N

N
N

HAL

open science

Persistent Fault Analysis With Few Encryptions

Sébastien Carré, Sylvain Guilley, Olivier Rioul

» To cite this version:

Sébastien Carré, Sylvain Guilley, Olivier Rioul. Persistent Fault Analysis With Few Encryptions.
International Workshop on Constructive Side-Channel Analysis and Secure Design (COSADE 2020),
Oct 2020, Lugano, Switzerland. hal-02950171

HAL Id: hal-02950171
https://telecom-paris.hal.science/hal-02950171
Submitted on 27 Sep 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://telecom-paris.hal.science/hal-02950171
https://hal.archives-ouvertes.fr

Persistent Fault Analysis With Few Encryptions

Sébastien Carré'2?, Sylvain Guilley™?3, and Olivier Rioul?

1 Secure-IC S.A.S., Think Ahead Business Line, Paris, France
2 LTCI, Télécom Paris, Institut Polytechnique de Paris, France
3 DIENS, Ecole normale supérieure, CNRS, PSL University, Paris, France

Abstract. Persistent fault analysis (PFA) consists in guessing block
cipher secret keys by biasing their substitution box. This paper improves
the original attack of Zhang et al. on AES-128 presented at CHES
2018. By a thorough analysis, the exact probability distribution of the
ciphertext (under a uniformly distributed plaintext) is derived, and the
maximum likelihood key recovery estimator is computed exactly. Its
expression is turned into an attack algorithm, which is shown to be
twice more efficient in terms of number of required encryptions than
the original attack of Zhang et al. This algorithm is also optimized
from a computational complexity standpoint. In addition, our optimal
attack is naturally amenable to key enumeration, which expedites full 16-
bytes key extraction. Various tradeoffs between data and computational
complexities are investigated.

Keywords: Persistent Fault Analysis, Substitution Box, Maximum Likelihood
Distinguisher, Key Enumeration.

1 Introduction

Cryptographic algorithms are generally “mathematically secure”. As an example,
the current best mathematical attack on AES cryptosystem is the biclique at-
tack [4] that has a complexity of 2254 for AES-256. However, the implementation
of a cryptographic algorithm can leak information that can greatly reduce the
complexity of attacks. For example, any implementation for which the encryption
time or the power consumption depends on the secret key gives the attacker
some sensitive information about that key. Attacks exploiting physical leakages
are known as side-channel attacks. Another class of attacks, known as fault at-
tacks [1,5[7/12], deliberately creates errors in the cryptographic algorithm to help
the attacker find the secret key. There are many types of fault attacks. Differential
fault attacks [318,[16L/18,[21] compare a faulted ciphertext with a correct one.
Statistical fault attacks [10] perform multiple faulted encryptions to get sensitive
information through statistical tools. Persistent fault attacks [6,{20L23] consist in
making a fault that remains persistent during the whole encryption and across
several consecutive encryptions. Persistent fault injection can be performed in
various ways: laser injection [19], which requires a local access and which is
possibly expensive; RowHammer attack |2/9}/11}/14L{17] or PlunderVolt |13| which

2 Sébastien Carré, Sylvain Guilley, and Olivier Rioul

can be triggered remotely and which do not require any expensive laboratory
equipment. Combining fault attacks with side-channel attacks subsequently gives
an attacker the ability to break a cryptosystem in a very efficient way.

1.1 Zhang et al.’s Attack

The attack of Zhang et al. [23] focuses on injecting a fault in the SBOX of AES
that is used to perform the SubBytes operation. Such a fault eliminates an element
y_ of the SBOX and creates a new one y, # y_ instead. As a consequence, the
element y, appears twice in the SBOX after the fault injection. This results in a
bias on the output of the SubBytes operation: Assuming a uniformly distributed
input, the value y_ cannot be observed at all as the output, while the value y, is
observed with a higher probability of 2/256; other values are observed with an
unchanged probability of 1/256. The resulting output probability distribution D
is then
0 fy=y.,
D:P(y)=1< 2/256 ify=y,, (1)
1/256 otherwise.

The attack of Zhang et al. |23] requires enough encryptions to obtain an empirical
distribution where only one element per byte is not observed, as shown in
figure [I} From such never observed byte value x_, the key byte can be obtained
ask=x_®Dy_.

Because each AES round gives a 16-byte output and consumes a 16-byte key,
there are 16 possible biased distributions for an AES output, which only differ
by the key byte value. In figure [I} each subplot represents one byte distribution
among the 16 bytes of an AES ciphertext.

00050

0,005 0.005

0.0025

Probability

1

0.000 0.0000 0.000
o

100 200

0,005 0.005 0.005

1

0.000 0.000 - 00004~
o

100 200

0.005 0.005 0.005

0.000 0.000 0.000
o o

0.005

0.005 0.005

Probability Probability Probability

1)

0,000

Value of ciphertext byte Value of ciphertext byte Value of ciphertext byte Value of ciphertext byte

0.000 0.000 0,000

Fig. 1. Empirical distributions for each byte of the ciphertext. The bias depends on
the last round key value.

Persistent Fault Analysis With Few Encryptions 3

Thus, for the attack of Zhang et al. to work, the number of required encryptions
should be such that all values are observed but one. This is an instance of the
coupon collector problem. Figure [2]shows the success rate of the reproduced Zhang
et al. [23] attack to recover a full 128 bits AES key. Their attack typically requires
more than 2500 encryptions to obtain the AES master key with probability
> 80%.

1.0

0.8

0.6

Probability

0.4

0.2

0.0

0 500 1000 1500 2000 2500 3000 3500

Number of encryptions

Fig. 2. Success rate of the Zhang et al. attack over 1000 retries to recover the complete
AES key. With such a strategy, the attacker needs at least 2500 encryptions to obtain
the AES master key with probability > 80%.

1.2 Contributions

The Zhang et al. |23] attack assumes a uniform distribution at the input of the
last round SBOX. Since the faulted SBOX is used in each AES round, it is not
obvious that this uniformity assumption actually holds. In this paper, we assume
that the fault location and the fault value are known by the attacker. We first
give a formal proof of uniformity at the input of the last round SBOX, thanks
to a property of the MixColumns operation. Then, under this assumption, the
maximum likelihood estimator for n encryptions is determined and an efficient
attack algorithm is derived from this estimator. The maximum likelihood principle
aims at maximizing the probability of obtaining the correct key.

The attack of Zhang et al. only exploits the only element x_ that is never
observed, but does not exploit the fact that another element is more likely to be
observed than the others. When relatively few encrypted messages are collected,
there may be more than one element not observed. Therefore, there are as many
key candidates as unobserved elements, which are equally likely. To prevent these
limitations, we leverage the maximum likelihood principle to optimize the attack.

4 Sébastien Carré, Sylvain Guilley, and Olivier Rioul

The proposed attack improves the state-of-the-art performance by reducing
the required number of encryptions. Less encryptions can still give the correct key
without having to use a full instance of the coupon collector problem. Specifically,
about 1000 encryptions are required to get a success rate of 80% with our strategy
compared to about 2500 encryptions for the attack of Zhang et al. Besides, we
detail a computationally efficient version of the attack algorithm.

Reducing the number of encryptions is important in a product evaluation
context that uses, for instance, the Common Criteria (ISO/IEC 15408) since it
influences the quotation. Indeed, in Common Criteria parlance, the quotation is
a score which results from a combination of different factors, including time for
trace collection and time for analysis.

More important, our result allows to calibrate one countermeasure against a
persistent fault analysis: We derive a lower bound on the number of encryptions
to successfully extract the correct key and the designer can simply refresh the key
more frequently than this bound to avoid such attack. The number of encryptions
can further be reduced thanks to a key enumeration algorithm. Our analysis is
very amenable to such enumeration since it provides likelihoods to each subkey.

This paper also improves the proposed attack using various techniques such
as key byte enumeration and key combination, exploring multiple strategies for
each technique.

The attack presented in this paper is optimal for full key recovery since it
is optimal at byte level in term of number of traces and also computationally
optimal at the combination level of all bytes.

1.3 Outline

This paper is organized as follows. Section [2] mathematically shows that, even if
the SubBytes operation gives a biased distribution due to a persistent fault, this
bias is eventually cancelled by the MixColumns operation. Section [3] improves
Zhang et al. attack: An algorithm to find the most probable key for each last
round key is developed in subsection [3.1] Then, multiple combination strategies
are discussed in subsections and in order to find the complete last round
key and eventually the master key. Subsection compares the success rate of
our approaches compared to the one of Zhang et al. Section [] concludes and
gives some perspectives.

2 Bias Cancelling Effect of MixColumns

The attack of Zhang et al. is possible provided the distribution of the last round
SubBytes operation is uniformly distributed. This assumption is not obvious since
the output of SBOX in each AES round is not uniformly distributed due to the
persistent fault which biases the SBOX. Proposition [I] shows that, in the context
of this paper, the MixColumns operation returns a uniform distribution even for
a biased input (output of corrupted SubBytes). Therefore, as AES consists in
alternations between SubBytes and MixColumns (and other functions such as

Persistent Fault Analysis With Few Encryptions 5

ShiftRows and AddRoundKey which do not change the distributions), provided
the plaintext is uniformly distributed, so is the output of each MixColumns at
every round.

Lemma 1 (Convolutional Identity). For any u € Fas6, we have

1
bezF:%GD(b)D(u—b) = ﬁ(up(uﬂm —D(u+y,)). @

where y_ and y, were defined in Subsection |1.1]

Proof. Observe that (1) writes D(b) = 52 (1 + 1¢,,1(b) — 1g, 3(b)). Therefore

256 Y D(B)D(u—b)= Y (141, 3(0) — 1 y(b))D(u—b)
beFas56 beF2as6

Z D(u—0) +D(u+y,) — D(u+y-)
beFase
=14+ D(u+y,)—D(u+y) 0

Lemma 2 (Uniformity of the AES State Bytes). If the plaintext is uni-
formly distributed, then any intermediate variable in the AES algorithm is also
uniformly distributed.

Proof. AES being a Substitution-Permutation Network (SPN), each operation is
bijective on the states. Therefore, uniformity property is maintained from the
plaintext down to any intermediate state. O

Corollary 1 (Uniformity Implies Independence). Provided the AES plain-
text is uniformly distributed, all bits or bytes at any stage of the algorithm are
mutually independent.

Therefore, under the hypothesis of plaintext uniformity, the input bytes of the
MixColumns operation are independent.

Proposition 1 (Bias Cancelling Effect of MixColumns). Lety_,y, € Fasg
and distribution D be defined by equation . Let By, B1,B2,Bs € Fas6 be
four bytes representing an AES state column before a MizColumns operation,
independent and identically distributed according to distribution D. Then each
byte Zy, Z1, Zs, Z3 € Faosg representing an AES state column after a MizColumns
operation is uniformly distributed.

Proof. For any z € Fa56, given the assumed independence of By, By, B2, Bs:
P(Z(] = Z) = P(OQB() + 03B1 + B2 + Bg = Z)
= Y P(02by+08by+by+ By =2|By=bo, By =b, By=b2)D(by) D(b1)D(b2)
bo,b1,b2€F256

= Y D(b) > D) > D(b2)P(Bs=z—02by—03by — by)

boEF2s6 b1€F2s56 b2€F2s6

6 Sébastien Carré, Sylvain Guilley, and Olivier Rioul

= Z D(bo) Z D(bl) Z D(bg)D(Z—02b0—03b1—b2). (3)

bo€Fas6 b1 €F256 ba€Fas6

where the + (X0R) sign denotes addition (same as subtraction) in Faos6. Using
Lemma Eq. is simplified by collapsing the sums using Eq. . Each sum
(lefthand-side of Eq. . generates three terms (righthand-side of Eq.), and
the first constant term further simplifies by notmg that > beFas D(u —b) =

After three recursive applications of Equation (2] Equatlon becomes

D(z+02y, +03y, +y,) —D(2+02y_+03y, +y,)
z)=i+i — D(2+02y,+03y_+y,) —D(2+02y, +03y, +y_)
256 ' 2563 | + D(2402y_+03y_+y.) +D(z402y_+03y. +vy_)

+ D(2402y, +03y_+y_) —D(2+02y_+03y_+y_)

P(Zy =

where we observe that the terms in D pairwise cancel, as per:

D(z+ 02y, + 03y, +y,) = D(z +0) D(z+02y_+03y_+y),
D(z+02y_ 403y, +y,) = D(z 4+ 02(y, +y-)) = D(z + 02y, +03y_ +y_),
D(z 402y, +03y_ +y.) = D(z+03(y, +y-)) = D(z 4 02y_ + 03y, +y_)
D(z+02y_4+03y_+y.)= D(z+y, +y_) D(z + 02y, + 03y, +y_)

Hence P(Zy = z) = 1/256, the uniform distribution. O

)

The independence hypothesis in Proposition [1| assumes the rounds prior to
the last round are executing the genuine AES, so that lemma [2] applies, and
yields the independence between any tuple of bytes in an AES intermediate state.

This proposition considerably simplifies the modeling of the problem, and
allows us to derive exact results in the sequel. Additionally, the obtained uni-
formity at the output of the MixColumns operation, despite SubBytes is not
uniform (after persistent fault), makes it possible to prove that, provided the
plaintext is uniformly distributed, all configurations are explored, hence attack
success rate does reach 100% asymptotically.

0.0200

0.0175

0.0150

0.01.25

0.0100

Probability

0.0075

0.0050

0.0000—4 50 100 150 200 250
Value of ciphertext byte

Fig. 3. Empirical distribution of a byte of an AES state after a MixColumns operation
that takes a small biased input given by distribution D of proposition

Persistent Fault Analysis With Few Encryptions 7

This proposition also shows that only one MixColumns operation is required
to cancel the bias. This is confirmed by taking many observations and building
the empirical distribution from these observations as shown in figure [3] where each
element indeed appears to have the same probability to be observed. This means
that one can consider the input of the last round as being uniformly distributed,
no matter where the persistent fault occurred.

3 Improvement Using Maximum Likelihood

This section explains how the Zhang et al. attack can be improved. First of all,
the most likely key value for each byte of the last round key is extracted. In this
step, each key per byte of the last round key is ranked from the most to the least
probable. Then, a combination strategy is used to guess each byte of the last
round key in a complete 128-bit last round key. Eventually, the correct master
AES key is extracted from that last round key. Note that the value of the last
round key is not necessarily the correct one, typically when the key schedule
uses the faulted SBOX. This situation can be considered marginal, since most of
the time, the keys are scheduled once, then reused multiple times. Hence, if the
permanent fault in the SBOX occurs after the key is scheduled, then the round
keys are correct, and the master key can be recovered from the last round key.
Otherwise, the key schedule can also be inverted, although with some uncertainty:
when a key byte is equal to y,, then the two antecedents shall be considered
when inversing the round of the key schedule. The number of possible master
keys is in the order of % x 16 x 10 (< 2), which is manageable to enumerate.

3.1 Optimal Distinguisher

In this section, n AES encryptions are used to find the most probable key. For
pedagogical reasons, only the first byte of an AES ciphertext is considered in this
section, but other bytes are treated in a similar way. For the same reason, only
the first byte of the last round key is considered. In this section, the term key
refers to one byte of the last round key of AES. Precisely, this section focuses on
the extraction of the last round key. From these n encryptions, n bytes x1, ..., xy,
that can be viewed as elements of Fy54, are observed.

Maximum Likelihood Optimality. This section shows that the application
of the MLE is optimal in the sense that it maximizes the attack success rate in a
Bayesian context.

Figure [summarizes the idea of the attack until the success to find one byte
of the last round key. In this illustration, y_ = 0263 and y, = 0x41. This section
first assumes that each possible key is equally probable before any observation,
meaning that P(k) = 1/256 for each of the 256 possible keys k. Note that the
fault also alters the round keys since the key scheduler uses SBOX. However, the
biased output of an SBOX in the key scheduler is added to a uniform random
variable in Fa56 before to output a round key. This eventually gives uniformly

8 Sébastien Carré, Sylvain Guilley, and Olivier Rioul

’SBOX = [0x63,...,0x41,...,0z16] ‘

|
| £. PFA on an SBOX at any round of AES

~

Uniform input

(Proposition H’ SBOX = [0x41,...,0x41,...,0x16] ‘
S —
I
ShiftRows, last| AddRoundKey : Z:J
LB
Observations on the first byte of each ciphertext: z1,...,xy | E
. N
.
Analysis (MLE/MAP) LS

I

Most probable key (Alg. [1)) / Keys ranked (from most likely downwards)

Fig. 4. Fault model and attack principle for this paper (with y_ = 0x63, y, = 0x41).

distributed round keys. Thus, even with the fault, it makes sense to assume a
uniform distributed key for each of the AES round before any observations. Then,
these probabilities are updated after the observations. This is then a Bayesian
context of statistical inference in which this paper is written.

Finding the most probable key k£ means finding the key that maximizes the
conditional probability P(k | z1, ..., z,) for observations x1, ..., x,. This is a well
known problem in a Bayesian context known as Mazimum a posteriori (MAP)
estimator that is a generalisation of Mazimum Likelihood Estimator (MLE).
These estimators are defined in the definition [l

Definition 1 (MAP and MLE). Given a joint distribution of k,x1,...,2Z, of
such distribution, we define two estimators:

— Mazimum A Posteriori (MAP) estimator kyjap = arg max Pk |x1,. . xn).

— Mazimum Likelihood Estimator (MLE) kypp = arg max P(xy,...,xn | k).

For uniformly distributed key hypotheses the estimators coincide:

Lemma 3 (MAP=MLE for Uniform Distribution). In a Bayesian context,
kyvap = kyoe for a uniform a priori distribution of k.

Lemma [3|is a classical result but we include its proof for completeness.
Proof. MAP is defined as kysap = arg max P(k | x1,...,x,). By Bayes’ formula,
this also writes

P(x1,...,z, | k)P(k)
P(x1,...,25)

Enrap = arg max :argml?xP(xl,...,xn | K)P(k)

Persistent Fault Analysis With Few Encryptions 9

since P(x1,...,2,) does not depend on k. Moreover, for a uniform a priori
distribution, P(k) is constant and, therefore,

l;MAp:argm]?xP(:El,...,xn |k):kMLE O

Since we assume that, before any observation, each possible key has the same
probability, MLE is used to compute the MAP and find the most probable key.
The choice of using MLE instead of directly computing MAP is motivated by
the fact that, since observations are independent, computing P(z1,...,z, | k)
is much easier that computing P(k | z1,...,,), since the former simplifies to
a product P(z; | k) = D(z; @ k) for all 1 < ¢ < n. This distribution can be
extended for multiple observations. Such distribution is given in the lemma [4

Lemma 4 (Computation of the Likelihoods). Given k,y_,y, € Fass,y_ #
y+7 ‘

] ifF1<i<n|z;Dk=y_,
Pay,....on | k) = { 2mk2=8n otherwise

where mpo =#{t € {1,....,.n} |z, ®k=y,}.

Proof. Since the observations are conditionally independent given k, one has
P(z1,...,xn | k) = [1m; P(z; | k) = [1;—, D(z; ® k). This product is equal to
zero if at least one D(z; @ k) is equal to zero. For a given k, there is only one
element x; for which D(z; @ k) = 0 since it can only happen when z; @ k = y_
where y_ is the only element that is never observed at the output of the SBOX
due to the fault. If no such term is equal to zero, then there are two options:

— if z; ® k = y,, then D(z; ® k) = 52+ since y, appears twice at the output of

the faulted SBOX; 0

— otherwise, z; ® k # y,. and x; ® k # y_. Thus x; ® k only appears exactly
once in the faulted SBOX and D(z; ®k) = which happens for 254 SBOX
unique outputs.

1
256
Thus, P(x1,...,z, | k) is equal to

n

2 1
Hp(xi|k)= H 0 H 256 H 256

i=1 i|o; @k=y_ i|o; @k=y4 il ®kZ{y—,y+}

— (O)mk>0 i e l e = O m m if EIZ | xi @ k - yi’
256 256 (ﬁ) ot (%) ®2 otherwise

where we have noted my o =#{i | x; Dk=y }, mp1=#{i |z 0k ¢ {y_,y, },
and myo = #{i | x; ® k = y, }. Note that my ¢ + my1 + mg2 = n. Moreover,
when P(z1,...,2z, | k) # 0, one has my o = 0, thus my 1 = n — my, 2. Therefore,
when there is no i, 1 <14 < n, such that x; ® k = y_, one has

1 n—mg. 2 2 Mg, 2 1 s
Pa1,... 20 | k) = (on = =~ _gmea—gmaTSn O
@1,y [K) (256) (256> 256n

10 Sébastien Carré, Sylvain Guilley, and Olivier Rioul

From Lemma [4] a two-step strategy is developed to find the correct key:

1. Eliminate keys that have the value z @& y_ for each observation x since the
probability to observe such element is null;

2. Among the remaining keys, declare the most likely key to be the one that
has the value z, @ y,, for an observation z, that appears the most often
among all the observations. Indeed, x, is the value that should appear the
largest number of times, owing to lemma [

This strategy is optimal in the sense that it maximizes the likelihood. We
now go one step further by applying the strategy without actually comput-
ing the probabilities. The computationally efficient strategy is exposed in our
Proposition [2}

Proposition 2 (Operational MLE Computation for PFA). Consider n
observations of ciphertext bytes {x1,...,xn}, and known PFA characteristic
values y_,y, € Fase,y- # y.. Define

A={zdy |z €Foss—{z1,...,Tn}}
Bi={ie{l,....,n} |zi=j and v; @y, € A} (0 <j <255)

We have IAcMLE € A, and IACMLE is the index of B; which is the largest set, i.e.,
kMLE = arg man(#{Bj}).

Proof. First, note that {z € Fasg — {x1,...,zn}}} and {& € {x1,...,20}}}
are complementary sets. This implies that A and {x ®y_ € {z1,...,x,}}} are
complementary. Since P(z; | k) = 0 for z; @ k = y_, then value k # z; D y_.
Thus,];'MLE e A

For the second point, we note that B,, contains the element that is the most
often observed for which the condition z,, ® y, € A holds. In other word, z,, is
the most often observed value after removing elements x; such that z; & y_ = k.

The proof then consists in showing that the maximum likelihood estimator is
given by eliminating values k such that z; ® k = y_ and for which z; appears

the most often. Let k = argmaxy P(z1,...,2, | k) be the maximum likelihood
estimator. The values of k such as x; ® k = y_ for at least one observation
give P(z1,...,2,; k) = 0. Such keys can then be eliminated from the maximiza-

tion. Since m — 2™ 8" is strictly increasing in variable m € N, we have that
arg maxy, 272 78" = arg maxy, my 2, i.e., the most likely key values are the values
k that maximize my o (amongst k values which have not been ruled out). m|

Note that the set A contains all the possible keys. Thus, all impossible keys
have been eliminated to get this set. This is the first remarkable point of our
strategy. The elements contained in each class B; are chosen in such a way that
they match with a possible key. For the correct key, one observation has to appear
the most often compared to the others. This observation can then be found by
taking the class B; that has the maximum number of elements. This is the second
peculiarity of our strategy.

Persistent Fault Analysis With Few Encryptions 11

Based on Proposition [2] Algorithm [I] consists in eliminating the impossible
keys and selecting the most likely one through the most observed value. Note
that line [§] of this algorithm counts the number of times a key, related to an
observation, can be observed and also takes care to only select possible keys
by using the term A[z; @ y_] that is equal 0 for the key k = x; ® y_. At line
the algorithm discards a key candidate if the value k = x; ® y_ is not already
in set A. Therefore, the set of impossible keys is increasing with respect to the
inclusion. When all the 255 unique values of the ciphertexts x; have been seen,
the set A has cardinality 255, and the algorithm returns the key (in a singleton).
As a corollary, when the correct key is found, more ciphertexts do not alter the
outcome of the attack. This behavior differs from that of side-channel attacks
where the measurements are noisy (e.g., powerline attacks, etc.).

Algorithm 1: Algorithm to extract the most likely key

input :The SBOX erased value y_ € {0,...,255}, the SBOX duplicated value
Y+ # y—, and n observations (x1,...,Z,) of ciphertext bytes.
output : Most likely key

1 h[256] <~ 0,...,0 // Histogram storing the occurrence count of a
possible key. Notice that h[j] = #{B;} as per proposition
2 A[256] «—1,...,1 // Indicator of the set of possible keys. A[k]=1
if k is a possible key, otherwise A[k] =0
3 forie{l,...,n} do // Iterating on the observations
Alz; ®y-]1+0 // Eliminate impossible key z; @ y_. This builds
the set A of proposition
5 hlz: ® y4] < Alzi ®y4] X (h[zi ®y+]+1) // Among the remaining keys,
count the ones that appear the most

6 return argmax; h[j] // Returns a list in case of ex equo keys

1.0{ —— keyO

— keyl

— key2

08y key3

key4

> 061 key5

= — key6

% — key7
£ 04
0.2

0.0 -
0 500 1000 1500 2000 2500 3000 3500

Number of encryptions

Fig. 5. P(l% = k) for one byte of multiple last round key of AES, averaged over 1000
tries.

12 Sébastien Carré, Sylvain Guilley, and Olivier Rioul

In our case, k is an AES last round key and an observation is a byte resulting
from an encryption. We evaluate the number of required encryptions for all of
the 256 possible keys. Figure [f] gives the success rate. The maximum likelihood
estimator is known to be consistent. Thus, P(lAf = k) = 1 for enough observations,
where k is the correct key. For clarity, only 7 keys are represented in this figure.
However, the 256 possible keys follow the same trend.

#
N
83
=)

32

©

I

remaining keys (log scale)

N

(a1e2s BOJ) PooYI|SYI| 94 BzZIWIXew 1ey) SAY
=
()]

=
=
N
o
o

400 600 800 1000 1200 1400 1600 1800
Number of encryptions / Observations

Fig. 6. Remaining values of one byte of last round keys after eliminating impossible
keys (blue) and remaining values of one byte of last round keys that maximize the
likelihood (black), averaged over 1000 tries. The line y = 256 — x is represented as
a reference, to illustrate the optimistic situation where one values of one byte of a
last round key hypothesis is ruled out at each new encryption (never twice the same
ciphertext byte).

Figure [6] shows how many key bytes remain, averaged over 1000 set of
plaintexts, possible as a function of the number of encryptions by considering
only the keys that are eliminated from the first figure or the keys that maximize
the likelihood. Note that, some keys have the same likelihood and, thus, multiple
key can maximize the likelihood. Note that the number of keys that maximizes
the likelihood can locally increase but will eventually decrease down to 1. For less
than 800 encryptions, the figure shows that more than 15 keys byte candidates
are possible.

A Note about Guessing Entropy Another approach to find a key k such as
P(z1,...,2, | k) is maximal from n observations is to use the guessing entropy
defined as GE = leiﬁl kEP(z1,...,2, | k) where {P(x1,...,2, | k)} are sorted in

decreasing order. Due to this sort, the guessing entropy is approximately equal

Persistent Fault Analysis With Few Encryptions 13

to 1if P(x1,..., 2, | k) is the biggest probability and other are small relatively
to it. We thus estimate the number of observations required to get GE = 1
and observe that the guessing entropy becomes equal to 1 between 1200 and
1400 observations meaning that we require between 1200 and 1400 observations
to be able to get the AES master key. This mean that, between 1200 to 1400
encryptions are required to get the correct key.

3.2 Key Byte Ranking

Algorithm [I] returns not one unique value of a byte of the last round key, but
a set of values of a byte of the last round key (since there are possibly ties in
the likelihood values). Full 128 bits key can be reconstructed using key ranking
algorithms, such as |22]. Indeed, one byproduct of our attack is that, in addition
to be optimal, it is based on MLE, hence can sort out key candidates based
on probabilities. Therefore, key ranking algorithms apply in a straightforward
manner. In most cases, this requires to modifying Algorithm [I] so that instead of
returning the most probable value of a byte of the last round key (the arg max; h[j]
at line @7 it returns the most probable value of a byte of the last round key
sorted with decreasing probabilities.

3.3 Combination of Several Key Bytes to Reconstruct the Full Key

In case not enough observations are available, the key byte ranking (Sec.
can fail to rank the keys correctly. In order to get around this limitation, a
combination algorithm is given in this section.

The complete last round key can be recovered by combining key byte can-
didates in an empirical algorithm consisting in 16 imbricated loops. The first
loop (outer loop) iterates over the candidates of the first key byte. The second
loop iterates over the candidates for the second key byte and so on. Noting N;
the number of candidates for the last round key byte 4, the total number of
candidates for the whole last round key is N = H;'Li N;. This product can be
very large and can induce a high time complexity of the attack. For instance, for
100 candidates per byte of the last round key, we have N = 100'6 last round key
candidates. More specifically, assuming the key byte rank algorithm gives the
correct key byte as the first candidate for key bytes except the first one, then
the attacker has to test between 2 x 100'® and 1006 last round key candidates
which is not practical.

One strategy to mitigate this issue is to only test a predefined maximum
number of key byte candidates. This assumes that the key byte rank algorithm
is efficient enough. For instance, assuming that the key byte rank algorithm
always rank the correct key byte between the first and the third rank, the time
complexity is then reduced from N = 100'¢ to N = 36, While this assumption
is not always met, for each key byte candidate, the first key byte candidate is
often the correct one and only very few key byte candidates are not correctly
ranked. Thus we can consider only the first key byte candidate for most of the

14 Sébastien Carré, Sylvain Guilley, and Olivier Rioul

bytes and only iterate over the few other bytes. Due to this observation, our
strategy consists in building the last round key candidates through 16 stages.

The first stage consists in trying all possibilities for only one byte over the 16
bytes. This gives a maximum of 16 x 256 = 4096 possibilities. At this stage, each
of the 15 other key byte candidates is fixed to the first candidate. Those 15 bytes
are called small varying bytes. If the full 128 bits key is not found, the second
stage is used.

The second stage consists in trying all possibilities for two bytes among all
combinations of two bytes among the 16 bytes. This gives a maximum number of
testing key equal to 16 x 15 x 2562. At this stage, each of the 14 other key byte
candidates is fixed to the first candidate.