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ABSTRACT

We propose a novel informed music source separation paradigm,
which can be referred to as neuro-steered music source separation.
More precisely, the source separation process is guided by the user’s
selective auditory attention decoded from his/her EEG response to
the stimulus. This high-level prior information is used to select the
desired instrument to isolate and to adapt the generic source sepa-
ration model to the observed signal. To this aim, we leverage the
fact that the attended instrument’s neural encoding is substantially
stronger than the one of the unattended sources left in the mixture.
This “contrast” is extracted using an attention decoder and used to
inform a source separation model based on non-negative matrix fac-
torization named Contrastive-NMF. The results are promising and
show that the EEG information can automatically select the desired
source to enhance and improve the separation quality.

Index Terms— Audio source separation, Auditory attention de-
coding, Polyphonic music, EEG

1. INTRODUCTION

Every day we are surrounded by a multitude of sounds that are mixed
in the so-called auditory scene. The latter may be very complex as
it is composed of sound sources of different nature (e.g., speakers,
sirens, musical instruments), which also carry spatial information
(location, environment geometry, room reverberation). Neverthe-
less, our auditory system is naturally able to process such concurrent
sounds and isolate the sources of interest. This is known as the cock-
tail party problem [1, 2] and has been studied mostly concerning the
perception of speech in noisy or multi-speakers settings.

Even if the cognitive mechanism behind this capability is not
yet fully understood, human’s selective attention has been proven to
have a determinant role in it [3]. Auditory attention decoding (AAD)
aims at determining which sound source a person is “focusing on” by
just analysing the listener’s brain response. Previous AAD studies
based on continuous electrocorticography (ECoG) [4, 5] and elec-
troencephalographic (EEG) [6, 7] signals have shown that the neural
activity tracks dynamic changes in the audio stimulus and can be
successfully used to decode selective attention to a speaker. Simi-
larly, in [8, 9], the AAD problem is recast as the task of decoding the
attention to a specific musical instrument playing in an ensemble. In
these works, a feature representation of the attended stimulus is re-
constructed from the multi-channel EEG/ECoG recordings through a
multi-channel Wiener-filter. This reconstruction filter, often referred
to as temporal response function (TRF), is learned on a training set
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via a minimum mean squared error criterion. In [4] it was shown
that the reconstructed representations were highly correlated with the
salient time-frequency features of the attended speaker’s voice and
were only weakly correlated with the unattended speaker ones. The
authors of [9] verified a similar contrast for musical stimuli. In prac-
tice, the attended source’s neural encoding is substantially stronger
than the one of the unattended sources left in the mixture.

The main limitation of most AAD paradigms is their use of the
separate “clean” audio sources. In fact, the ground truth feature rep-
resentations are correlated with the ones predicted with the neural
data to determine the attended source [5, 6, 9]. This condition is
never met in realistic scenarios (e.g., intelligent hearing aids) where
only mixtures are available. In such scenarios, an audio source sepa-
ration step, where single audio sources are extracted from their mix-
ture, is needed. This limitation is strongly intertwined with a spec-
ular aspect of audio source separation, whose process can be helped
by any prior knowledge one may have about the sources [10]. In this
case, the approach is referred to as informed audio source separation
and was proven to enhance the separation process, especially for mu-
sic and complicated mixtures. For instance, it has been shown that
score [11], pitch [12], lyrics [13] and the motion of sound sources
[14] lead to better music separation.

A few works have been proposed in the last years that relate
speech source separation with AAD, but most of the time, the two
tasks are tackled independently. Either the separated sources are
used as clean sources to decode attention, or the EEG is used to
decode which source needs to be enhanced. This has been imple-
mented in multi-channel scenarios using beamforming [15, 16] and
in single-channel scenarios using neural networks [17, 18]. How-
ever, performing the speaker separation and source selection steps
independently is sub-optimal, and during the last year, a few works
have been proposed to overcome this issue [19, 20]. In [19], the
authors propose an adaptive beamformer that reduces noise and in-
terference but, at the same time, maximizes the Pearson correlation
between the envelope of its output and the decoded EEG. In [20],
instead, a speech separation neural network is informed with the de-
coded attended speech envelope. Nevertheless, none of these works
considers music audio signals.

As a natural continuation of the work done in [9] on AAD
for music, we propose a new informed music source separation
paradigm, which can be referred to as neuro-steered music source
separation. The additional information brought by the EEG is ex-
ploited to better adapt a generic source separation model to the
observed signal. More precisely, the knowledge derived from an
AAD step is used to inform an NMF-based source separation model
named Contrastive-NMF. At test time, a pre-trained AAD model
is updated within the C-NMF estimation loop to adapt to the test
signal. The attended source is automatically selected and enhanced.



2. METHODS

2.1. Non-negative matrix factorization (NMF)

Non-negative matrix factorization (NMF) has been a very popular
music source separation technique which proved to be powerful
when properly informed by auxiliary data about the sources [21].

Let us consider the problem of single-channel source separation
of a linear mixture x given by the sum of J sources sj : x(t) =∑J
j=1 sj(t). Given the magnitude or power spectrogram of such a

mixture X ∈ RM×N
+ , consisting of M frequency bins and N short-

time Fourier transform (STFT) frames, NMF decomposes it as X ≈
WH; where the columns of W ∈ RM×K

+ are interpreted as non-
negative audio spectral patterns expected to correspond to different
sources and the rows of H ∈ RK×N

+ as their activations. K is the
number of spectral patterns. W and H estimates can be obtained by
minimizing the divergence with the mixture reconstruction.

At this point, the separation problem reduces to the assignment
of each of the k components to the corresponding source j. After the
assignment, the soft mask of source j can be estimated using the fol-
lowing element-wise division: (WjHj)/(WH). Finally, source j
is reconstructed by multiplying element-wise the soft-mask with the
complex spectrogram of the mixture followed by an inverse STFT.

As music is often given by a repetition of a few audio patterns,
the activations’ sparsity can be easily imposed using an `1 regular-
ization term on the activations [21]. The same sparsity assumption is
often desirable for the spectral patterns as there is only a low prob-
ability that two given sources are highly activated in the same set of
frequency bins [22]. The cost function is then:


C(W,H) = D(X|WH)︸ ︷︷ ︸

audio factorization

+µ‖H‖1 + β‖W‖1︸ ︷︷ ︸
sparsity

W,H ≥ 0.

(1)

2.2. A novel NMF variant: Contrastive-NMF (C-NMF)

Prior knowledge can be fed to the model in multiple ways, e.g., using
hard or soft constrains, regularizers, pretrained dictionaries, or forc-
ing the elements of W or H to follow a given distribution [21]. In
general, when one has access to another modality which is synchro-
nized with the audio (e.g., video, motion capture data, score), one
can, for instance, suppose that the activations in the two modalities
are equal (hard constraint) or similar (soft constraint) [23].

In our case, this approach is not relevant as the audio features
one can reconstruct from the EEG are often very deteriorated, mak-
ing it hard to use them directly. At the same time, these recon-
structions are “good enough” to discriminate the attended instrument
from the unattended one. This information can be used as a “con-
trast” to guide the separation. In our previous work [9], we showed
that the representations built from the EEG are highly correlated with
the salient time-frequency features of the attended instrument and are
only weakly correlated with the unattended instrument ones.

Let us consider a mixture x(t) given by the linear mixing of the
attended source sa(t) and some interference sources su(t). Let Wa

be a sub-dictionary containing a selection of columns of W repre-
senting source sa(t) and Sa be their activations. Sa can be roughly
approximated from the time-lagged EEG response R. The assump-
tion is that Sa is likely to be more correlated with the activations of
the attended source Ha than with the ones of the unattended source
Hu derived from the audio factorization. This contrast is translated
into a new cost function as follows:



C(W,H) = D(X|WH)︸ ︷︷ ︸
audio factorization

+µ‖H‖1 + β‖W‖1︸ ︷︷ ︸
sparsity

+

− δ(‖HaS
T
a ‖2F − ‖HuS

T
a ‖2F )︸ ︷︷ ︸

contrast

W,H,Sa ≥ 0

‖hk:‖ = 1, ‖sk:‖ = 1.

(2)

While decomposing the audio spectrogram, the cost function is
attempting to maximize the similarity of the EEG-derived activations
with the audio-derived ones for the target source and minimize it for
the interferes. After the decomposition, the components are already
clustered into the target and interference sources, thanks to the con-
trast. The rows of H and Sa (hk: and sk: respectively) are normal-
ized to have unit `2 norm in order to minimize the effect of a scale
mismatch between the modalities. The update rule is derived using a
heuristic gradient decomposition1 and is reported in the pseudo-code
of Alg 1. 1 is a matrix of ones whose size is given by context.

input : X,R, µ ≥ 0, β ≥ 0, δ ≥ 0, γ ∈ [0, 1]
output: Wa, Ha

1 W, H, g initialization
2 H← diag(‖h1:‖−1, ..., ‖hk:‖−1)H . normalization
3 W←W diag(‖h1:‖, ..., ‖hk:‖) . re-scaling
4 Λ = WH
5 repeat
6 Sa ← gTR

7 Sa ← diag(‖s1:‖−1, ..., ‖sk:‖−1)Sa
8 repeat
9 P← [−HaS

T
a Sa,HuS

T
a Sa]T

10 H← H⊗ WT (X⊗Λ−1)+δP−

WT 1+µ+δP+

11 H← diag(‖h1:‖−1, ..., ‖hk:‖−1)H
12 W←W diag(‖h1:‖, ..., ‖hk:‖)
13 Λ = WH

14 W←W ⊗ (Λ−1⊗X)HT

1HT +β

15 Λ = WH

16 until convergence;
17 update g

18 until convergence;
19 return Wa, Ha

Algorithm 1: Contrastive NMF pseudo-code

The general idea of discriminating sources according to some
criterion is not new in NMF-based audio source separation. In [24,
25] the basis matrices are learned to be as much discriminative as
possible and to have unique spectral templates. In [26], the cross-
coherence of the bases is added to the cost function. In [27] instead,
the NMF variables are optimized so that each basis is classified into
one source. However, all these methods refer to fully supervised or
semi-supervised scenarios, where the basis functions are learned in
a training phase. A max-margin framework for unsupervised NMF
was introduced by [28], where the projections are learned to max-
imize an SVM classifier’s discriminative ability. Within this work,
instead, the projections are learned by an unsupervised NMF to max-
imize the discrimination ability of a pretrained AAD system that can
be further fine-tuned in the NMF estimation process.

1Detailed derivation of the update rule at https://hal.
telecom-paris.fr/hal-02978978/file/Update_rule.pdf.

https://hal.telecom-paris.fr/hal-02978978/file/Update_rule.pdf
https://hal.telecom-paris.fr/hal-02978978/file/Update_rule.pdf


2.3. Stimulus Reconstruction

The attended source activations Sa relating to a given set of spectral
templates Wa are reconstructed from the EEG using the TRF back-
ward model commonly used in the AAD framework [7]. In practice,
each component Sa,k is reconstructed independently from the oth-
ers using a multichannel Wiener filter gk, which is learned through
an MMSE criterion on a training set of solos of the same instru-
ment. This results in the following normalized reverse correlation
gk = (RRT + γI)−1RSTa,k where RRT is the auto-correlation of
the EEG signals across all time-lags and channels and RSTa,k is the
cross-correlation of Sa,k and the EEG data, I is the identity matrix
and γ ∈ [0, 1] is the Ridge regularization parameter. The time-lags
are defined by the temporal context [τmin, τmax] where one expects
to see the stimulus effect in the EEG. Thus, the TRF backward model
g = [g1, ..., gk] is a (#EEG channels × #time lags × K)-tensor
composed by the set of multi-channel Wiener filters, one for each
component of Sa.

3. EXPERIMENTS

The goal is to separate a target instrument from a given music
mixture. Along with the audio signal, we have access to the EEG
recorded from the subject while she/he was listening to the given
mixture and attending to the target instrument. The activations of
the target instrument are reconstructed from the multi-channel EEG
using a pre-trained TRF backward model. Those are used to guide
the mixture’s factorization and cluster the components into the re-
spective sources. At the same time, the TRF function is updated
within the NMF estimation loop to adapt to the observed signal.

The experiments are designed to evaluate if the EEG information
is helping the separation process and verify that the improvement
is given by the EEG and not by the cost function’s discriminative
capacity. Therefore, we compared three different models:

1. Blind NMF (NMF);

2. Contrastive NMF + Random activations (C-NMF-r);

3. Contrastive NMF + EEG-derived activations (C-NMF-e).

Since NMF is entirely unsupervised, the components need to
be clustered and assigned to each source after the factorization. In
the baselines, the components are clustered according to their Mel-
frequency cepstral coefficient (MFCC) similarity. In the case of the
C-NMF-e, the EEG information automatically identifies and gath-
ers the target instrument components. In the second baseline, the
meaningless side information consists of random activations sam-
pled from a Gaussian distribution.

3.1. Data

The data used is a subset of the MAD-EEG dataset [29], which
collects well-synchronized musical stimuli and corresponding 20-
channel EEG responses. The signals were recorded from 8 subjects
while listening to a song and attending to a specific instrument. Each
subject listened to a set of stimuli, consisting of 4 repetitions of the
same 6-second-long music excerpt. Each attended instrument was
previously heard in solo, as part of a training phase.

The dataset contains many stimuli variants in terms of musical
genre, type and number of instruments in each mixture, spatial ren-
dering, and attended instrument during the listening test. We chose
to use only the pop duets of the dataset (12 mixtures in total, which
were listened by multiple subjects) as the separation task is too easy

***

***

***

***

**

**

n.s

n.s.

Fig. 1. SDR expressed in dB for different instruments and meth-
ods. ”***” denotes high (p < 0.001), ”**” good (p < 0.01), ”*”
marginal (p < 0.05) and ”n.s.” no (p > 0.05) statistical significance
for a non-parametric Wilcoxon test on the linear SDR.

for the classic ones. The idea is to test only complicated mixtures,
where additional information may help the NMF in the separation
process. Pop mixtures of the dataset consist of real music composi-
tions for which we can access the isolated sources. The instruments
that can occur are voice, Bass, Drums, and electric Guitar.

The EEG electrodes were placed according to the 10-20 interna-
tional montage system and referenced to the left mastoid in a unipo-
lar setting. The sampling frequency was 256Hz. The 50 Hz power-
line interference was removed using a notch filter, and EOG/ECG
artifacts were detected and removed using independent component
analysis (ICA). For more details about the data, please refer to [29].

3.2. Hyper parameter tuning

For each model, hyper-parameter values were decided through a
grid-search using an holdout example mixture.

For all models, the best number of components to represent each
instrument is 16×J , e.g. K = 32 for duets. For each method, NMF
is run for 400 iterations while the TRF model is updated every 100
iterations. An `1 regularization term is imposed both on W and H to
ensure sparsity: µ = β = 1 is the best solution for the two baselines,
while for our model, it is µ = β = 10. We found the best weight
of the contrast term to be δ = 104. The Kullback-Leibler diver-
gence was found to work better than the Euclidean and Itakura-Saito
ones. For each method, the initialization of W and H is obtained by
applying a blind NMF to the mixture for 200 iterations.

A good initialization of the TRF functions was learned from a
training set of solos (different from the ones used in the test mix-
tures) and corresponding EEG recordings for each subject and in-
strument. The Ridge parameter is set to be γ = 0.1 and the consid-
ered temporal context is [0, 250]ms post-stimulus.

4. RESULTS

The models are evaluated using standard metrics in music source
separation, i.e. Signal-to-Distortion Ratio (SDR), Signal-to-Interference
Ratio (SIR) and Signal-to-Artifacts Ratio (SAR) expressed in dB and
computed using the BSSEval v4 [30]. To assert the statistical signif-
icance of our model’s improvement over the baselines, we opted for



Fig. 2. SDR expressed in dB for the EEG-informed NMF. Different nuances of pink indicate different subjects.

Guitar Vocals Drums Bass SDR Mono Stereo

SDR SIR SAR SDR SIR SAR SDR SIR SAR SDR SIR SAR Guitar 4.6 5.0
NMF 1.4 1.5 7.2 2.6 2.1 8.5 -1.0 -2.2 5.4 2.4 4.5 8.1 Vocals 3.8 4.3
C-NMF-r 3.3 2.6 8.5 1.9 6.2 -1.0 0.4 5.5 -6.8 3.9 2.9 17.0 Drums 3.2 5.0
C-NMF-e 4.6 6.8 7.5 3.8 6.6 5.8 3.3 6.5 11.3 3.5 1.3 13.2 Bass 4.0 0.3

Table 1. (Left): SDR, SIR and SAR separation results for the three tested models and each instrument in the test set. (Right): SDR results of
the proposed method are split for stereo and mono tests. The metrics are shown in dB and all values are medians over the test set.

a non-parametric Wilcoxon test on the linear values of the metrics.
The considered significance levels are 0.1%, 1% and 5%.

The results we obtain are promising and show that the contrast
derived from the EEG can improve the separation quality. In Figure
1, one can compare the SDR obtained for different methods and in-
struments in the dataset, while in Table 1, one can see the median
values of the complete set of metrics. For all the instruments ex-
cept for the Bass, our model performs significantly better than both
the blind NMF and C-NMF-r (p < 0.001 for Guitar and vocals;
p < 0.01 for the Drums, non-parametric Wilcoxon test). Consid-
ering the Bass only, the difference among the methods is not statis-
tically significant (p > 0.05, non-parametric Wilcoxon test). Even
if the improvement is not systematic for all the instruments, the for-
mulation of the proposed NMF gives an automatic clustering of the
components and the identification of the target source also for the
Bass. This is already an asset with respect to the baselines, which
need an additional step of clustering of the components and cannot
automatically identify the target source.

The high variance experienced when separating the Bass and the
Drums is due to the high variance experienced across different sub-
jects. In Figure 2, we can see the performances in terms of SDR for
the method C-NMF-e. Different nuances of pink indicate different
subjects. It is immediate to see that the attention task may be more
or less difficult for different subjects, and this is evident for instru-
ments like the Bass and the Drums, which are notably more difficult
to be tracked, especially for non-professional musicians. Singing
voice and Guitar seem to work notably better in this sense. One ten-
tative explanation is that the voice is a particular type of instrument
for which the attention is radically different from the other ones as it
also involves semantic cues. Moreover, all subjects involved in the
experiments except two, play Guitar as a hobby.

The stimuli were played to the subjects with two possible spatial
renderings: one where both instruments are in the center, denoted
as mono modality, and one where the instruments are spatialized,

denoted as stereo. In Table 1 on the right, we see the results for
these two different cases. Intuitively, the stereo setting should help
the subject in focusing on the target instrument as it makes it eas-
ier to localize it, leading to a better reconstruction of its activations
and finally giving a better separation. This seems to be true for the
singing voice, Guitar, and Drums. However, this finding need fur-
ther validation as the difference cannot be considered statistically
significant (p > 0.05, non-parametric Wilcoxon test) as the num-
ber of test examples is limited, and the variability is high. For the
Bass, it seems instead that the spatial cues make the attention task
harder, maybe adding some ambiguities. The Bass performance on
the stereo setting confirms that it is the most challenging instrument
to be spatially localized due to his low-frequency signals. This may
add ambiguities and make it harder to focus on it. On the contrary,
the Drums, whose signals are mostly impulsive and thus easier to
localize, are the instruments for which the stereo listening helps the
most the attention task.

5. CONCLUSIONS

We proposed a novel paradigm to inform a source separation model
using the selective attention of the listener decoded from his/her
EEG response to the stimulus. To this aim, we exploited the fact that
the attended instrument’s neural encoding is substantially stronger
than the one of the unattended sources left in the mixture. This
“contrast” is extracted using a pre-trained attention decoding model
and used to inform a source separation algorithm named Contrastive-
NMF. At the same time, the decoding model is updated within the
NMF estimation loop to adapt to the test signal. We obtain promising
results, showing that the EEG information can automatically select
the desired source to enhance and improve the separation quality.

The proposed C-NMF is particularly promising as it can be
generalized and used with temporal activations derived from other
modalities than the EEG (e.g., video, score, motion capture data).
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