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The cost function of the Contrastive-NMF (C-NMF) is formulated as:

C(W,H) = Dr(X|WH) +pl[H|ls + B||W|l1 — 6(|HaS; ||F — || HuS |IF)

audio factorization sparsity contrast
W,H,S, >0
el =1, [|sk.|| = 1.
(1)

where X € ]RTXN is the magnitude spectrogram of the mixture,
the columns of W € RY*X are interpreted as non-negative audio
spectral patterns expected to correspond to different sources and the
rows of H € ]R{YN as their activations. M represents the number of
frequency bins, N the number short-time Fourier transform frames
and K the number of spectral patterns.

Considering the mixture x(t) given by the linear mixing of a target
source s,(t) and some interference sources s, (t), we can define H, €
]R{i”XN as the activations of the target and H,, € IRSrK_K“)XN as the
activations of the interference sources. S, € ]Ri“XN are the activations
of the target source reconstructed from the EEG response of a subject
who was listening to x(t) and focusing on s,(t). K, are the number
of spectral patterns used to describe the target source. The rows of H
and S, (hy. and sg. respectively) are normalized in order to minimize

the effect of a scale mismatch between the modalities.

Multiplicative Update Rule

To derive the multiplicative update rules of Eq.1, one can compute
the gradient of the cost 57C(0), split it into is negative and positive
parts and build the rules as following [Lee and Seung, 2001]:
Vo-C(0)
00— < ()
Ve+C(6)

Since the variables are 6§ = {W, H}, the update rules will be:

Vu-C(W, H)

H+H
@ VH*C(WIH)
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Update rule for W

Since the cost function is completely separable, we can compute
the gradient for the KL divergence and for the sparsity constraint
separately.

KL Divergence

oDk (X|WH 0o M XN . _
KLa<w,‘, ) = - 2 Z(xmnlogvvaLr — Xmn + WH| ) = SVI;;‘(P#) —Zplogffpﬁ“i
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M N CL 0 ifm#i
=) ) 5 ~ Xy (108 Xpn — LogWH | ) + Zh]" =
m=1n=1 wl] n=1
M N P N * A=WH
= 3 )t 5o log WHI) + 3y =
m=1n=1 Wij n=1
M N N
_.an a
:ZZ WH|mn +Zhn
m=1n=1 WH|m” awl] n=1 !
- % iy 2 h
= in in =
n=1 H|in J n=1 !
= [ (A_1 & X)HT + IHTHZ']'
(5)
Sparsity
BIW[L _ 0
= = 6
awij awl] /3 mzl kz mk ,Baw IB ( )
Update rule
Vw-C(W,H) (A e X)HT
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Update rule for H

As for W, we can compute the gradient for the KL divergence, the
sparsity constraint and for the margin term separately.

KL divergence
aDKL(X‘WH) 0o MU XN Xmn e Dgp( =plog? —
-2 o 1o — Xy + WH — ke(p.q) = plog; —p+q
ahl] ahi] m;l n;]( " g WH| " |m”) ° WH‘mn = Zk wmk;;]kn
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N A M T0 ifn A
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m=1n=1""1 =1
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= Z menah (— 10gWH|mn + Z Wi =
m=1n=1 ij m=1
B ) SR R S
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— % —Xmj Wi + % Wi =
m= WH|mJ m=1
=[-WIX®A™) +W]|;;
(8)
Sparsity constrain
ouH|[; 0 & ¥ J
=YY gy =p=—hij=pu 9)
== ohij

Contrast term

Recall that the Frobenius norm can be rewritten as:

(10)

Since H, SZ and HuSuT are square matrices, we have:
IHaS; [ = tr{(HaS7)" (HaS; )] = tr[SaH; H,S;] (11)
IS [[F = tr[(HuS;)" (HuSp)] = tr[S.H, HuS; ] (12)

The gradient with respect to H, will be equal to the gradient com-
puted with respect to H, for the first K, rows of H and equal to the
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gradient computed with respect to H, for the remaining rows:

~6n, (IH:Sq |7 — [HuS1IF), if 1 <k <K,

—67n, (IHS; | — |H,S;[17), if K, +1<k<K
(13)

Va(—0([|HaSq |7~ [HuS;[[7)) = {

e tr(ABC) = tr(BCA) = tr(CAB)
VH,;(”HaSZH% - IIHuSEII%)) = VH, HHaS;H% = VHat”[SaHzHasg] = o xtr(XAXT) = X(AT + A)

= Ha(SaTSa) + Ha(SZSa)T _ e X'V =YTX
=2H,S!s,
(14)

Vi, (1HoSg |7 = HuS; 1) = — Vi, [HuSZ |1F = — v #[S.H H, S]] =
—(Hu(S;Sa) + Hy(S;S,)") =
= —2H,S’s,

(15)

Thus, we have:

—20H,SIS,, ifl<k<K,

—5(|[H,ST||2 — [[H,ST %)) =
VH(=([[HaS; |7 — H.S, 7)) L 28H,STS, i Kot 1<k < K

(16)
Update Rule
Vu-C(W,H) WT(X® A1) + 6P~
H—~H® ————"==H
CHOC cwH) T Y T Wiyt opt (17)
where P~, P+ € RE*N are auxiliary matrices defined as:
B H,S!S,, if1<k<K, 8
= 1
0, fK,+1<k<K
0, ifl <k<K
P+ = . ’ (19)
H,S,S, ifK,+1<k<K

References

Daniel D Lee and H Sebastian Seung. Algorithms for non-negative
matrix factorization. In Advances in neural information processing
systems, pages 556—562, 2001.



	Update rule for W
	Update rule for H

