any C ⊆ A ⊗ B, to construct a sequence 0

  k A i=1 t i ≥ dim(C). Thus Theorem 38 follows from the following more precise result: Lemma 40. Given a subcode C ⊆ A ⊗ B, set, for 1

  an information set for B, i.e. we have an isomorphism π S : B ∼ -→ F S . Tensoring with A then gives π S : A ⊗ B ∼ -→ A S , which restricts to C as C π S (C) ⊆ j∈S π j (C) (or said more concretely: a codeword in B is determined by its coordinates over S, hence a codeword in A ⊗ B, thus a fortiori a codeword in C, is determined by its columns over S). Now writing j∈S π j (C) = k A i=0 j∈Si π j (C), and using the fact that

Theorem 49 .

 49 Let C ⊆ F n be a [n, k]-code. Then for any subset J ⊆ [n] we have the equalityh 0 (C, J) -h 0 (C ⊥ , [n] \ J) = #J + k -n.Proof. Combine Lemma 45 with Theorem 48.Since h 0 (C, J) vanishes for #J < d = d min (C), it is convenient to introduce the normalized cardinality |J| norm = #J -d. Theorem 49 then becomes:h 0 (C, J) -h 0 (C ⊥ , [n] \ J) = |J| norm + 1 -g (67)where g = n -k -d + 1 is the Singleton defect of C.

  The result is obvious if n = 0 or 1, so we assume L has length n ≥ 2 and make the following Induction hypothesis: on every Harder-Narasimhan lattice of length at most n -1, the degree function is bounded from above.By contradiction suppose deg is not bounded on L, and choose r maximal such that the set

  where v 1 , . . . , v l are generators of F and . is the l-th alternate power of the norm of E. Back to codes, we have a natural identication l F n = F ( n l ) , and we can dene the l-th alternate power of the Hamming norm of F n as the Hamming norm of F ( n l ) . So given C ⊆ C ⊆ F n of dimension dim(C ) = l, we get a line l C ⊆ F ( n l ) , and the norm of a generator of this line would be another convincing analogue of the notion of covolume. In fact, this norm is easily seen to be the number of information sets of C , so it is at most

	w(C ) l	. However, inequality could be strict. This raises two natural questions:
	can one use this construction to dene another semimodular degree function,
	hence another Harder-Narasimhan structure on L C ? if so, how does it compare
	with the one deduced from Denition 22?

  Narasimhan theory appears to be decorelated from notions of criticality and spectrum introduced by Assmus in[START_REF] Assmus | The category of linear codes[END_REF]. Recall that a code is decomposable (resp. indecomposable) if it can (resp. cannot) be written as the direct sum of two nontrivial subcodes with disjoint supports. An indecomposable code is critical if puncturing any coordinate, i.e. projecting onto the remaining n -1 positions, produces a decomposable code. The spectrum of an indecomposable k-dimensional code C is then the set of all (isometry classes of ) critical k-dimensional codes C that can be obtained by projecting C onto some subset of the coordinates. A sample of the diversity of possible situations is illustrated by the following examples:

	So their
	canonical ltration, and all our associated constructions, become trivial. Finer
	geometric invariants have to be considered. (Still there are a few other exotic
	applications of codes beside error correction, and one could wonder whether the
	canonical ltration has a role to play there.)
	Our Harder-

  is actually Proposition 51 in the Appendix). The conclusion follows. Corollary 35. The matroid M is semistable if and only if its dual M * is. Corollary 36. Suppose that C has both minimum distance and dual distance at least 2, i.e. that both C and C ⊥ have full support. Let then C have canonical ltration

In this work we will encounter two distinct notions of lattices which, quite unfortunately, English terminology does not distinguish. The rst one, réseau in French, means a discrete subgroup in a continuous space; for us it will always be endowed with a euclidean or hermitian structure. The second, treillis in French, is a poset with meet and join; again we will often add an adjective, such as combinatorial, in order to help make the distinction.(Actually, French terminology cannot claim superiority there, since in turn, réseau is used for two distinct notions, one that translates in English as lattice, the other as network; and treillis also is used for two distinct notions, one that translates as lattice, the other as trellis!)

Added in the revised version: this approach is so natural that, almost simultaneously with this work, it was also introduced in[START_REF] Cornut | On Harder-Narasimhan ltrations and their compatibility with tensor products[END_REF]but then the focus shifts to other directions.

So this is sometimes called an antitone Galois connection. There is the alternative notion of a monotone Galois connection, in which the maps are order-preserving, leading to an essentially equivalent theory.

Although we will not really need it, we observe that our adèle space is in fact an adèle ring, and even more precisely a F-algebra, thanks to componentwise multiplication. The standard scalar product, for which C ⊥ is the orthogonal of C, is then nothing but the canonically associated trace bilinear form[22, 2.37].

Proposition 26. Let L P(C) be the lattice of all linear subspaces V ⊆ P(C), including V = ∅ considered as the unique linear subspace of dimension -1. Then:

1. This lattice L P(C) is modular, with rank function rk(V ) = dim(V ) + 1.

2. The degree function deg Π (V ) = #(Π ∩ V ) is lower semimodular, hence makes L P(C) into a Harder-Narasimhan lattice.

3. Then (L P(C) , deg Π ) is semistable (resp. stable) in our sense, if and only if Π ⊆ P(C) is semistable (resp. stable) in the sense of GIT [START_REF] Duursma | Combinatorics of the two-variable zeta function[END_REF].

Proof. Routine verication.

We observe that, in turn, this construction also provides a Harder-Narasimhan structure on the lattice L C of linear subcodes of C. Indeed, since we dened P(C) as the projective space of hyperplanes in C, there is a natural identication

We then have only to apply Lemma 10.

Third approach: the cosupport Galois connection.

Let C ⊆ F n be a [n, k]-code. We construct a Galois connection between the lattice L C of subcodes of C and the lattice L [n] of subsets of [n], as follows.

Denition 27. Given a subcode C ⊆ C we set

the cosupport of C , i.e. the set of coordinates on which C is identically 0.

Given a subset J ⊆ [n] we set

the subcode made of all the codewords of support disjoint from J, i.e. the largest subcode vanishing identically over J.

It is easily seen that (.)

Galois connection, which we will call the cosupport Galois connection.

From this we get a Harder-Narasimhan structure on L C (and also on L [n] ) thanks to Theorem 17, on which Proposition 20 applies. Separation is treated by the following: Lemma 28. The lattice L C is always separated under the cosupport Galois connection. On the other hand, the lattice L [n] , hence also the cosupport Galois connection itself, is separated if and only if C has full support.

Proof. The zero subcode satises 0

Lemma 45. Let (V, A 1 , A 2 ) be a triple as above. Then, if V is nite dimensional, we have

Proof. Direct from Denition 43, or alternatively, Euler characteristic of the complex (62) (or of (63)).

Lemma 46. Let (V, A 1 , A 2 ) be a triple as above. Then for any linear subspace A 2 ⊆ A 2 we have a long exact sequence

Proof. Direct from Denition 43, or alternatively, snake lemma for

Recall that V ∨ denotes the dual vector space of V , i.e. the space of linear forms on V . Given a linear subspace A ⊆ V , we let A ⊥ ⊆ V ∨ be the space of linear forms vanishing on A. We have natural identications

Lemma 47. Given a triple (V, A 1 , A 2 ) as above, we have a natural identication

Proof. Direct from Denition 43, or alternatively, from the fact that dualizing exact sequence (62) for (V ; A 1 , A 2 ) gives exact sequence (63) for (V

(actually, with sign reversed compared to Remark 44, but this does not change its cohomology).

Serre duality and Riemann-Roch for codes.

Let C ⊆ F n be a [n, k]-code. We will apply the formalism just introduced to the following triple:

• V = F n somehow seen as an adèle space 6

• A 1 = C the subspace of principal adèles

Proof. Replacing with (69), r(E) = k, and r * (E) = n -k, we are reduced to show r * (J) -r(E \ J) = #J -k, which is nothing but [21, Prop. 2.1.9].

Observe that if M is the matroid with underlying set [n], dened by the columns of the generating matrix of a [n, k]-code C, then for any J ⊆ [n] we have h 0 (M, J) = h 0 (C, J).

Also the dual matroid M * corresponds in the same way to the dual code C ⊥ . Thus in this situation, Proposition 50 reduces to Theorem 49.

In [START_REF] Duursma | Combinatorics of the two-variable zeta function[END_REF] one also nds the quantity

From Proposition 50 (or from [21, Prop. 2.1.9]) we immediately see that it satises h 1 (M, J) = h 0 (M * , E \ J), a weak form of Serre duality (equality of dimensions, but no actual duality map as in Theorem 48).

In case M comes from a linear code C, we also have h 1 (M, J) = h 1 (C, J) (direct consequence of (65)). So the two denitions of h 1 coincide, as did the h 0 . Wei's duality for higher weights.

We dene the weight hierarchy and the dimension/length prole (DLP) of a matroid as the two dual sequences

When M comes from a code C, these are easily seen to coincide with those introduced in [START_REF] Wei | Generalized Hamming weights for linear codes[END_REF] and [START_REF] Forney | Dimension/length proles and trellis complexity of linear block codes[END_REF].

Pursuing our geometric analogy, the weight hierarchy clearly corresponds to the gonality sequence of a curve X

an observation already made in [START_REF] Munuera | On the generalized Hamming weights of geometric Goppa codes[END_REF][51] [START_REF] Duursma | Combinatorics of the two-variable zeta function[END_REF]. Then in [START_REF] Duursma | Combinatorics of the two-variable zeta function[END_REF] there is also a derivation of Wei's duality theorem using the rank polynomial of the code. Here we will proceed in a way closer to that of [START_REF] Forney | Dimension/length proles and trellis complexity of linear block codes[END_REF]. Observe that all our computations will be in the matroid setting, so what we will get in the end is a matroid version of Wei's duality. Actually, such a result is not new: it rst appeared in [START_REF] Britz | Wei-type duality theorems for matroids[END_REF].

As in [START_REF] Forney | Dimension/length proles and trellis complexity of linear block codes[END_REF], we rst prove duality for the DLP. Interestingly, this result is also at the heart of our Theorem 34 on duality for slopes and canonical ltration.

Proposition 51. Let M = (E, I) be a [n, k]-matroid. Then for any j ∈ [n] we have

Moreover, if k j (M) = h 0 (M, J) for some J ⊆ E with #J = j, then k n-j (M * ) = h 0 (M * , E \ J).

Proof. For J ⊆ E with #J = j we write Proposition 50 as

Letting J vary with #J = j xed, we then nd that the minimum is attained in the left-hand and right-hand side for the same J, with value k n-j (M * ) = k j (M) + n -j -k as claimed.

From the very denition, for any J ⊆ E and e ∈ E \ J, we have r(J ∪ {e}) = r(J) or r(J) + 1. This translates as h 0 (M, J ∪ {e}) = h 0 (M, J) or h 0 (M, J) + 1 (72) (in case M comes from a code C, this also follows from (66) with J = {e}).

Plugging this into the denition of the DLP, it follows easily: Lemma 52. For any integer j ∈ [n] we have k j (M) = k j-1 (M) or k j-1 (M)+1. Denition 53. Let M be a [n, k]-matroid, and j ∈ [n] an integer.

• We say that j is a gap for M if k j (M) = k j-1 (M).

• Else, we say j is a non-gap if k j (M) = k j-1 (M) + 1.

Since k 0 (M) = 0 and k n (M) = k, we deduce that M admits precisely n -k gaps and k non-gaps.

Lemma 54. An integer j ∈ [n] is a non-gap for M if and only if n + 1 -j is a gap for M * (and conversely). Proof. Replacing in Proposition 51, we see k

Lemma 55. The non-gaps of M coincide with its (nonzero) higher weigths Proof. That j is a non-gap means l = k j (M) > k j-1 (M) = l-1, or equivalently, there is a J ⊆ E with h 0 (M, J) = l and #J = j, but h 0 (M, J ) < l for all J of cardinality #J < j. In turn, this means precisely d l (M) = j.

We can now nish our proof of Wei's duality for higher weights of matroids: Proposition 56 [START_REF] Britz | Wei-type duality theorems for matroids[END_REF]Th. 1]). Let M be a [n, k]-matroid. Then the two sets of integers 
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