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User-driven Audio Source Separation
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Auditory Attention

Auditory attention is the cognitive mechanism that allows humans to focus on a

sound source of interest in noisy environment.

• can be tracked in the neural activity (EEG, ECoG, MEG);

• the attended source’s neural encoding is stronger than the other ones;

[Mesgarani et al., 2009, Mesgarani and Chang, 2012, O’sullivan et al., 2014]
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Neuro-steered Audio Source Separation
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EEG-based Auditory Attention Decoding
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Neuro-steered Speech Enhancement

Typically the separation and the decoding tasks are tackled sequentially:

• a separation system provides the reference sources for the decoding;

• and the decoding system selects the source which needs to be enhanced.

[Aroudi and Doclo, 2020, Van Eyndhoven et al., 2017, Das et al., 2020,

O’Sullivan et al., 2017, Han et al., 2019, Ceolini et al., 2020]
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Framework



NMF for Audio Source Separation


C(W,H) = D(X|WH)︸ ︷︷ ︸

audio factorization

+µ‖H‖1 + β‖W‖1︸ ︷︷ ︸
sparsity

W,H ≥ 0.
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NMF for Audio Source Separation


C(W,H) = D(X|WH)︸ ︷︷ ︸

audio factorization

+µ‖H‖1 + β‖W‖1︸ ︷︷ ︸
sparsity

W,H ≥ 0.

Xa =
WaHa

WH
⊗ X̃.
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Proposed model

A
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Contrastive-NMF (C-NMF)


C(W,H) = D(X|WH)︸ ︷︷ ︸

audio factorization

+µ‖H‖1 + β‖W‖1︸ ︷︷ ︸
sparsity

− δ(‖HaST
a ‖2

F − ‖HuST
a ‖2

F )︸ ︷︷ ︸
contrast

W,H, Sa ≥ 0

‖hk:‖2 = 1, ‖sk:‖2 = 1.

The proposed cost aims at:

• decomposing the mixture spectrogram;

• maximising the similarity of Sa with Ha;

• minimising the similarity of Sa with Hu .
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Experiments



Experiments

Data: 20-channel EEG signals recorded from 8 subjects while they were attending to a

particular instrument in polyphonic music [Cantisani et al., 2019].

Evaluation: Signal-to-Distortion Ratio (SDR) expressed in dB.
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Separation quality
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C-NMF performs significantly better than both the baselines except for the bass
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Inter-subject variability

• high inter and intra-subject variability

• dependency on the level of attention and musical expertise
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Spatial rendering

SDR [dB] mono stereo

Guitar 4.6 5.0

Vocals 3.8 4.3

Drums 3.2 5.0

Bass 4.0 0.3

• the stereo setting helps to localize the target instrument

• localizing the instruments helps the attention task
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Conclusions

We propose a new model for neuro-steered music source separation:

• improves the separation, especially in difficult cases;

• automatically separates the attended source;

• auditory attention decoding without the reference sources.
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Resources

Thank you for the attention!
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https://github.com/giorgiacantisani/Contrastive-NMF
https://giorgiacantisani.github.io/projects/C-NMF
https://hal.telecom-paris.fr/hal-02978978v4/file/Update-rule-C-NMF.pdf
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