Detailed Derivation of the Update Rules for the Contrastive-NMF (C-NMF)

Giorgia Cantisani, ${ }^{1}$ Slim Essid, ${ }^{1}$ Gaël Richard, ${ }^{1}$
${ }^{1}$ LTCI, Télécom Paris, Institut Polytechnique de Paris, France

The cost function of the Contrastive-NMF (C-NMF) is formulated as:

$$
\left\{\begin{array}{l}
C(\mathbf{W}, \mathbf{H})=\underbrace{D_{K L}(\mathbf{X} \mid \mathbf{W H})}_{\text {audio factorization }}+\underbrace{\mu\|\mathbf{H}\|_{1}+\beta\|\mathbf{W}\|_{1}}_{\text {sparsity }}-\underbrace{\delta\left(\left\|\mathbf{H}_{a} \mathbf{S}_{a}^{T}\right\|_{F}^{2}-\left\|\mathbf{H}_{u} \mathbf{S}_{a}^{T}\right\|_{F}^{2}\right)}_{\text {contrast }} \tag{1}\\
\mathbf{W}, \mathbf{H}, \mathbf{S}_{a} \geq 0 \\
\left\|\mathbf{h}_{k:}:\right\|=1,\left\|\mathbf{s}_{k}:\right\|=1 .
\end{array}\right.
$$

where $\mathbf{X} \in \mathbb{R}_{+}^{M \times N}$ is the magnitude spectrogram of the mixture, the columns of $\mathbf{W} \in \mathbb{R}_{+}^{M \times K}$ are interpreted as non-negative audio spectral patterns expected to correspond to different sources and the rows of $\mathbf{H} \in \mathbb{R}_{+}^{K \times N}$ as their activations. M represents the number of frequency bins, N the number short-time Fourier transform frames and K the number of spectral patterns.

Considering the mixture $x(t)$ given by the linear mixing of a target source $s_{a}(t)$ and some interference sources $s_{u}(t)$, we can define $\mathbf{H}_{a} \in$ $\mathbb{R}_{+}^{K_{a} \times N}$ as the activations of the target and $\mathbf{H}_{u} \in \mathbb{R}_{+}^{\left(K-K_{a}\right) \times N}$ as the activations of the interference sources. $\mathbf{S}_{a} \in \mathbb{R}_{+}^{K_{a} \times N}$ are the activations of the target source reconstructed from the EEG response of a subject who was listening to $x(t)$ and focusing on $s_{a}(t) . K_{a}$ are the number of spectral patterns used to describe the target source. The rows of \mathbf{H} and \mathbf{S}_{a} ($\mathbf{h}_{k \text { : }}$ and \mathbf{s}_{k} : respectively) are normalized in order to minimize the effect of a scale mismatch between the modalities.

Multiplicative Update Rule

To derive the multiplicative update rules of Eq.1, one can compute the gradient of the cost $\nabla C(\theta)$, split it into is negative and positive parts and build the rules as following [Lee and Seung, 2001]:

$$
\begin{equation*}
\theta \leftarrow \theta \otimes \frac{\nabla_{\theta^{-}} C(\theta)}{\nabla_{\theta^{+}} C(\theta)} \tag{2}
\end{equation*}
$$

Since the variables are $\theta=\{\mathbf{W}, \mathbf{H}\}$, the update rules will be:

$$
\begin{gather*}
\mathbf{H} \leftarrow \mathbf{H} \otimes \frac{\nabla_{\mathbf{H}^{-}} C(\mathbf{W}, \mathbf{H})}{\nabla \mathbf{H}^{+} C(\mathbf{W}, \mathbf{H})} \tag{3}\\
\mathbf{W} \leftarrow \mathbf{W} \otimes \frac{\nabla \mathbf{w}^{-} C(\mathbf{W}, \mathbf{H})}{\nabla \mathbf{w}^{+} C(\mathbf{W}, \mathbf{H})} \tag{4}
\end{gather*}
$$

Update rule for \mathbf{W}

Since the cost function is completely separable, we can compute the gradient for the KL divergence and for the sparsity constraint separately.

KL Divergence

$$
\begin{aligned}
& \frac{\partial D_{K L}(\mathbf{X} \mid \mathbf{W H})}{\partial w_{i j}}=\frac{\partial}{\partial w_{i j}} \sum_{m=1}^{M} \sum_{n=1}^{N}\left(x_{m n} \log \frac{x_{m n}}{\left.\mathbf{W H}\right|_{m n}}-x_{m n}+\left.\mathbf{W H}\right|_{m n}\right)= \\
& =\sum_{m=1}^{M} \sum_{n=1}^{N} \frac{\partial}{\partial w_{i j}}\left(x_{m n} \log \frac{x_{m n}}{\left.\mathbf{W H}\right|_{m n}}\right)+\sum_{m=1}^{M} \sum_{n=1}^{N} \frac{\partial}{\partial w_{i j}}\left(\left.\mathbf{W H}\right|_{m n}\right)= \\
& =\sum_{m=1}^{M} \sum_{n=1}^{N} \frac{\partial}{\partial w_{i j}} x_{m n}\left(\log x_{m n}-\left.\log \mathbf{W H}\right|_{m n}\right)+\sum_{n=1}^{N} h_{j n}= \\
& =\sum_{m=1}^{M} \sum_{n=1}^{N} x_{m n} \frac{\partial}{\partial w_{i j}}\left(-\left.\log \mathbf{W} \mathbf{H}\right|_{m n}\right)+\sum_{n=1}^{N} h_{j n}= \\
& =\sum_{m=1}^{M} \sum_{n=1}^{N} \frac{-x_{m n}}{\left.\mathbf{W H}\right|_{m n}} \frac{\partial}{\partial w_{i j}}\left(\left.\mathbf{W H}\right|_{m n}\right)+\sum_{n=1}^{N} h_{j n}= \\
& =\sum_{n=1}^{N} \frac{-x_{i n}}{\left.\mathbf{W H}\right|_{\text {in }}} h_{j n}+\sum_{n=1}^{N} h_{j n}= \\
& =\left.\left[-\left(\Lambda^{-1} \otimes \mathbf{X}\right) \mathbf{H}^{T}+\mathbf{1} \mathbf{H}^{T}\right]\right|_{i j} \\
& \text { - } D_{K L}(p, q)=p \log \frac{p}{q}-p+q \\
& \text { - }\left.\mathbf{W H}\right|_{m n}=\sum_{k} w_{m k} h_{k n} \\
& \text { - derivative of the matrix product: } \\
& \left.\frac{\partial}{\partial w_{i j}} \mathbf{W H}\right|_{m n}= \begin{cases}h_{j n} & \text { if } m=i \\
0 & \text { if } m \neq i\end{cases} \\
& \text { - } \Lambda=\mathbf{W H}
\end{aligned}
$$

(5)

Sparsity

$$
\begin{equation*}
\frac{\partial \beta\|\mathbf{W}\|_{1}}{\partial w_{i j}}=\frac{\partial}{\partial w_{i j}} \beta \sum_{m=1}^{M} \sum_{k=1}^{K} w_{m k}=\beta \frac{\partial}{\partial w_{i j}} w_{i j}=\beta \tag{6}
\end{equation*}
$$

Update rule

$$
\begin{equation*}
\mathbf{W} \leftarrow \mathbf{W} \otimes \frac{\nabla \mathbf{w}^{-} C(\mathbf{W}, \mathbf{H})}{\nabla \mathbf{w}^{+} C(\mathbf{W}, \mathbf{H})}=\mathbf{W} \otimes \frac{\left(\Lambda^{-1} \otimes \mathbf{X}\right) \mathbf{H}^{T}}{\mathbf{1} \mathbf{H}^{T}+\beta} \tag{7}
\end{equation*}
$$

Update rule for \mathbf{H}

As for \mathbf{W}, we can compute the gradient for the KL divergence, the sparsity constraint and for the margin term separately.

KL divergence

$$
\begin{align*}
& \frac{\partial D_{K L}(\mathbf{X} \mid \mathbf{W H})}{\partial h_{i j}}=\frac{\partial}{\partial h_{i j}} \sum_{m=1}^{M} \sum_{n=1}^{N}\left(x_{m n} \log \frac{x_{m n}}{\left.\mathbf{W H}\right|_{m n}}-x_{m n}+\left.\mathbf{W H}\right|_{m n}\right)= \\
& =\sum_{m=1}^{M} \sum_{n=1}^{N} \frac{\partial}{\partial h_{i j}}\left(x_{m n} \log \frac{x_{m n}}{\left.\mathbf{W H}\right|_{m n}}\right)+\sum_{m=1}^{M} \sum_{n=1}^{N} \frac{\partial}{\partial h_{i j}}\left(\left.\mathbf{W H}\right|_{m n}\right)= \\
& =\sum_{m=1}^{M} \sum_{n=1}^{N} \frac{\partial}{\partial h_{i j}} x_{m n}\left(\log x_{m n}-\left.\log \mathbf{W} \mathbf{H}\right|_{m n}\right)+\sum_{m=1}^{M} w_{m i}= \\
& =\sum_{m=1}^{M} \sum_{n=1}^{N} x_{m n} \frac{\partial}{\partial h_{i j}}\left(-\left.\log \mathbf{W H}\right|_{m n}\right)+\sum_{m=1}^{M} w_{m i}= \\
& =\sum_{m=1}^{M} \sum_{n=1}^{N} \frac{-x_{m n}}{\left.\mathbf{W H}\right|_{m n}} \frac{\partial}{\partial h_{i j}}\left(\left.\mathbf{W H}\right|_{m n}\right)+\sum_{m=1}^{M} w_{m i}= \\
& =\sum_{m=1}^{M} \frac{-x_{m j}}{\left.\mathbf{W H}\right|_{m j}} w_{m i}+\sum_{m=1}^{M} w_{m i}= \\
& =\left.\left[-\mathbf{W}^{T}\left(\mathbf{X} \otimes \Lambda^{-1}\right)+\mathbf{W}^{T} \mathbf{1}\right]\right|_{i j} \tag{8}\\
& \text { - } D_{K L}(p, q)=p \log \frac{p}{q}-p+q \\
& \text { - }\left.\mathbf{W H}\right|_{m n}=\sum_{k} w_{m k} h_{k n} \\
& \text { - derivative of the matrix product: } \\
& \left.\frac{\partial}{\partial h_{i j}} \mathbf{W H}\right|_{m n}= \begin{cases}w_{m i} & \text { if } n=j \\
0 & \text { if } n \neq j\end{cases} \\
& \text { - } \Lambda=\mathbf{W H}
\end{align*}
$$

Sparsity constrain

$$
\begin{equation*}
\frac{\partial \mu\|\mathbf{H}\|_{1}}{\partial h_{i j}}=\frac{\partial}{\partial h_{i j}} \mu \sum_{k=1}^{K} \sum_{n=1}^{N} h_{k n}=\mu \frac{\partial}{\partial h_{i j}} h_{i j}=\mu \tag{9}
\end{equation*}
$$

Contrast term

Recall that the Frobenius norm can be rewritten as:

$$
\begin{equation*}
\|\mathbf{X}\|_{F}=\sqrt{\sum_{i=1}^{M} \sum_{j=1}^{N} x_{i j}^{2}}=\sqrt{\operatorname{tr}\left(\mathbf{X}^{T} \mathbf{X}\right)} \tag{10}
\end{equation*}
$$

Since $\mathbf{H}_{a} \mathbf{S}_{a}^{T}$ and $\mathbf{H}_{u} \mathbf{S}_{a}^{T}$ are square matrices, we have:

$$
\begin{align*}
& \left\|\mathbf{H}_{a} \mathbf{S}_{a}^{T}\right\|_{F}^{2}=\operatorname{tr}\left[\left(\mathbf{H}_{a} \mathbf{S}_{a}^{T}\right)^{T}\left(\mathbf{H}_{a} \mathbf{S}_{a}^{T}\right)\right]=\operatorname{tr}\left[\mathbf{S}_{a} \mathbf{H}_{a}^{T} \mathbf{H}_{a} \mathbf{S}_{a}^{T}\right] \tag{11}\\
& \left\|\mathbf{H}_{u} \mathbf{S}_{a}^{T}\right\|_{F}^{2}=\operatorname{tr}\left[\left(\mathbf{H}_{u} \mathbf{S}_{a}^{T}\right)^{T}\left(\mathbf{H}_{u} \mathbf{S}_{a}^{T}\right)\right]=\operatorname{tr}\left[\mathbf{S}_{a} \mathbf{H}_{u}^{T} \mathbf{H}_{u} \mathbf{S}_{a}^{T}\right] \tag{12}
\end{align*}
$$

The gradient with respect to \mathbf{H}, will be equal to the gradient computed with respect to \mathbf{H}_{a} for the first K_{a} rows of \mathbf{H} and equal to the
gradient computed with respect to \mathbf{H}_{u} for the remaining rows:

$$
\nabla_{\mathbf{H}}\left(-\delta\left(\left\|\mathbf{H}_{a} \mathbf{S}_{a}^{T}\right\|_{F}^{2}-\left\|\mathbf{H}_{u} \mathbf{S}_{a}^{T}\right\|_{F}^{2}\right)\right)= \begin{cases}-\delta \nabla_{\mathbf{H}_{a}}\left(\left\|\mathbf{H}_{a} \mathbf{S}_{a}^{T}\right\|_{F}^{2}-\left\|\mathbf{H}_{u} \mathbf{S}_{a}^{T}\right\|_{F}^{2}\right), & \text { if } 1<k<K_{a} \tag{13}\\ -\delta \nabla_{\mathbf{H}_{u}}\left(\left\|\mathbf{H}_{a} \mathbf{S}_{a}^{T}\right\|_{F}^{2}-\left\|\mathbf{H}_{u} \mathbf{S}_{a}^{T}\right\|_{F}^{2}\right), & \text { if } K_{a}+1<k<K\end{cases}
$$

$$
\begin{align*}
& \left.\nabla_{\mathbf{H}_{a}}\left(\left\|\mathbf{H}_{a} \mathbf{S}_{a}^{T}\right\|_{F}^{2}-\left\|\mathbf{H}_{u} \mathbf{S}_{a}^{T}\right\|_{F}^{2}\right)\right)=\nabla_{\mathbf{H}_{a}}\left\|\mathbf{H}_{a} \mathbf{S}_{a}^{T}\right\|_{F}^{2}=\nabla_{\mathbf{H}_{a}} \operatorname{tr}\left[\mathbf{S}_{a} \mathbf{H}_{a}^{T} \mathbf{H}_{a} \mathbf{S}_{a}^{T}\right]=\quad \bullet \operatorname{tr}(\mathbf{A B C})=\operatorname{tr}(\mathbf{B C A})=\operatorname{tr}(\mathbf{C A B}) \\
& =\mathbf{H}_{a}\left(\mathbf{S}_{a}^{T} \mathbf{S}_{a}\right)+\mathbf{H}_{a}\left(\mathbf{S}_{a}^{T} \mathbf{S}_{a}\right)^{T}=\bullet\left(\mathbf{X}^{T} \mathbf{Y}\right)^{T}=\mathbf{Y}^{T} \mathbf{X} \\
& =2 \mathbf{H}_{a} \mathbf{S}_{a}^{T} \mathbf{S}_{a} \tag{14}
\end{align*}
$$

$$
\begin{align*}
\left.\nabla_{\mathbf{H}_{u}}\left(\left\|\mathbf{H}_{a} \mathbf{S}_{a}^{T}\right\|_{F}^{2}-\left\|\mathbf{H}_{u} \mathbf{S}_{a}^{T}\right\|_{F}^{2}\right)\right)=-\nabla_{\mathbf{H}_{u}}\left\|\mathbf{H}_{u} \mathbf{S}_{a}^{T}\right\|_{F}^{2} & =-\nabla \operatorname{tr}\left[\mathbf{S}_{a} \mathbf{H}_{u}^{T} \mathbf{H}_{u} \mathbf{S}_{a}^{T}\right]= \\
& =-\left(\mathbf{H}_{u}\left(\mathbf{S}_{a}^{T} \mathbf{S}_{a}\right)+\mathbf{H}_{u}\left(\mathbf{S}_{a}^{T} \mathbf{S}_{a}\right)^{T}\right)= \\
& =-2 \mathbf{H}_{u} \mathbf{S}_{a}^{T} \mathbf{S}_{a} \tag{15}
\end{align*}
$$

Thus, we have:

$$
\nabla_{\mathbf{H}}\left(-\delta\left(\left\|\mathbf{H}_{a} \mathbf{S}_{a}^{T}\right\|_{F}^{2}-\left\|\mathbf{H}_{u} \mathbf{S}_{a}^{T}\right\|_{F}^{2}\right)\right)= \begin{cases}-2 \delta \mathbf{H}_{a} \mathbf{S}_{a}^{T} \mathbf{S}_{a}, & \text { if } 1<k<K_{a} \tag{16}\\ +2 \delta \mathbf{H}_{u} \mathbf{S}_{a}^{T} \mathbf{S}_{a}, & \text { if } K_{a}+1<k<K\end{cases}
$$

Update Rule

$$
\begin{equation*}
\mathbf{H} \leftarrow \mathbf{H} \otimes \frac{\nabla_{\mathbf{H}^{-}} C(\mathbf{W}, \mathbf{H})}{\nabla_{\mathbf{H}^{+}} C(\mathbf{W}, \mathbf{H})}=\mathbf{H} \otimes \frac{\mathbf{W}^{T}\left(\mathbf{X} \otimes \Lambda^{-1}\right)+\delta \mathbf{P}^{-}}{\mathbf{W}^{T} \mathbf{1}+\mu+\delta \mathbf{P}^{+}} \tag{17}
\end{equation*}
$$

where $\mathbf{P}^{-}, \mathbf{P}^{+} \in \mathbb{R}^{K \times N}$ are auxiliary matrices defined as:

$$
\begin{align*}
& \mathbf{P}^{-}= \begin{cases}\mathbf{H}_{a} \mathbf{S}_{a}^{T} \mathbf{S}_{a}, & \text { if } 1<k<K_{a} \\
0, & \text { if } K_{a}+1<k<K\end{cases} \tag{18}\\
& \mathbf{P}^{+}= \begin{cases}0, & \text { if } 1<k<K_{a} \\
\mathbf{H}_{u} \mathbf{S}_{a}^{T} \mathbf{S}_{a}, & \text { if } K_{a}+1<k<K\end{cases} \tag{19}
\end{align*}
$$

References

Daniel D Lee and H Sebastian Seung. Algorithms for non-negative matrix factorization. In Advances in neural information processing systems, pages 556-562, 2001.

