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OPTIMAL TRANSPORT BETWEEN DETERMINANTAL POINT

PROCESSES AND APPLICATION TO FAST SIMULATION

LAURENT DECREUSEFOND AND GUILLAUME MOROZ

Abstract. We analyze several optimal transportation problems between de-
terminantal point processes. We show how to estimate some of the distances

between distributions of DPP they induce. We then apply these results to

evaluate the accuracy of a new and fast DPP simulation algorithm. We can
now simulate in a reasonable amount of time more than ten thousands points.

1. Introduction

Determinantal point processes (DPP) have been introduced in the seventies [21]
to model fermionic particles with repulsion like electrons. They recently regained
interest since they represent the locations of the eigenvalues of some random matri-
ces. A determinantal point process is characterized by an integral operator of kernel
K and a reference measure m. The integral operator is compact and symmetric
and is thus characterized by its eigenfunctions and its eigenvalues. Following [18],
the eigenvalues are not measurable functions of the realizations of the point process
so it is difficult to devise how a modification of the eigenfunctions, respectively of
the eigenvalues or of the reference measure, modifies the random configurations of
a DPP. Conversely, it is also puzzling to know how the usual transformations on
point processes like thinning, dilations, displacements, translate onto K and m.

A careful analysis of the simulation algorithm given in [18] yields several answers
to these questions. For instance, it is clear that the eigenvalues control the distribu-
tion of the number of points and the eigenfunctions determine the positions of the
atoms once their number is known. The above mentioned algorithm is a beautiful
piece of work but requires to draw points according to distributions whose densi-
ties are not expressed as combinations of classical functions, hence the necessity
to use rejection sampling method. Unfortunately, as the number of drawn points
increases, the densities quickly present high peaks and deep valleys inducing a high
number of rejections, see Figure 1.

As a consequence, it is hardly feasible to simulate a DPP with more than one
thousand points in a reasonable amount of time. As a DPP appears as the locations
of the eigenvalues of some matrix ensembles, it may seem faster and simpler to draw
random matrices and compute the eigenvalues with the optimized libraries to do so.
There are several drawbacks to this approach: 1) we cannot control the domain into
which the points fall, for some applications it may be important to simulate DPP
restricted to some compact sets, 2) as eigenvalues belong to R or C, we cannot
imagine DPP in higher dimensions with this approach, 3) for stationary DPP, it
is often useful to simulate under the Palm measure (see below) which is known to
correspond to the distribution of the initial DPP with the first eigenvalue removed
so no longer corresponds to a random matrix ensemble.
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Figure 1. Peaks and valleys of some densities.

Several refinements of the algorithm 1 have been proposed along the years but
the most advanced contributions have been made for DPP on lattices, which are
of a totally different nature than continuous DPPs. We here propose to fasten the
simulation of a DPP by reducing the number of eigenvalues considered and approx-
imating the eigenfunctions by functions whose quadrature can be easily inversed to
get rid of the rejection part.

We evaluate the impact of these approximations by bounding the distances be-
tween the original distribution of the DPP to be simulated and the real distribution
according to which the points are drawn.

Actually, there are several notions of distances between the distributions of point
processes (see [10] and references therein). We focus here on the total variation dis-
tance and on the quadratic Wasserstein distance. The former counts the difference
of the number of points in an optimal coupling between two distributions. The lat-
ter evaluates the matching distance between two realizations of an optimal coupling
provided that it exists.

The paper is organized as follows. We first recall the definition and salient
properties of DPP. In Section 3, we briefly introduce the optimal transportation
problem in its full generality and give some elements dedicated to point processes.
In Section 4, we show how the eigenvalues and eigenfunctions do appear in the
evaluation of the distances under scrutiny. In Section 5, we apply these results to
the simulation of DPPs.

2. Determinantal point processes

Let E be a Polish space, O(E) the family of all non-empty open subsets of E
and B denotes the corresponding Borel σ-algebra. In the sequel, m is a Radon
measure on (E,B). Let N be the space of locally finite subsets in E, also called the
configuration space:

N = {ξ ⊂ E : |Λ ∩ ξ| <∞ for any compact set Λ ⊂ E},
equipped with the topology of the vague convergence. We call elements of N config-
urations and identify a locally finite configuration ξ with the atomic Radon measure∑
y∈ξ εy, where we have written εy for the Dirac measure at y ∈ E.

Next, let Nf = {ξ ∈ N : |ξ| < ∞} the space of all finite configurations on E.
Nf is naturally equipped with the trace σ-algebra Ff = F|Nf .

A random point process is defined as a probability measure on (N,F). A random
point process µ is characterized by its Laplace transform, which is defined for any
measurable non-negative function f on E as

Lµ(f) =

∫
N

e−
∑
x∈ξ f(x)dµ(ξ).
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Our notations are inspired by those of [14], where the reader can also find a brief
summary of many properties of Papangelou intensities.

Definition 1. We define the m-sample measure L on (Nf ,Ff ) by the identity∫
f(α) dL(α) =

∑
n≥0

1

n!

∫
En

f({x1, . . . , xn})dm(x1) . . . dm(xn),

for any measurable nonnegative function f on Nf .

Point processes are often characterized via their correlation function defined as:

Definition 2 (Correlation function). A point process µ is said to have a correlation
function ρ : Nf → R if ρ is measurable and∫

N

∑
α⊂ξ, α∈Nf

f(α)dµ(ξ) =

∫
Nf

f(α) ρ(α) dL(α),

for all measurable nonnegative functions f on Nf . For ξ = {x1, . . . , xn}, we will
write ρ(ξ) = ρn(x1, . . . , xn) and call ρn the n-th correlation function, where ρn is a
symmetrical function on En.

It can be noted that correlation functions can also be defined by the follow-
ing property, both characterizations being equivalent in the case of simple point
processes.

Definition 3. A point process µ is said to have correlation functions (ρn, n ≥ 0)
if for any A1, . . . , An disjoint bounded Borel subsets of E,

E

[
n∏
i=1

ξ(Ai)

]
=

∫
A1×···×An

ρn(x1, . . . , xn)dm(x1) . . . dm(xn).

Recall that ρ1 is the mean density of particles with respect to m, and

ρn(x1, . . . , xn)dm(x1) . . . dm(xn)

is the probability of finding a particle in the vicinity of each xi, i = 1, . . . , n.
Note that

Nf
E =

∞⋃
n=0

N
(n)
E

where
N

(n)
E = {ξ ∈ Nf

E , ξ(E) = n}.
Since N

(n)
E can be identified with En/Sn where Sn is the group of permutations

over n elements, every function f : Nf
E → R is in fact equivalent to a family of

symmetric functions (fn, n ≥ 1) where fn goes from En to R. For the sake of
notations, we omit the index n of fn.

Definition 4. A measure µ on Nf
E is regular with respect to the reference measure

m when there exists

j :

∞⋃
n=0

N
(n)
E −→ R+

{x1, · · · , xn} 7−→ jn(x1, · · · , xn)

where jn is symmetric on En such that for any measurable bounded f : Nf → R,

(1) E[f(ξ)] = f(∅) +

∞∑
n=1

1

n!

∫
En

f(x1, . . . , xn)j(x1, . . . , xn)dm(x1) . . . dm(xn).

The function jn is called the n-th Janossy density. Intuitively, it can be viewed as
the probability to have exactly n points in the vicinity (x1, · · · , xn)
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For details about the relationships between correlation functions and Janossy
densities, see [7].

2.1. Determinantal point processes. For details, we mainly refer to [24]. A
determinantal point on X is characterized by a kernel K and a reference measure m.
The map K is supposed to be an Hilbert-Schmidt operator from L2(E, m) into
L2(E, m) which satisfies the following conditions:

(1) K is a bounded symmetric integral operator on L2(E, m), with kernel
K(., .), i.e., for any x ∈ E,

Kf(x) =

∫
E

K(x, y)f(y)dm(y).

(2) The spectrum of K is included in [0, 1].
(3) The map K is locally of trace class, i.e., for all compact Λ ⊂ E, the restric-

tion KΛ = PΛKPΛ of K to L2(Λ, m) is of trace class.

Definition 5. The determinantal measure on N with characteristics K and m can
be defined through its correlation functions:

ρn,K(x1, · · · , xn) = det
(
K
(
xk, xl

))
1≤k,l≤n ,

and for n = 0, ρ0, K(∅) = 1.

There is a particular class of DPP which is the basic blocks on which general
DDP are built upon.

Definition 6. A DPP whose spectrum is reduced to the singleton {1} is called a
projection DPP. Actually, its kernel is of the form

Kφ(x, y) =

M∑
j=0

φj(x)φj(y)

where M ∈ N ∪ {∞} and (φj , j = 0, · · · ,M) is a family of orthonormal functions
of L2(E,m).

If M is finite then almost-all configurations of such a point process have M
atoms.

Alternatively, when the spectrum of K does not contain 1, we can define a DPP
through its Janossy densities. In this situation, the properties of K ensure that
there exists a sequence (λi, i ≥ 1) of elements of [0, 1) with no accumulation point
but 0 and a complete orthonormal basis (φi, i ≥ 1) of L2(m) such that

Kφ(x, y) =
∑
i≥1

λiφi(x)φi(y).

Note that if L2(E, m) is a C-vector space, we must modify this definition accord-
ingly:

Kφ(x, y) =
∑
i≥1

λiφi(x)φi(y).

For a compact subset Λ ⊂ X, the map JΛ is defined by:

JΛ = (Id−KΛ)
−1
KΛ,

so that we have:

(Id−KΛ) (Id +JΛ) = Id .

For any compact Λ ⊂ E, the operator JΛ is an Hilbert-Schmidt, trace class
operator, whose spectrum is included in [0,+∞). We denote by JΛ its kernel. For
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any n ∈ N, any compact Λ ⊂ E, and any (x1, · · · , xn) ∈ Λn, the n-th Janossy
density is given by:

(2) jnΛ (x1, · · · , xn) = det (JΛ (xk, xl))1≤k,l≤n .

We can now state how the characteristics of a DPP are modified by some usual
transformations on the configurations.

Theorem 1. Let µ a DPP on Rk with kernel K and reference measure m = hdx.
Let (λn, n ≥ 0) be its eigenvalues counted with multiplicity and (φn, n ≥ 0) the
corresponds eigenfunctions.

(1) A random thinning of probability p transforms µ into a DPP of kernel pK.
(2) A dilation of ratio ρ transforms µ into a DPP of kernel

Kρ(x, y) =
1

ρ
K(ρ−1/kx, ρ−1/ky).

(3) If H is a C1-diffeomorphism on E, then

H : NE −→ NE∑
x∈ξ

εx −→
∑
x∈ξ

εH(x)

transforms µ into a DPP of kernel

KH(x, y) = K
(
H−1(x), H−1(y)

)
and reference measure m ◦H−1, the image measure of m by H, see [6].

(4) If K(x, y) = k(x−y) then µ is stationary [20] and thus admits a stationary
Palm measure µ0. From [24], we know that µ0 is distributed as the DPP of
kernel

K0(x, y) =

∞∑
n=1

λnφn(x)φn(y).

Remark 1. It is straightforward to see that the spectrum of KH in L2(E, m◦H−1)
is the same as the spectrum of K in L2(E, m). Actually, this transformation will
be a particular case of the optimal maps obtained in solving the MKP for the
Wassertein-2 distance (see Theorem 12).

Remark 2. Recall that for a Poisson process, we can obtain a realization of its Palm
measure by just adding an atom at 0 to any of its realization. Unfortunately, we
know from [18] that the eigenvalues of a DPP cannot be obtained as measurable
functions of the configurations. Hence it is hopeless to construct a realization of µ0

from a realization of µ.

2.1.1. Simulation of DPP. The simulation algorithm introduced [18] is up to now
the most efficient to produce random configurations distributed according to a
determinantal point process. It is based on the following lemma.

Lemma 2. Let µK,m a determinantal point process of a trace-class kernel K and
reference measure m. Let sp(K;L2(m)) = {λn, i ≥ 0} and (φn, i ≥ 0) a CONB
of L2(E, m) composed of eigenfunctions of K. Let (B(λn), i ≥ 0) a family of
independent Bernoulli random variables of respective parameter λn. Let

I = {n ≥ 0, B(λn) = 1}.
Since E [|I|] =

∑∞
n=0 λn <∞, I is a.s. a finite subset of N. Consider

KI(x, y) =
∑
n∈I

φn(x)φn(y)
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and

pI(x1, · · · , x|I|) =
1

|I|! det
(
KI(xk, xl), 1 ≤ k, l ≤ |I|

)
.

Construct a random configuration ξ as follows: Given I, draw points (W1, · · · ,W|I|)
with joint density pI . Then ξ is distributed according to µK,m.

In the following, let φI(x) = (φn(x), n ∈ I).
Data: R, I
Result: W1, · · · ,W|I|
Draw W1 from the distribution with density ‖φI(x)‖2

C|I|
/|I|;

e1 ← φI(W1)/‖φI(W1)‖C|I| ;
for i← 2 to |I| do

Draw Wi from the distribution with density

pi(x) =
1

|I| − i+ 1

(
‖φI(x)‖2C|I| −

i−1∑
k=1

|ek.φI(x)|2
)

ui ← φI(Wi)−
∑i−1
k=1 ek.φI(Wi) ek;

ei ← ui/‖ui‖C|I| ;
end

Algorithm 1: Sampling of the locations of the points given the set I of active
Bernoulli random variables.

We have two kind of difficulties here: the drawing of Wi according to a density
function with no particular feature so we usually have to resort to rejection sam-
pling; when |I| is large the computation of the density may be costly as it contains
a sum of |I| terms. Figure 1 also suggests that when the number of points becomes
high, the profile of the conditional density might be very chaotic with high peaks
and deep valleys, involving a large number of rejections in the sampling of this
density. These are the problems we intend to address in the following.

Remark 3. Note that this algorithm is fully applicable even if E is a discrete fi-
nite space. It has been improved in several ways [19, 25] but when it comes to
simulate a DPP with a large number of points as it is necessary in some applica-
tions [5], the best way remains to use MCMC methods [1]. Unfortunately, by its
very construction, this last approach is not feasible when the underlying space E
is continuous.

3. Distances derived from optimal transport

For details on optimal transport in Rd and in general Polish spaces, we refer
to [27, 26]. For X and Y two Polish spaces, for µ (respectively ν) a probability
measure on X (respectively Y ), Σ(µ, ν) is the set of probability measures on X×Y
whose first marginal is µ and second marginal is ν. We also need to consider a lower
semi continuous function c from X × Y to R+. The Monge-Kantorovitch problem
associated to µ, ν and c, denoted by MKP(µ, ν, c) for short, consists in finding

(3) inf
γ∈Σ(µ, ν)

∫
X×Y

c(x, y)dγ(x, y).

More precisely, since X and Y are Polish and c is l.s.c., it is known from the general
theory of optimal transportation, that there exists an optimal measure γ ∈ Σ(µ, ν)
and that the minimum coincides with

sup
(F,G)∈Φc

(

∫
X

Fdµ+

∫
Y

Gdν),
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where (F, G) are such that F ∈ L1(dµ), G ∈ L1(dν) and F (x) + G(y) ≤ c(x, y).
We will denote by Wc(µ, ν) the value of the infimum in (3). In the sequel, we need
the following theorem of Brenier:

Theorem 3. Let c(x, y) = 2−1‖x − y‖2 be the Euclidean distance on Rk and
µ, ν two probability measures with finite second moment. If the measure µ is abso-
lutely continuous with respect to the Lebesgue measure, there exists a unique optimal
measure γopt which realizes the minimum in (3). Moreover, there exists a unique
function ψ : Rk → R such that

y = x−∇ψ(x), γopt-a.s.

Then, we have

We(µ, ν) =
1

2

∫
Rk

‖∇ψ‖2Rkdµ.

The square root of We(µ, ν) defines a distance on M1(Rk), the set of probability
measures on Rk, called the Wasserstein-2 distance.

For c a distance on X = Y , Wc also defines a distance on M1(Rk), often called
Kantorovitch-Rubinstein or Wasserstein-1 distance. It admits the alternative char-
acterization.

Theorem 4 (See [11]). Let c be a distance on the Polish space (X, dX). For µ and
µ two probability measures on X,

Wc(µ, µ) = sup
f∈Lip1

(∫
X

fdµ−
∫
X

fdν

)
where

Lip1 = {f : X → R, ∀x, y ∈ X, |f(x)− f(y)| ≤ dX(x, y)} .
Note that dX is the distance which defines the topology of the Polish space X, it
may not be identical to c.

The next result is found in [26, Chapter 7].

Theorem 5. The topologies induced byWc andWe on M1(Rk) are strictly stronger
than the topology of convergence in distribution.

4. Distances between point processes

There are several ways to define a distance between point processes. We here
focus on two of them. They are constructed similarly: Choose a cost function c on
NE and then consider Wc defined by the solution of MKP(µ, ν, c) for µ and ν two
elements of M1(NE).

Definition 7. Consider distTV the distance in total variation between two config-
urations (viewed as discrete measures):

distTV(ξ, ζ) = (ξ∆ζ)(E)

where ξ∆ζ is the symmetric difference between the two sets ξ and ζ, i.e. we count
the number of distinct atoms between ξ and ζ. Then, for µ and ν belonging to
M1(NE), their Kantorovitch-Rubinstein distance is defined by

WKR(µ, ν) = inf
law(ξ)=µ
law(ζ)=ν

E [(ξ∆ζ)(E)]

= sup
f∈Lip1(NE)

(∫
NE

f(ξ)dµ(ξ)−
∫
NE

f(ζ)dν(ζ)

)
.(4)



8 LAURENT DECREUSEFOND AND GUILLAUME MOROZ

Remark 4. For any compact set Λ ⊂ E, the map

ΞΛ : NE −→ N

ξ 7−→ ξ(Λ)

is Lipschitz. Let (µn, n ≥ 1) be a sequence of point processes and denote by ξn an
NE-valued random variable whose distribution is µn. Similarly, for another element
ν ∈ M1(NE), let ζ be an NE-valued random variable whose distribution is ν. In
view of (4) and Theorem 4, if WKR(µn, ν) tends to zero then for any compact
set Λ, the sequence of random variables (ξn(Λ), n ≥ 1) converges in distribution
to ζ(Λ).

For the quadratic distance, we first consider, on E = Rk, the cost function as
ρ(x, y) = 2−1‖x−y‖2 and we define a cost between configurations (see also [4, 3, 2])
as the ’lifting’ of ρ on NE :

c(ξ1, ξ2) = inf

{∫
ρ(x, y) dβ(x, y), β ∈ Σ(ξ1, ξ2)

}
,

where Σ(ξ1, ξ2) denotes the set of β ∈ NE×E having marginals ξ1 and ξ2. First
remark that when ξ1(E) is finite, the cost is finite only if ξ1(E) = ξ2(E), otherwise
Σ(ξ1, ξ2) is empty and then, by convention, the cost is infinite. Moreover, the cost
is attained at the permutation of {1, · · · , ξ1(E)} which minimizes the sum of the
squared distances:

c(ξ1, ξ2) =
1

2
min

σ∈Sξ1(E)

ξ1(E)∑
j=1

‖xi − yσ(i)‖2

where ξ1 = {xj , 1 ≤ j ≤ ξ1(E)} and ξ2 = {yj , 1 ≤ j ≤ ξ1(E)}. For infinite con-
figurations, it is not immediate that the cost function so defined has the minimum
regularity required to consider an optimal transport problem. According to [23],
this is indeed true as c is lower semi continuous on NE×NE . We can then consider
the Monge-Kantorovitch problem MKP(µ, ν, c) on M1(NE). The main theorem of
[8] is the following. For Λ a compact subset of E, by definition of locally finite
point process, the number of points of ξ|Λ is finite hence we can write

NΛ =

∞⋃
n=0

N
(n)
Λ

where
N

(n)
Λ = {ξ ∈ NΛ, ξ(Λ) = n} .

Definition 8. A probability measure µ on NE is said to be regular whenever it
admits Janossy densities of any order.

Theorem 6. Let Λ ⊂ E a compact set. Let µ be a regular probability measure
on NΛ and ν be a probability measure on NE. The Monge-Kantorovitch distance,
associated to c, between µ and ν is finite if and only if the following two conditions
hold

(1) µ(ζ(Λ) = n) = ν(ξ(E) = n) := cn for any integer n ≥ 0,
(2)

∑
n≥1 cnWe(µn, νn) is finite.

Then, the solution of MKP(µ, ν, c) is attained at a unique point γopt and there exists
a unique map

ϕ :

∞⋃
n=0

N
(n)
Λ −→

∞⋃
n=0

N
(n)
E

ξ = {x1, · · · , xn} 7−→ {ϕn
(
y; (x1, · · · , xn)

)
, y ∈ ξ} ∈ En
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such that for ξ ∈ N
(n)
Λ ,

ζ =
∑
x∈ξ

εϕn(x, ξ), γopt-a.s.

Moreover,

(5) Wc(µ, ν) =
∑
n≥1

cnWe(µn, νn).

If ν is regular, then for y ∈ {x1, · · · , xn},
ϕn(y, (x1, · · · , xn)) = y −∇yψn(x1, · · · , xn)

where Id−∇ψn is the optimal transportation map between the n-th Janossy nor-
malized densities c−1

n jµn and c−1
n jνn.

This means that whenever the distance between µ and ν is finite, there exists a
strong coupling which works as follows: 1) draw a discrete random variable with
the distribution of ξ(Λ), let ι the obtained value 2) draw the points of ξ according
to µι and then 3) apply the map ϕι(., ξ) to each point of ξ. The configuration
which is obtained is distributed according to νι.

It is shown in [8] that for two Poisson point processes of respective intensity σ1

and σ2, the distance defined above is finite if and only if σ1(E) = σ2 and

ζ =
∑
x∈ξ

εt(x), γopt-a.s.

where t is the optimal transport map between σ1 and σ2 for the Euclidean cost
as defined in Theorem 3. Note that the optimal map is a transformation which is
applied to each atom irrespectively of the others. In full generality, for non Poisson
processes, the amount by which an atom is moved depends on the other locations.

4.1. Distances between DPP. For determinantal point processes, we can evalu-
ate the effect of a modification of the eigenvalues with the Kantorovitch-Rubinstein
distance and the effect of a modification of the eigenvectors with the Wasserstein-2
distance.

Lemma 7. Let µ and ν two determinantal point processes with respective kernels
Kµ and Kν . Assume that Kµ and Kν are two projection kernels in some Hilbert
space L2(m) such that Kµ = Kν +L where L is another projection kernel and L is
orthogonal to Kν . Then,

(6) WKR(µ, ν) ≤ range(L).

Proof. The hypothesis means that there exists (φj , j = 1, · · · , l + n) a family of
orthonormal functions in L2(m) such that

Kν(x, y) =

n∑
j=1

φj(x)φj(y) and L(x, y) =

l∑
j=n+1

φj(x)φj(y).

Since L is a positive symmetric operator, this exactly means that Kν ≺ Kµ in the
Loewner sense. According to [15], there exists ξ′, ζ ′ of respective distribution µ, ν
and a point process ω′ such that

ξ′ = ζ ′ + ω′ and ζ ′ ∩ ω′ = ∅.
This implies that

ξ′∆ζ ′(E) = ω′(E) = l.

According to the first definition of WKR, see (4), this implies (6). �
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Theorem 8. Let µ (respectively ν) be a determinantal point process of character-
istics Kµ and hµ (respectively Kν and hν) on a compact set Λ ⊂ Rk. Denote by
(λµn, n ≥ 0) (respectively (λνn, n ≥ 0)) the eigenvalues of Kµ in L2(E, hµdx) (re-
spectively of Kν in L2(E, hνdx)) counted with multiplicity and ranked in decreasing
order. Assume that

λνn ≤ λµn, ∀n ≥ 0.

Then,

(7) WKR(µ, ν) ≤
∞∑
n=0

|λµn − λνn|.

Proof. We make a coupling of (B(λµn), n ≥ 0) and (B(λµn), n ≥ 0) by using the
same sequence of uniform random variables: Let (Un, n ≥ 0) be a sequence of in-
dependent, identically uniformly distributed over [0, 1], random variables, consider

Xµ
n = 1{Un≤λµn} and Xν

n = 1{Un≤λνn}.

Note that

(8) P(Xν
n 6= Xµ

n ) = |λµn − λνn|.
Let Iµ = {n ≥ 0, Xµ

n = 1} and Iν = {n ≥ 0, Xν
n = 1}. In view of the hypothesis,

Xν ≤ Xµ hence Iν ⊂ Iµ. Otherwise stated, KIµ and KIν are two projection kernels
which satisfy the hypothesis of Lemma 7. Hence, there exists a realization (ξ, ζ) of
Σ(µ, ν) given Iµ and Iν , such that

distTV(ξ, ζ) =

∞∑
n=0

1{Xνn 6=X
µ
n}.

Gluing these realizations together, we get a coupling (ξ, ζ) such that

E [distTV(ξ, ζ)] = E [E [distTV(ξ, ζ) | Iµ, Iν ]]

= E

[ ∞∑
n=0

1{Xνn 6=X
µ
n}

]

=

∞∑
n=0

|λµn − λνn|,

according to (8). Since the Kantorovitch-Rubinstein distance is obtained as the
infimum over all couplings of the total variation distance between ξ and ζ, this
particular construction shows that (7) holds. �

The next corollary is an immediate consequence of the alternative definition of
the KR distance on point processes, see Eqn. (4).

Corollary 9. With the hypothesis of Theorem 8, let ξ and ζ be random point
process of respective distribution µ and ν. Then, we have that

sup
A⊂Λ

distTV(ξ(A), ζ(A)) ≤
∞∑
n=0

|λµn − λνn|.

This means that the Kantorovitch-Rubinstein distance between point processes
focuses on the number of atoms in any compact. As we shall see now, the Wasserstein-
2 distance evaluates the matching distance between configurations when they have
the same cardinality.

Theorem 10. Let µ (respectively ν) be a determinantal point process of charac-
teristics Kµ and hµ (respectively Kν and hν) on a compact set Λ ⊂ Rk. The
Wasserstein-2 distance between µ and ν is finite if and only if

sp(Kµ; L2(hµdx)) = sp(Kν ; L2(hνdx)).
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Proof of Theorem 10. According to point 1 of Theorem 6, we must first prove the
equality of the spectra. We already know that the eigenvalues of both kernels
are between 0 and 1, with no other accumulation point than 0. Furthermore, the
distribution of ζ(Λ) is that of the sum of independent Bernoulli random variables
of parameters given by the eigenvalues, hence

(9) Φµ(z) = Eµ

[
zζ(Λ)

]
=

∏
λ∈spKµ

(1− λ+ λz).

The infinite product is convergent since traceKµ =
∑
λ∈spKµ

is finite.

If the Wasserstein-2 distance between µ and ν is finite then Φµ = Φν . The zeros
of these two holomorphic functions are all greater than 1 and are isolated. Let

m(Φ, r) = number of zeros (counted with multiplicity) of Φ in B(0, r).

By the properties of zeros of holomorphic functions we have

m(Φµ, r) = m(Φν , r) for any r ≥ 0.

Hence, {1− λ
λ

, λ ∈ spKµ

}
=
{1− λ

λ
, λ ∈ spKν

}
and the two spectra must coincide. Now then, by the very definition of We,

We(µn, νn) ≤
∫

Λ

‖x‖2(dµn + dνn) ≤ sup
x∈Λ
‖x‖2

(
µn(Λ) + νn(Λ)

)
.

Thus, we have∑
n≥1

We(µn, νn) µ(ζ(Λ) = n) ≤ sup
x∈Λ
‖x‖2

∑
n≥1

(
µn(Λ) + νn(Λ)

)
µ(ζ(Λ) = n)

= 2 sup
x∈Λ
‖x‖2 traceKµ.

This quantity is finite hence the Wasserstein-2 distance between µ and ν as soon
as the spectra are equal. �

The next lemma is a straightforward consequence of Lemma 2.

Lemma 11. Let µ be a determinantal point process of characteristics Kµ and hµ.
For I a finite subset, let

cI =
∏
i∈I

λµi
∏
j∈Ic

(1− λµj ),

where the λµi ’s are the eigenvalues of Kµ. Then, its n-th Janossy density is given
by

jµn(x1, · · · , xn) =
∑
I⊂N
|I|=n

cI pI(x1, · · · , xn).

This means that given ζ(E) = n, the points are distributed according to the proba-
bility measure:

pµn : (x1, · · · , xn) 7−→ c−1
n

∑
I⊂N
|I|=n

cI pI(x1, · · · , xn) where cn =
∑
I⊂N
|I|=n

cI .
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Proof. Consider that ξ is constructed with Algorithm 1 and denote by Iξ the set of
indices of the Bernoulli random variables which are equal to 1 for the drawing of ξ.

For any bounded f : Nf
E → R,

E [f(ξ)] = f(∅) +

∞∑
n=1

E
[
f(ξ)1{ξ(E)=n}

]
= f(∅) +

∞∑
n=1

∑
J⊂N
|J|=n

E [f(ξ) | Iξ = J ] cJ

= f(∅) +

∞∑
n=1

∑
J⊂N
|J|=n

cJ

∫
En

f(x1, · · · , xn) pJ(x1, · · · , xn)dx1 . . . dxn

= f(∅) +

∞∑
n=1

cn

∫
En

f(x1, · · · , xn) pµn(x1, · · · , xn)dx1 . . . dxn.

The result follows by identification with (1). �

Then, Theorem 6 applies as follows.

Theorem 12. Suppose that the hypothesis of Theorem 10 hold. Let Id−∇ψn be the
optimal transport map between pµn and pνn. Then, the optimal coupling is given by
the following rule: For ξ such that ξ(E) = n, it is coupled with ζ the configuration
with n atoms described by

ζ =
∑
x∈ξ

εx−∇xψn(ξ).

Furthermore,

Wc(µ, ν) =

∞∑
n=1

cnWe(p
µ
n, p

ν
n)

=
1

2

∞∑
n=1

∫
En
‖∇ψn(x1, · · · , xn)‖2En jµn(x1, · · · , xn)dx1 . . . dxn.

Theorems 10 and 12 mean that two determinantal point processes are strongly
coupled when and only when their eigenvalues are identical. Moreover, the eigen-
values also control the convex combination of the densities of the projection DPP
which appear in the Janossy densities.

4.2. Determinantal projection processes. Recall from Definition 6 that a pro-
jection DPP has a spectrum reduced to {1}. When it is of finite rank M , almost
all its configurations have M points distributed according to the density

(10) pφ(x1, · · · , xM ) =
1

M !
det
(
Kφ(xi, xj), 1 ≤ i, j ≤M

)
.

Theorem 12 cannot be used as is since projection DPPs do not possess Janossy
densities. However, the initial definition of Wc can still be used.

Theorem 13. Let ψ = (ψj , 1 ≤ j ≤ M) and ψ = (ψj , 1 ≤ j ≤ M) two orthonor-
mal families of L2(E;m). Let µψ and µφ the two projection DPP associated to
these families. Then,

Wc(µψ, µφ) ≤ inf
σ∈SM

M∑
j=1

We(|ψj |2dm, |φσ(j)|2dm).
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Proof. We know that the points of µψ (respectively µφ) are distributed according
to pψ (respectively pφ) given by (10). Let γ be a probability measure on EM ×EM
whose marginals are pψdm and pφdm. We know that

Wc(µψ, µφ) =

∫
EM×EM

inf
σ∈SM

M∑
j=1

|xj − yσ(j)|2E dγ(x1, · · · , xM , y1, · · · , yM )

≤
M∑
j=1

∫
EM×EM

|xj − yj |2E dγ(x1, · · · , xM , y1, · · · , yM ).

We know from Algorithm 1, that the marginal distribution a single atom of µψ has
distribution

dµ1
ψ(x) =

1

M

M∑
j=1

|ψj(x)|2dm(x).

Since pψ and pφ are both invariant with respect to permutations, we obtain

Wc(µψ, µφ) ≤M
∫
E×E

|x1 − y1|2Edγ(x1, · · · , xM , y1, · · · , yM )

≤M We(µ
1
ψ, µ

1
φ).

If γ1
i is a coupling between |ψi|2dm and |φi|2dm then M−1

∑M
i=1 γ

1
i is a coupling

between µ1
ψ and µ1

φ. Hence,

Wc(µψ, µφ) ≤
M∑
j=1

∫
E×E

|x1 − y1|2dγ1
j (x1, y1)

≤
M∑
j=1

We(|ψj |2dm, |φj |2dm).

Since we can order the elements of the family ψ and φ in any order, the result
follows. �

5. Simulation

As mentioned previously, implementing Algorithm 1 using rejection sampling
involves too many rejections which prevents the algorithm to work for more than
1 000 points. In this section, we will show that we can generate 10 000 points for
the Ginibre point process on a compact disc using inverse transform sampling and
approximation of the kernel.

In this section, we will consider Ginibre point processes but our reasoning could
be applied to any rotational invariant determinantal process like the polyanalytic
ensembles [16, 13] or the Bergman process [17]. For these processes, it is relatively
easy to compute the eigenvalues and the eigenfunctions of the kernel of their re-
striction to a ball centered at the origin. For the Ginibre process, which will be our
toy model, its restriction to BR, denoted by GR, has a kernel of the form

KR
N (x, y) =

∞∑
n=0

λRnφ
R
n (x)φRn (y)

where [9]

λRn =
γ(n+ 1, R2)

n!

φRn (x) =
1√

πγ(n+ 1, R2)
xne−|x|

2/2,
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with γ(n, r) is the lower incomplete gamma function. We denote by the GRN the
process whose kernel is the truncation of KR to its first N components:

KR
N (x, y) =

N−1∑
n=0

λRnφ
R
n (x)φRn (y)

The strict application of Algorithm 1 for the simulation of GR, requires to compute
all the quantities of the form

λRn

∞∏
k=n+1

(1− λRk )

to determine which Bernoulli random variables are active. Strictly speaking, this
is unfeasible. However, it is a well known observation that the number of points
of GR is about R2. So it is likely that GR and GRNR should be close for NR close

to R2. This is what proves the next theorem.

Theorem 14. Let c > 0 and NR = (R+ c)2. For R > c, we have

WKR(GR, GRNR) ≤
√

2

π
Re−c

2

.

Actually, the proof says that with high probability, GR and GRNR do coincide.

Proof. First, using the integral expression γ(j, x) =
∫ x
t=0

tj−1e−tdt, observe that∑∞
j=1

γ(j,x)
Γ(j) = x. Then, using the formula γ(n+ 1, x) = nγ(n, x)− xne−x, we have

by induction:
∞∑

j=n+1

γ(j, x)

Γ(j)
=
xne−x − (n− x)γ(n, x)

Γ(n)
·

For n = (R+ c)2 and x = R2, this implies:∑
j≥(R+c)2

λRj ≤ (R+ c)2R
2(R+c)2e−R

2

(R+ c)2!

Using the bound n! ≥
√

2πn
(
n
e

)n
∑

j≥(R+c)2

λRj ≤
R+ c√

2π

R2(R+c)2e(R+c)2−R2

(R+ c)2(R+c)2

≤ R+ c√
2π

e(R+c)2−R2−2(R+c)2 log(1+ c
R )

≤ R+ c√
2π

e
(R+c)2−R2−2(R+c)2

c
R

1+ c
R

≤ R+ c√
2π

e−c
2

Since R > c, the proof is complete. �

As a corollary of the previous proof, we have

(11) P(∃n ≥ (R+ c)2,Ber(λRn ) = 1) ≤
∑

n≥(R+c)2

λRn ≤ κRe−c
2

for R large enough. This means that the number of active Bernoulli random vari-
ables in Algorithm 1 is less than (R+c)2 with high probability. We can also provide
a lower bound on the cardinality of I.
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Lemma 15. For any R > c > 0,

P(card(I) < (R− c)2) ≤ 1√
2π
Re−c

2

.

Proof. As in the previous proof, we will reduce the problem to bound a sum of
reduced incomplete gamma functions.

P(card(I) < (R− c)2) = 1−P(card(I) ≥ (R− c)2)

≤ 1−
∏

0≤j<b(R−c)2c

P(Ber(λRj ) = 1)

≤
∑

0≤j<b(R−c)2c

(1−P(Ber(λRj ) = 1))

≤
∑

1≤j≤b(R−c)2c

Γ(j, R2)

Γ(j)
·

Using the formula Γ(n+ 1, x) = nΓ(n, x) + xne−x, we have by induction:

n∑
j=1

Γ(j, x)

Γ(j)
=
xne−x − (x− n)Γ(n, x)

Γ(n)
·

For n = b(R− c)2c and x = R2, this implies:

P(card(I) < (R− c)2) ≤ (R− c)2R
2(R−c)2e−R

2

(R− c)2!
·

Using Stirling formula

P(card(I) < (R− c)2) ≤ R− c√
2π

R2(R−c)2e(R−c)2−R2

(R− c)2(R−c)2

≤ R− c√
2π

e(R−c)2−R2−2(R−c)2 log(1− c
R )

≤ R− c√
2π

e
(R−c)2−R2+2(R−c)2

c
R

1− c
R

≤ R− c√
2π

e−c
2 ·

The proof is thus complete. �

The combination of Lemma 15 and (11) shows that the cardinality of I is of the
order of R2 with high probability.

5.1. Inverse transform sampling. The next step of the algorithm is to draw
the points according to a density given by a determinant. Since we do not have
explicit expression of the inverse cumulative function of these densities, we have
to resort to rejection sampling. Fortunately, even it has not been noticed to the
best of our knowledge, the particular form of the eigenfunctions of the Ginibre like
processes is prone to the simulation of modulus and arguments by inverting their
respective cumulative distribution function. This new approach is summarized in
Algorithm 2.

Lemma 16 (Simulation of the modules). Let p(z) =
∑
i∈I aiz

nifi(|z|) and

P (r) =

∫ r

ρ=0

∫ 2π

θ=0

|p(ρejθ)|2ρ dρ dθ
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The following equality holds:

P (r) =
∑
i∈I
|ai|2Fi(r2)

where

Fi(r
2) =

∫ r2

ρ=0

πρnif2
i (
√
ρ)dρ.

Given a sequence of complex numbers W` for ` from 1 to |I|, we denote by e` the
orthonormal vectors obtained by Gram-Schmidt orthonormalization of the vectors
φRI (W`). Let also M` ⊂ R|I| be the vector (|e`,i|2)i∈I where e`,i is the coordinate of
index i of e`. Moreover, let UF (r) = (Fi(r))i∈I . Finally, let Ui be the sequence of
vectors defined by induction with U1 = (1)i∈I and Ui+1 = Ui −Mi. Then drawing
the module of Wi in Algorithm 1 is reduced to sampling uniformly ci in [0, 1] and
solving the equation:

(12) ci =
1

|I| − i+ 1
Ui · UF (r).

Knowing Ui, we can compute Ui+1 in O(|I|) arithmetic operations. Using a di-
chotomy approach, Equation (12) can be solved with precision ε using O(|I| log ε)
evaluation of the Fi.

Given the moduli, we can now simulate the arguments.

Lemma 17 (Simulation of the arguments). Let p =
∑
i∈I aiz

nifi(|z|) and

Q(r, α) =

∫ α

θ=0

|p(reiθ)|2r dθ

Then Q can be rewritten as a sum of |I|2 terms:

Q(r, α) =
∑
i,k∈I

aiakGi,k(r, α)

where Gi,k(r, α) =

rgi(r)gk(r)
ej(ni−nk)α − 1

j(ni − nk)
if i 6= j

rg2
i (r)α if i = k

and gi(r) = rnifi(r).

Similarly to the simulation of the modules, for ` from 1 to |I|, let A` ⊂ C|I|2 be
the vector (e`,ie`,k)i,k∈I . Let VG(r, α) = (Gi,k(r, α))i,k∈I . Let (Vi)i=1...|I|−1 be the

sequence of vectors defined by recurrence with V1 = (1i=k)i,k∈I and Vi+1 = Vi−Ai.
Drawing the argument of Wi in Algorithm 1 is now reduced to sampling uniformly
ci in [0, 1] and solving the equation:

(13) ci =
1

Vi · VG(r, 2π)
Vi · VG(r, α).

Computing Vi+1 from Vi requires O(|I|2) arithmetic operations. Then, for
fixed r, Equation (13) can be solved up to precision ε in O(|I|2+|I| log ε) arithmetic
operations and evaluations of the fi, using a dichotomy approach.

The total cost of sampling the Wi with this approach is O(|I|3 + |I|2 log ε) op-
erations. We will see in the next section how we can reduce this complexity using
an approximation of the eigenfunctions.

Gathering the results of this section, we get in Algorithm 2 an efficient method
to sample points from a symmetric projection point process.
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Data: R, I
Result: W1, · · · ,W|I|
Draw W1 from the distribution with density ‖φI(x)‖2

C|I|
/|I|;

e1 ← φI(W1)/‖φI(W1)‖C|I| ;
U1 = (1)i∈I ;

V1 = (1i=k)i,k∈I ;

for i← 2 to |I| do
A. Update vectors Ui and Vi for next point simulation

Mi ← (|ei,`|2|)`∈I ;
Ai ← (ei,kei,`)k,`∈I ;

Ui ← Ui−1 −Mi;

Vi ← Vi−1 −Ai;
B. Draw point Wi

Draw ci from the uniform distribution in the interval [0, 1];

ri ← solution of ci = 1
|I|−i+1Ui · UF (r);

Draw di from the uniform distribution in the interval [0, 1];

αi ← solution of di = 1
Vi·VG(ri,2π)Vi · VG(ri, α);

Wi ← rie
iαi ;

C. Compute new vector ei

ui ← φI(Wi)−
∑i−1
k=1 ek.φI(Wi) ek;

ei ← ui/‖ui‖C|I| ;
end

Algorithm 2: Simulation of a compact symmetric projection point process
restricted to the disc BR

5.2. Compact Ginibre and approximation. Using Theorem 13 with a well-
chosen approximation, we will show that we can reduce in Algorithm 2 the com-
plexity of steps A. and B. from O(|I|2) to O(|I|1.5) operations with high probability.

For a given constant c > 0 and for an integer n, let Rn be the ring between the
circles of radii un = min(R,

√
n+ c) and ln = max(0,min(

√
n,R)− c). Let

µn =

∫
Rn

|φRn (z)|2dz =
γ(n+ 1, u2

n)− γ(n+ 1, l2n)

γ(n+ 1, R2)

fn(|z|) =
1√

πγ(n+ 1, R2)
e−
|z|2
2 .

and define the following approximated functions :

f̃n(|z|) =

{
fn(|z|)/√µn if z ∈ Rn
0 otherwise

and let

φ̃Rn (z) = znf̃n(|z|).
We now show that replacing φRn by φ̃Rn does not cost much in terms of accuracy.

Theorem 18. For any I ⊂ {1, · · · , NR},

Wc(µφ, µφ̃) ≤
∑
j∈I

log

(
1

µj

)
·
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Proof. According to Theorem 13, it is sufficient to evaluate

We

(
|φRj |2dx, |φ̃Rj |2dx

)
for any j ∈ I. Denote the two measures involved in the previous OTP by

ζj(dx) = |φRj (x)|2dx, ζ̃j(dx) = |φ̃Rj (x)|2dx.

These are two radially symmetric measures on R2. We still denote by ζ and ζ̃ the
two measures they induce on the polar coordinates (r, θ). Consider

ζj(dr | θ) = cj r
2j+1e−r

2

1[0,R](r) where cj =
1

γ(j + 1, R2)
,

the distribution of r given θ under ζ and the same quantity for ζ̃. If we have a
coupling Σθ between these two measures, then

(r, θ) 7−→ (Σθ(r), θ)

is a coupling between ζj and ζ̃j . It follows that

We(ζj , ζ̃j) ≤ We

(
cjr

2j+1e−r
2

1[0,R](r)dr, c̃jr
2j+1e−r

2

1Rj (r)dr
)

where

c̃j =
1

µj
·

We have

− d2

dr2
log(r2j+1e−r

2

) =
2j + 1

r2
+ 2 ≥ 2.

Hence the Bakry-Emery criterion [26] entails that the measure

ρ∞(dr) = cjr
2j+1e−r

2

1[0,R](r)dr

satisfies the Talagrand inequality: For any probability measure ρ

We(ρ, ρ∞) ≤ H(ρ | ρ∞) =

∫
ρ(r) log

ρ(r)

ρ∞(r)
dr

Apply this identity to

dρj(r) = c̃jr
2j+1e−r

2

1Rj (r)dr

yields

We(ρj , ρ∞) ≤ log

(
1

ρ∞(Rj)

)
= log

(
1

µj

)
·

�

Finally, using the same techniques as above, we bound the sum of the log
(

1
µi

)
in the following lemma.

Lemma 19. There exists a constant κ such that for
√

logR ≤ c ≤ R:

∞∑
n=0

log

(
1

µn

)
≤ κR2e−c

2 ·
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Proof. We split the sum in three parts:

S1 =

(R−c)2−1∑
n=0

log

(
1

µn

)

S2 =

R2−1∑
n=(R−c)2

log

(
1

µn

)

S3 =

∞∑
n=R2

log

(
1

µn

)

We will first prove that the terms in S1 and S2 are O(e−c
2

) and the terms log( 1
µR2+k

)

in S3 are O(Re−c
2

(1− 1
R )k).

For c ≥ 1 and n ≤ (R−c)2, we show that µn
−1 is roughly equal to

γ(n+ 1, R2)

Γ(n+ 1)
:

γ(n+ 1, u2
n)− γ(n+ 1, l2n)

= Γ(n+ 1)− Γ(n+ 1, u2
n)− γ(n+ 1, l2n)

≥ Γ(n+ 1)− u
2(n+1)
n

u2
n − n− 1

e−u
2
n − l

2(n+1)
n

n+ 1− l2n
e−l

2
n

≥ Γ(n+ 1)− u2
ne
−c2

(u2
n − n− 1)

√
2πn

Γ(n+ 1)− l2ne
−c2

(n+ 1− l2n)
√

2πn
Γ(n+ 1)

≥ Γ(n+ 1)(1− e−c2)

This implies that

1

µn
≤ γ(n+ 1, R2)

Γ(n+ 1)(1− e−c2)

and

log(
1

µn
) ≤ 1

1− e−c2 (
Γ(n+ 1, R2)

Γ(n+ 1)
+ e−c

2

)·

Thus, for c ≥ 1, we have:

S1 ≤ 2Re−c
2

+ 2R2e−c
2

.

For S2 we have un = R and ln =
√
n− c such that

1

µn
=

1

1− γ(n+ 1, (
√
n− c)2)

γ(n+ 1, R2)

·

Moreover, for n+ 1 ≤ R2, we know that

γ(n+ 1, R2) ≥ Γ(n+ 1)

2

and

γ(n+ 1, (
√
n− c)2) ≤ e−c2Γ(n+ 1).

Combine these identities with the well known fact∑
i

log

(
1

1− εi

)
≤

∑
i εi

1−max εi
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to obtain

S2 ≤
2cRe−c

2

1− e−c2 ·
Finally for S3, we have un = R and ln = R− c, so that we have

1

µn
=

1

1− γ(n+1,(R−c)2)
γ(n+1,R2)

·

Then remark that :

γ(n, (R− c)2)

γ(n,R2)
≤ (R− c)2ne−(R−c)2/(n− (R− c)2)

R2ne−R2/n

≤ (1− c
R )2neR

2−(R−c)2

1− (R−c)2
n

≤ (1− c
R )2(n−R2)e−2R2 c

R−R
2 c2

R2 +2cR−c2

1− (R−c)2
n

≤ (1− c
R )2(n−R2)e−2c2

1− (R−c)2
R2

≤ R

c
(1− c

R
)2(n−R2)e−2c2

Thus, summing from R2 to ∞ we get:

S3 ≤
R2

c2
e−2c2

1− R

c
e−2c2

·

The proof is thus complete.
�

5.3. Experimental results. An implementation in Python of this algorithm pub-
licly available [22] allowed us to sample 10 000 points in 2 128 seconds on a 8
core 3Ghz CPU. The same approach can be used for the DPP with the so-called
Bergmann kernel which represents the zeros of some Gaussian analytic functions [17].
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