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Abstract 

Affine models of computation, defined as subsets of iterated immediate-snapshot runs, capture a wide 

variety of shared-memory systems: wait-freedom, t-resilience, k-concurrency, and fair shared-memory 

adversaries. The question of whether a given task is solvable in a given affine model is, in general, 

undecidable. 

In this paper, we focus on affine models defined for a system of two processes. We show that 

task computability of 2-process affine models is decidable and presents a complete hierarchy of five 

equivalence classes of 2-process affine models. 
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  1 Introduction 

The question of whether a task is solvable in a wait-free manner, i.e., in the asynchronous 

read-write shared-memory model with no restrictions on who and when can fail, is known to 

be undecidable for systems with more than 3 processes [3, 5]. We can still, however, study 

the relative computability of models of computation. The framework of affine models was 

introduced to capture task computability of various restrictions of the wait-free model [4]. 

More precisely, an affine task A on n + 1 processes can be represented as a pure n- 

dimensional sub-complex of a finite number of iterations of the standard chromatic subdivision, 

i.e., A     Chrk s, k      N, where all facets of A are of dimension n.  Many shared-memory 

models such as t-resilience [8], k-concurrency [2] or fair adversaries [7] are characterized via 

affine tasks. Task computability of an affine model of A, denoted by A∗, is defined as follows: 

A∗ solves a task (  , ∆,    ) if and only if there is a natural integer b    N and a simplicial map 

δ:  Ab(  )           such that δ  is carried by ∆, i.e.,    s      I, δ(Ab(  ))     ∆(s).  A natural challenge 

is therefore to compare relative task computability of affine models: 

A∗ is stronger than B∗, i.e., A∗ ≥A B∗, if all tasks solvable in B∗ can be solved in A∗. 

Hence, we can state our problem as follows: 

Given two affine tasks, A and B, is the question of whether A∗ ≥A B∗ decidable? 

Equivalently, we can study decidability of the question whether A∗ solves B, i.e., whether A 
solves the simplex agreement task on B [1]. Indeed, suppose that A∗ solves B, inductively, 

for any b ∈ N, A∗ solves Bb. Thus, any task solvable in B∗ can be solved in A∗. 
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Figure 1 Relations between canonical affine tasks and corresponding models. 

 
In this paper, we first present a framework for studying the decidability question above 

in 2-process affine models. We provide a complete hierarchy of 2-process affine models, 

including most, if not all, 2-process shared-memory models. We show that these models 

break down into five equivalence classes, where each class is equipped with a representative 

defined as a subset of a single iteration of the standard chromatic subdivision. The order 

depicted in Figure 1 defines the complete hierarchy of relative task computability of these 

five equivalence classes. 

An intriguing question is whether this approach can be applied to higher-dimensional 

systems. One approach could be to focus on models defined using link-connected affine tasks. 

 

  2 Equivalence classes 

Property selection. We define equivalence classes of 2-process affine tasks via a simple 

predicate on a set of properties. The power a 2-process system relies on the properties of 

solo executions, i.e., the endpoints of the corresponding affine task. Assuming a fixed input 

state, there is only one such endpoint v0 (resp., v1) of process p0 (resp., p1). We identify the 

following (obviously disjoint and forming a partition) classes of 2-process affine tasks: 

1. There is a path from v0 to v1. 

2. Both v0 and v1 belong to the task, but there is no path between v0 to v1. 

3. Only v0 belongs to the task. 

4. Only v1 belongs to the task. 

5. Neither v0 nor v1 belongs to the task. 

 
Equivalence for solving tasks. We show that for any tasks A and B in the same class, A∗ 

solves B. 

If v0 and v1 are connected, then A and B are both iterations of the standard chromatic 

subdivision. By the simplicial approximation theorem, there exists a simplicial map that 

maps an iteration of A onto B. Thus A∗ B∗. 

Suppose now that there is no path between v0 and v1. Then simplices of A can be 

split into connected components. Let A0 (resp., A1) be the (possibly empty) connected 

component including v0 (resp., v1). We can then simply map every facets of A0 (resp. 

A1) to the facet of B containing v0 (resp. v1), and every facets of remaining connected 

components to any facet of B. This allows us to solve B using simply one iteration of A 

and, thus, A∗ ≥A B∗. 

Canonical tasks. In each equivalence class, we can then select a characterizing representative, 

which we call a canonical task. We will show that the partial order on these canonical tasks 

(depicted in Figure 1) captures the relative power of the corresponding equivalence classes. 

Figure 2 depicts the five canonical affine tasks. The affine model of a canonical task is also 

called canonical. 
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(a) No v1, no v2 (b) Only v1 (c) Only v2 (d) v1 and v2 (e) Connected 

Figure 2 Representative affine tasks for the five classes. 

 
  3 Comparing equivalence classes 

To prove that the partial order in Figure 1 indeed corresponds to relative task computability 

power of affine models, we need to show that: (1) iterations of an affine task cannot belong 

to a higher equivalence class; (2) carrier-preserving simplicial maps can only send tasks to 

those in smaller or equal classes; and (3) canonical affine models follow this order.  It is easy 

to check that (1) and (2) imply that equivalent affine models belong to the same class. As 

all models in a class are equivalent, comparing canonical tasks (3) is, hence, sufficient to 

compare all models. Moreover, (1) and (2) also imply that models in a class cannot solve 

tasks in higher classes; consequently, (3) reduces to showing that a higher canonical model is 

stronger than a smaller one. 

Iterating affine tasks. An iteration of an affine task replaces each simplex with a set 

of simplices defined by the task for the corresponding processes. Hence, a vertex with 

a carrier of dimension 0 is replaced by a vertex with a carrier of dimension 0.  A path 

is also stable under iteration in this setting as the existence of a path is equivalent to 

having a complete subdivision. 

Simplicial maps. A carrier-preserving simplicial map must send the simplex with 

carrier p0 (resp., p1) to the simplex with carrier p0 (resp.,p1). Therefore, models from 

all classes but the smallest one can only be mapped to models in smaller classes. It is 

also easy to check that a path between the two endpoints must be mapped to a path 

between them. 

Comparing canonical models. If neither v0 nor v1 belongs to the task, we can map all 

facets to any other task facet. Hence, this class is the strongest one. For other canonical 

tasks, the order follows a direct task inclusion, which implies the solvability of canonical  

tasks in smaller classes (the solution being the identity map). 

Formal statements and proofs of the claims listed above can be found in [6]. 
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