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ABSTRACT

Synthetic Aperture Radar (SAR) tomographic techniques en-
able the reconstruction of the scene scattering structure along
the vertical direction and can provide the temporal evolution
of a cloud of reliable points located in the 3D space. The use
of Generalized Likelihood Ratio Test approaches have been
shown to be effective in selecting reliable multiple scatter-
ers. Recently regularized tomographic methods have been
proposed for increasing the density of the recovered scatterers
in urban environments. This paper discusses the differences
between these two approaches and performs a comparison of
reconstruction results obtained from a stack of TerraSAR-X
images, in a region of interest located in the city of Paris,
France.

Index Terms— SAR Interferometry, SAR Tomography,
Differential Tomography, Scatterers detection, GLRT, regu-
larized inversion

1. INTRODUCTION

Synthetic Aperture Radar (SAR) Tomographic techniques
(TomoSAR) exploit multi-pass acquisitions for generating
3-D reflectivity profiles of the imaged scene. They exploit the
amplitude and phase of the received data and offer the pos-
sibility to resolve multiple scatterers [1, 2, 3, 4], lying in the
same range–azimuth resolution cell. In urban environment
this issue is very important since layover causes multiple
coherent scatterers to be mapped to the same range-azimuth
image pixel. Due to the small number of acquisitions avail-
able and/or uneven distribution of the baselines, TomoSAR
techniques suffer from the presence of ambiguities and high
sidelobe level in the reconstructed height-reflectivity profiles.

TomoSAR techniques proved to be an excellent tool for
reconstruction and monitoring of urban areas, since in this
case they can benefit from the sparsity property of the re-
flectivity profile along the elevation direction, which allows
the use of super-resolution techniques based on compressive

sensing (CS) [3, 4]. These techniques, besides to improve
height resolution, allow to reduce the number of acquisitions.
However, they suffer of the presence of outliers and high side-
lobes in the reconstructed profile that can heavily affect the re-
construction accuracy. To solve this problem, different meth-
ods based on the use of statistical hypothesis tests have been
introduced [5, 6]. In [6, 7] the discrimination between reliable
scatterers and outliers (false alarms) has been addressed based
on a Generalized Likelihood Ratio Test (GLRT) denoted as
Fast-Sup-GLRT. This statistical test is based on the search of
the signal support (i.e. the positions of the significant samples
in the unknown reflectivity sparse vector) that best matches
the data and non-linear maximization for detecting the scat-
terers with an assigned probability of false alarm and esti-
mating their elevation. The result of the GLRT based tomo-
graphic processing is given as a cloud of reliable point scat-
terers with known intensity and appropriately located on the
ground structures. Their possible millimetric temporal and/or
thermal displacements can be also estimated [7, 8]. A recon-
struction of the continuous surface describing the structures
on the ground (f.i. buildings, roads, bridges, etc.) is possible
only when the spatial density of the points in the cloud is suf-
ficiently high.
In applications related to urban areas, to improve the tomo-
graphic reconstruction accuracy and increase the point cloud
density, the peculiar geometry and the presence of vertical
and horizontal planes can be exploited. Buildings are struc-
tured objects with generally straight vertical walls and flat
rooftops. Using these geometrical priors on the scatterers dis-
tribution may strongly decrease the number of outliers in the
reconstructions but requires performing the tomographic re-
construction for several pixels at once. Approaches constrain-
ing the estimated reflectivity to account for some geometri-
cal priors present higher robustness to outliers than conven-
tional CS [9], whereas post-processing methods can retrieve
structured information such as buildings shapes, footprints or
surfaces [10, 11, 12, 13]. In this paper the approaches pre-
sented in [6] and [13], are investigated through a qualitative



and quantitative analysis on real data.

2. METHODOLOGY

Starting from N coregistered images, SAR tomography aims
at retrieving the 3-D reflectivity function of a scene. An esti-
mate of the 3-D reflectivity function can be found by inverting
for each pixel the forward model:

v = A(h)u + ε, (1)

where v is the SAR data vector (i.e. the collection of N
single-look complex values at a given range-azimuth resolu-
tion cell), u is the reflectivity vector, ε represents the noise,
h collects the Nh heights along the elevation axis and the
N × Nh sensing matrix A(h) =

[
a(h1) · · ·a(hNh

)
]

is ob-
tained by the concatenation of the so-called steering vectors:
the i-th column of A(h) is defined by

a(hi) =
[
exp(−jξ1hi) · · · exp(−jξNhi)

]T
= exp(−jξhi) , (2)

where ξ ∈ RN collects the N angular frequencies ξ1 to
ξN (angular frequencies are related to the spatial frequen-
cies through ξn = 4πbn/(λR0), with bn the perpendicular
baseline, R0 the distance between the image pixel and the
reference antenna position, and λ the operating wavelength).
Tomography consists in inverting equation (1), ie., retrieving
u given v, at each pixel.

We describe in the following paragraphs two different
strategies to perform this inversion and identify meaningful
scatterers on the urban surfaces.

2.1. Detection based on Fast-Sup-GLRT

This method assumes that at most Kmax scatterers with dif-
ferent elevations are present in each ramge-azimuth resolution
cell. In order to detect the scatterers and to estimate their el-
evation and reflectivity, a Generalized Likelihood Ratio Test
(GLRT) approach is used. The general detection problem is
formulated in terms ofKmax+1 statistical hypotheses. If, for
instance, the presence of at most two scatterers (Kmax = 2)
has to be detected, the following three statistical hypothesis
applies: {H0: absence of scatterers, H1: presence of a single
scatterer and H2: presence of a double scatterer}. The test is
performed sequentially: first a decision between the hypoth-
esis H0 and H1 is performed, then, if H0 is decided the test
stops while if H1 is decided, a second step is applied for de-
ciding betweenH1 andH2. For the details and the expression
of the test, see [6]. At each step, the Ratio Test is compared
with a threshold derived through Monte Carlo simulation and
following a CFAR (Constant False Alarm Rate) approach, fix-
ing a probability of false alarm.

2.2. Regularized inversion with smoothness priors

In contrast to the previous approach that performs an extrac-
tion of meaningful scatterers, we now consider reconstruct-
ing the spatial distribution of reflectivity. Given the ill-posed
nature of the inverse problem of estimating reflectivities u�

in 3D, given a stack of observed SLC SAR images v�, reg-
ularization terms are mandatory. The 3D volume of reflec-
tivities is estimated by solving the following minimization
problem[14]:

û� = arg min
u
�

1

2
||Φu� − v�||22 + R(|u�|) , (3)

where R is a regularization term that applies only on the mod-
ulus of the complex reflectivities. In urban areas, scatterers
located on man-made structures (ground, building facades,
roofs) form the dominant contribution to the SAR signal. A
natural regularization is to favor solutions û� with a small
number of scatterers: R(|u�|) then corresponds to the `0
pseudo-norm, or to the `1 norm. Such sparsity-promoting is
referred to as compressive sensing [4]. The linear operator Φ
in (3) projects a 3D volume of reflectivities to a stack of SAR
images. Under the approximation that lines orthogonal to the
radar line-of-sight are each mapped to a different pixel in the
SAR images, the optimization problem (3) can be solved in-
dependently for each line. To enforce spatial smoothness in
the 3D reconstruction, i.e., to favor volumes where neighbor-
ing voxels have similar reflectivity values, other regulariza-
tion terms can be considered such as the squared `2 norm of
the spatial gradient: R(|u�|) = µ

∑
i ‖∇i|u�|‖

2
2, where

∇i|u�| ∈ R3 is the spatial gradient of the modulus of the
reflectivity at pixel i. Due to the coupling of the unknowns
of the problem, minimization problem (3) has to be solved
jointly for all voxels of u�. A possible strategy to perform
the optimization is the Alternating Directions Method of Mul-
tipliers (ADMM) and its variants [9].

3. EXPERIMENTAL RESULTS

We compare these two approaches on a stack of 40 TerraSAR-
X spotlight images acquired over the front de Seine in the
south-west of Paris, France. The slant-range resolution is
0.45 m and the azimuth resolution is 0.87 m. The total spa-
tial baseline is more than 775 m, and the total temporal base-
line is more than 5 years. The theoretical resolution in height
is around 6.6 m. Reconstruction results are shown in Fig 1.
In Fig. 1 (a) the 3D point clouds obtained with [6], with
Kmax = 2 and fixing the probability of false alarm equal
to 10−3, are reported, and in (b) the surface reconstructions
obtained without spatial regularization (only a sparsity con-
straint) and with the regularized approach [13] are shown. It
can be noted that the regularized approach benefits of an evi-
dent spatial smoothing.



In order to perform a quantitative comparison of the scat-
terer extraction technique Fast-Sup-GLRT and the regular-
ized volumic reconstruction, we used the completeness and
accuracy metrics first introduced in [15]. Table 1 illustrates
how these two metrics are defined: the completeness char-
acterizes the density of the reconstructed 3D cloud by com-
puting the average distance between each visible element of
the ground truth surface and its closest neighbor in the re-
constructed cloud. The denser the reconstructed cloud, the
smaller this average distance. The accuracy defines how ac-
curate the reconstructed points are. It corresponds to the mean
distance to the true surface: the parameter is large when re-
constructed points are far from the actual surface. In Table
1, we report this accuracy for both algorithms and for vari-
ous densities of the reconstructed point cloud, as character-
ized by the completeness values (from dense reconstructions
with a completeness of 1m to sparse reconstructions with ele-
ments of the ground truth surface on average 10m away from
the closest reconstructed point). This density sampling is ob-
tained by using different probabilities of false alarm for the
Fast-Sup-GLRT method while, for the regularized inversion,
it corresponds to a local maxima extraction after a threshold-
ing of the reflectivity. Three regimes can be distinguished in
Table 1. First, for dense point clouds, the scatterers extraction
algorithm Fast-Sup-GLRT reaches a lower reconstruction er-
ror. Then, for point clouds presenting a trade-off between
accuracy and completeness the regularized inversion tends to
present a lower error. Finally, for sparser point clouds, both
approaches lead to very similar scores with a slightly lower
error for the Fast-Sup-GLRT algorithm. Fast-Sup-GLRT, by
controlling the maximum number of scatterers within each
resolution cell reduces the risk of mistaking a sidelobe for
a scatterer, explaining the first regime. The regularized in-
version allows to reduce the non-structured outliers intensity
allowing to obtain both a low error and a complete represen-
tation in the second regime. Finally, as the representation be-
comes sparser, only the strongest scatterers are kept and al-
most no outliers are present in the point clouds.

4. CONCLUSION

In this paper a qualitative and quantitative analysis on real
data of two different tomographic techniques, a GLRT ap-
proach [6] and a regularized approach [13], has been con-
ducted. In particular completeness and accuracy metrics [15]
have been considered, that measure how dense and how accu-
rate the tomographic reconstruction is. Both approaches have
been designed in order to select the more reliable points, the
GLRT [6] uses thresholds based on a CFAR approach, while
[13] includes spatial information in the regularized inversion
approach. These two approaches present a complementary
behavior : the Fast-Sup-GLRT approach exhibits a high ro-
bustness in dense point clouds while the inclusion of spa-
tial information allows to achieve a slightly better accuracy-

Table 1. Quantitative evaluation of 3D points reconstructed
by SAR tomography. The table reports the localization er-
ror for each algorithm, as a function of the density of the re-
constructed point cloud, as characterized by the completeness
values.

completeness trade-off. Approaches combining both strate-
gies may then be promising for SAR tomography over urban
areas.
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(a) 3D point clouds

(b) Estimated reflectivity under sparse and smooth priors

Fig. 1. Results on real data using (a) the Fast-Sup-GLRT al-
gorthm and (b) the regularized inversion


