
HAL Id: hal-02933667
https://telecom-paris.hal.science/hal-02933667v1

Submitted on 8 Sep 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Hardware / Software / Analog System Partitioning with
SysML and SystemC-AMS

Daniela Genius, Ludovic Apvrille

To cite this version:
Daniela Genius, Ludovic Apvrille. Hardware / Software / Analog System Partitioning with SysML
and SystemC-AMS. 10th European Congress on Embedded Real Time Systems, Jan 2020, Toulouse,
France. �hal-02933667�

https://telecom-paris.hal.science/hal-02933667v1
https://hal.archives-ouvertes.fr


Hardware / Software / Analog System Partitioning with SysML and
SystemC-AMS

Daniela Genius, LIP6, Paris Sorbonne Université, Paris, France, daniela.genius@lip6.fr
Ludovic Apvrille, LTCI, Télécom Paris, Institut Polytechnique de Paris, Sophia Antipolis, France

ludovic.apvrille@telecom-paris.fr

Abstract

Model-driven approaches for designing software and
hardware parts of embedded systems are generally lim-
ited to their digital parts. On the other hand, vir-
tual prototyping and co-simulation have emerged as a
promising research topic, but target the modeling lev-
els when partitioning has already been performed. This
paper presents a model-driven platform for the parti-
tioning of analog/mixed-signal systems.

keywords: virtual prototyping, embedded sys-
tems, analog/mixed signal, design space exploration

1. Introduction and Context

Embedded systems are frequently built upon het-
erogeneous hardware e.g. processors, FPGAs, DSPs,
hardware accelerators, digital and analog analog/mixed
signal (AMS) and radio frequency (RF) circuits. In
early design phases, rapid but not-so-precise explo-
ration of the design space is required in order to effi-
ciently use the target platform. For this purpose, het-
erogeneous embedded systems require a high-level rep-
resentation that includes very abstract models of their
AMS and RF components. In previous contributions,
we have shown how AMS components can be handled
at a lower abstraction level i.e. after the system has been
partitioned [19]. Thus, from a precise deployment dia-
gram, we can generate a virtual prototype featuring both
digital (hardware, software) and analog aspects. Yet,
before partitioning, several challenges have to be tack-
led, in particular how to properly represent AMS com-
ponents.

After the related work in Section 2, the paper in-
troduces the fundamental concepts in Section 3. Our
contribution is described in Section 4; we then apply it
to a case study in Section 5 before we conclude.

2. Related Work

Our work spans the domains of virtual prototyping
and co-simulation of analog/digital embedded systems.

The Architecture Analysis & Design Language
[14] allows the use of formal methods for safety-critical
real-time systems in avionics and automotive, among
other domains; an approach that generates a system im-
plementation from models using Simulink has been pre-
sented in [7].

Capella [26] relies on Arcadia, a comprehensive
model-based engineering method. Widespread in the
domains of defense, space and transportation within
Thalès company, it provides architecture diagrams al-
locating functions to components, allocation of behav-
ioral onto implementation components which are typ-
ically hardware. Capella also provides sequence di-
agrams, state machines and advanced mechanisms to
model bit-precise data structures; it also supports co-
simulation.

MDGen [31] starts from Rhapsody, which can au-
tomatically generate software, but not hardware de-
scriptions from SysML, which in Rhapsody is untimed
and sequential.

UML/SysML based modeling techniques such as
MARTE and Gaspard2 [34, 16] are extremely popular
for capturing the behavior of embedded systems, but
less widely used for heterogeneous system design [29].
Furthermore, with very few exceptions such as [32, 23],
they do not support refinement until cycle/bit accurate
level virtual nor provide OS support for full-system
simulation. Co-simulation between different Models of
Computation is usually out of scope, too.

Modelica [15] is an object-oriented modeling lan-
guage for component-oriented systems containing e.g.
mechanical, electrical, electronic and hydraulic compo-
nents. Classes contain a set of equations that can be
translated into objects running on a simulation engine.
Yet, since time synchronization is not predefined, the
simulation engine must manipulate objects in a sym-



Final 
software 
code

Refinements

VHDL/Verilog

SystemC-
AMS

Virtual Prototype

Deployment 

Hardware 
design

Hardware
Abstractions

Simulation  
     and 
Verification

Micro Kernel
MPSoC
Model 

HW/SW Partitioning

Functional

Software Design Hardware
model

Figure 1. Hardware/Software partitioning and Code generation for MPSoC platforms

bolic way in order to determine an execution order be-
tween components of different MoCs.

Our approach links two simulation semantics.
Linking simulation with different MoCs can be done by
using e.g. the Functional Mockup Interface [10], which
is linked to Modelica tools. Yet, in our case, we need to
take into account both DE and AMS semantics because
we want to compute a valid schedule before simulation,
as explained in Section 5.2.

Ptolemy II [27], based upon a data-flow model, ad-
dress digital/analog systems by defining several sub do-
mains. Instantiation of elements controlling time syn-
chronization between domains is however left to the de-
signer.

Metropolis [4] uses high level models and facili-
tates the separation of concerns between computation
and communication aspects. Heterogeneity can how-
ever only be represented using processes, mediums,
quantities and constraints, hierarchical models are not
allowed. Metro II [12] is based on high level and hierar-
chical models. So-called Adapters can be used for data
synchronization between components belonging to dif-
ferent Models of Computation (MoCs), yet the model
designer still has to implement time synchronization.
As a common simulation kernel handles the entire pro-
cess execution (digital and analog), MoCs are not well
separated.

SystemC [21], a library of C++ classes, makes it
possible to model digital hardware. SystemC-AMS ex-
tensions [6][33], about to become a standard, describes
an extension of SystemC with AMS and RF features
In the scope of the BeyondDreams project [9], a mixed
analog-digital systems proof-of-concept simulator has

been developed, based on the SystemC AMS exten-
sion standard, commercialized by Coseda [13]. Another
simulator is proposed in the H-Inception project[20].
However, no means for running larger software parts
(OS, loader) are provided.

3. Basic Concepts

Let us briefly introduce the two fundamental con-
cepts and associated tools which are the basis of the
present work.

3.1. TTool

TTool [2] is a tool for model-based engineering
of (digital) embedded systems at different abstraction
levels grouped into two subsets: DIPLODOCUS (func-
tional, partitioning) and AVATAR (software design, and
deployment). To each abstraction level corresponds spe-
cific SysML views, see Figure 1 (adapted from [19]).

In the DIPLODOCUS methodology [3], software
and hardware tasks to be partitioned are first captured
within the functional abstraction level. Then, system-
level mapping onto high level abstract hardware com-
ponents is performed. After partitioning, software tasks
can be detailed and then deployed on more concrete
hardware models of the target system composed of el-
ements of the destination platform (hardware compo-
nents, operating system).

The AVATAR methodology [25] allows the user to
design the software, perform functional simulation and
formal verification, and finally test the software compo-
nents in a virtual prototyping environment. A deploy-



ment diagram introduced in [17] is a SysML represen-
tation of hardware components, their interconnection,
tasks and channels. The latter are based on the SoCLib
[30] public domain library written in SystemC. Deploy-
ment diagrams themselves are not subject to formal ver-
ification. In deployment, partitioning decisions can be
re-validated or invalidated [23].

In both partitioning and deployment, the computa-
tional part of tasks is deployed to processors or hard-
ware accelerators, and the communication and storage
parts are deployed to communication and storage ele-
ments e.g. buses and memories.

Verification relies either on formal verification us-
ing timed automata semantics (using TTool model
checker or UPPAAL, see [8], or simulations. Simula-
tion at high abstraction level (i.e. DIPLODOCUS) is
fast but imprecise. On the contrary, simulations per-
formed from (AVATAR) deployment models are cy-
cle/bit accurate but slow. Last but not least, executable
C code can be generated from AVATAR software com-
ponents.

While Analog/Mixed Signal components can be
described along with software tasks in a quite detailed
manner in order to generate the virtual prototype [19],
as will be shown in the next section, they are not yet rep-
resented nor simulated at partitioning level until now.

In Figure 1, orange circles point out AMS exten-
sions to hardware parts and deployment. On the up-
per part of the figure however, depicting the partition-
ing level, distinction is only made between functional
blocks mapped to hardware or software. No particular
attention is given to analog blocks which, at best, can
be imperfectly modeled as hardware accelerators. The
present paper addresses these aspects, which are enci-
cled in red.

3.2. SystemC AMS

Besides Discrete Event (DE) models for digital
blocks, SystemC AMS relies on the Timed Data Flow
(TDF) Model of Computation, itself is based on the
timeless Synchronous Data Flow (SDF) semantics [22].

Timed Data Flow A TDF module is described with
an attribute representing the time step and a process-
ing function. A processing function is a mathematical
function depending on the module inputs and/or inter-
nal states. At each time step, a TDF module first reads
a fixed number of samples from each of its input ports,
then executes its processing function, and finally writes
a fixed number of samples to each of its output ports.
TDF modules can interact with the DE world (such as
digital MPSoC platforms) using converter ports.

Figure 2 shows a TDF cluster in the representation
defined in the SystemC AMS standard [6]. DE mod-
ules are represented as white blocks, TDF modules as
gray blocks, TDF ports as black squares, TDF converter
ports as black and white squares, DE ports as white
squares and TDF signals as arrows. So-called con-
verter ports, shown as black-and white squares, serve
as interface between the TDF and DE MoC. The TDF
modules have the following attributes:

A B Y
R= 1
D= 1

Tm= 6 ms Tm= 4 ms

Tp= 4 ms

R= 3

Tp= 2 ms
D= 0

R= 2
D= 0

Tp= 2 ms

TDF Cluster

Figure 2. TDF Cluster

• Module Timestep (Tm) denotes the period during
which the module will be activated. One module
will only be activated if there are enough samples
available at its input ports.

• Rate (R). Each module will read or write a fixed
number of data samples each time it is activated.
This number is annotated to the ports and it is
known as the port rate.

• Port Timestep (Tp) is the period during which each
port of a module will be activated. It also denotes
the time interval between two samples that are be-
ing read or written.

• Delay (D). A delay D can be assigned to a port to
make it store a given number of samples each time
it is activated, and read or write them in the next
activation.

Due to their different Models of Computation,
AMS components require to be simulated apart from
the rest of the system. Yet, they regularly have to syn-
chronize with the digital platform. The SystemC kernel
thus controls the AMS kernel which runs continuously
until interrupted. When a SystemC AMS simulation is
being executed, the execution of the SystemC simula-
tion kernel is blocked, while the SystemC AMS simula-
tion kernel continues running. As a consequence, dur-
ing this period the DE simulation time does not advance
at all, while the TDF simulation time advances. A cru-
cial problem is thus building a co-simulation environ-
ment which synchronizes DE and TDF without causing
causality issues. A recent work [1] shows how to solve
such issues for SystemC AMS code before simulation.
Yet, TTool goes even further by detecting them before
the code generation of a SystemC AMS system [19].



Electrical Linear Networks TTool also offers the
possibility to generate code for Electrical Linear Net-
works (ELN) encapsulated within TDF clusters. ELN
clusters can be captured with specific diagrams in which
a limited set of components can be used. They are not
yet tested with a software part running in the MP-SoC.

4. Contribution

As said before, analog components can already
be captured in deployment diagrams (software design
level, a.k.a. AVATAR) [19]. The present paper proposes
an extension to the partitioning level (DIPLODOCUS),
allowing to capture analog/mixed signal modules and to
generate abstract simulation code in C/C++, just as it is
already done for discrete components.

4.1. Modeling and verification approach

The HW/SW candidate architecture of the system
is modeled in form of a graph made of execution, com-
munication, and storage nodes. Execution nodes are
for example CPUs and hardware accelerators. Our con-
tributions adds a representation of analog/mixed signal
modules, which are execution nodes too. Communica-
tion nodes include bridges and buses, storage nodes are
memories.

TDF clusters are jointly modeled with discrete
components using hierarchical SysML block diagrams.
Blocks are connected through ports featuring channels
for exchanging data (blocking and non-blocking seman-
tics possible), events and requests for control informa-
tion. In terms of behavior, our idea is to capture the be-
havior each TDF cluster with UML activity diagrams,
since the latter are already used for describing the be-
havior of discrete components [3]. Behavioral diagrams
can contain nondeterministic choices, finite and infinite
loops, and general control operators. So-called Delays
can also be used to express the physical duration of a
computation, not to be confounded with TDF Delays.

Diagrams are first converted in C++ before being
simulated. Our simulation engine is predictive; each
processing elements goes on at its own simulation pace
until a system event (a data transfer, a synchronization
event, etc.) makes current transactions invalid. Then,
the latter are cut back as much as necessary in the past,
and the simulation continues from the cut transactions.

4.2. Modeling TDF clusters

In the following, we describe our abstract model
TDF clusters on partitioning level.

• To capture the semantics of TDF, only channels are

used in the activity diagrams, neither events nor
requests. Each TDF port is associated to one data
channel in activity diagram.

• Branches stemming from choices (that later be-
come if statements in the processing function) can
be directly translated into branch control structures
in the activity diagram.

• The TDF cluster timestep corresponds to the de-
lay in the activity diagram. There can only be one
timestep per cluster. It is either estimated or de-
rived from the scheduling an existing TDF model.

• Activity diagrams allow to specify a number of
data samples written to/read from a channel: we
thus model the TDF rate.

• The behavior of each cluster is captured within a
loop forever in the activity diagram.

All features individual to a module within a cluster, such
as port timesteps and delays, are not explicitly modeled,
so they are left to the detailed TDF model on the soft-
ware design level.

5. Case study

The following case study illustrates both the parti-
tioning level (the main contribution of this paper), and
the software design level (presented in [19]), as well as
their interaction. Our simplified rover system, intended
to assist rescuers in finding, victims buried in rubbles.
has four main components: central control, motor con-
trol and two sensors: ultrasonic distance control and a
temperature sensor.

5.1. Partitioning

Figure 3 shows the purely functional model of the
rover. Green boxes represent functional blocks con-
nected through ports via data channels (in blue) and
synchronization events (in purple). The two analog sen-
sors of the rover can now be captured as specific tasks.
As for discrete tasks, their behavior is captured within
activity diagrams. Figure 4 shows on its left the activity
diagram of the distance sensor, in the center the activity
diagram of the temperature sensor , and on the right the
activity diagram of the motor control. Figure 5 shows
the activity diagram of the main control.

The architecture and mapping diagram, shown in
Figure 6, features a specific hardware model named
CAMS (abbreviating SystemC-AMS). The Figure thus
shows on its upper right the two AMS components, on
which the TemperatureSensor and the DistanceSensor



MainControl

+ calculateTraj : Natural;
+ calculateDistance : Natural;
+ stateR : Natural;

stopTemp startTemptempData

DistanceSensor

+ samplingRate : Natural;
+ change : Boolean;

TemperatureSensor

+ samplingRate : Natural;
+ sensorOn : Boolean;

stopTemptempData startTemp

MotorControl

+ calculateCommand : Natural;
+ interval : Natural;

startTemptempData

ultrasonicData

samplingRate

changeRate

motorCommand

newCommand

stopTemp

Figure 3. Functional view of the rover

chl
changeRate(1) 

chl
changeRate(1) 

chl
samplingRate(1) 

chl
ultrasonicData(1)

Loop for ever

[ change==1] [ change==0]

[ ]

100 ns

chl
stopTemp(1) 

chl
stopTemp(1) 

sensorOn=false

sensorOn=true

10 us

chl
tempData(1)

[ change==0] [ change==1]

[ ]

Loop for ever

for(i=0;sensorOn;i = i+1) inside loop

exit loop

chl
startTemp(1) 

evt
newCommand() 

Loop 10 times inside loop

exit loop

chl
motorCommand(1) 

interval

Figure 4. Activity diagrams: distance sensor (left) temperature sensor (center) motor control (right)

functionalities are mapped, as it would have been done
with hardware accelerators.

5.2. Software design and deployment

Obviously, SysML block diagrams for capturing
software components do not capture AMS components:
they are therefore modeled in separate SystemC-AMS
panels. Also, communication channels between soft-
ware components and AMS components cannot be con-
nected at this level of abstraction. Indeed, in [19] we
showed that these communication are handled differ-
ently, as explained in the next paragraph.

The two software blocks communicate with each
other through a signal motorCommand which is sent
by the MainControl to the MotorControl and contains
two parameters: the right and the left velocity. The be-
haviour of software blocks is given by state machines.
The state machine of the MainControl block is shown

on the left hand side of Figure 8.

Interaction and co-simulation The two software
blocks interact with the two analog sensors through so-
called GPIO2VCI components. The latter are SystemC
AMS components with DE ports on one side, while they
function as Virtual Component Interconnect [35] targets
in the SoCLib MPSoC on the other. The part of the
control running in the digital part activates and deac-
tivates the sensors or initiates rate changes for the ul-
trasonic sensor, whereas the sensors write measurement
data to the digital platform at regular intervals. A li-
brary named libsyscams has been introduced to define
read and write primitives on the side of the MPSoC,
namely the read_gpio2vci and write_gpio2vci functions
[11]. By executing software functions, the CPU of the
digital platform is thus able to write or read values from
the analog components. The right hand side of Figure 8
shows the MainControl block modified to communicate



chl
changeRate(1)

chl
changeRate(1)

chl
stopTemp(1)

chl
stopTemp(1)

chl
changeRate(1)

chl
changeRate(1)

chl
changeRate(1)

chl
changeRate(1)

chl
samplingRate(1)

chl
samplingRate(1)

chl
samplingRate(1)

chl
samplingRate(1)

chl
ultrasonicData(1) 

evt
newCommand()

chl
motorCommand(1)

evt
newCommand()

chl
motorCommand(1)

chl
samplingRate(1)

chl
ultrasonicData(1) 

stateR=0

stateR=1

stateR=2

chl
ultrasonicData(1) 

stateR=0

stateR=1

stateR=2

chl
ultrasonicData(1) 

[ stateR==0] [stateR==2 ]

[stateR==1 ]

[ ] [ ]

[ ]

evt
newCommand()

chl
samplingRate(1)

chl
motorCommand(1)

RRLL??

stateR=0

stateR=1

stateR=2

[ ] [ ]

[ ]

[ ] [ ]

[ ]

state 0: obstacles far away
state 1: obstacles intermediate distance away
state 2: obstacles in close proximity

calculateDistance

calculateDistance calculateDistance

chl
tempData(1) 

Depending on the distance, calculate
a motor command and new state

Loop for ever

chl
startTemp(1)

chl
startTemp(1)

Figure 5. Activity diagram of the main control

<<CPU>>
CPU0

Rover::MainControl

Rover::MotorControl

<<MEMORY>>
Memory0

<<BUS>>
Bus0

<<CAMS>>
Temperature_Sensor

Rover::TemperatureSensor

<<CAMS>>
Distance_Sensor

Rover::DistanceSensor

Figure 6. Partitioning level architecture and mapping diagram

<<block>>
MainControl

- state : int;
- sensorOn : bool;
- newRate : int;
- samplingRate: int;
- temp : int;
- leftVelocity: int;
- rightVelocity : int;
- distanceLeft : int;
- distanceRight : int;
- distanceFront : int;

~ out motorCommand(int leftVelocity, ...)
~ out control(bool sensorOn)

<<block>>
MotorControl

- rightVelocity : int;
- leftVelocity : int;
~ in motorCommand(...)

Figure 7. Software block diagram

with the analog sensors. C code inserted as so-called en-
try code into the startController state, turns the temper-
ature sensor unit module on and off, initiates changes of
the sampling rate and reads the distance sensor.

Analog components Analog components can be pa-
rameterized with SystemC AMS parameters (rate, de-
lay, timestep). In contrast to the version without rate
change presented in [11], Dynamic TDF [5], as imple-
mented in SystemC-AMS PoC 2.1, allows to implement
the change of the sampling rate necessary for the origi-
nal rover model. The TDF model of the distance sensor
was thus rewritten w.r.t. the model shown in [19].

Figure 11 shows TTool’s graphical representation
of a TDF cluster modeling the ultrasonic distance sen-
sor. As we only have one GPIO2VCI interface, we code
by integers the sensor in question (left, front, right),
and the rate change. There is one additional DE mod-
ule, controlling the access to the different ports of the
TDF module. Figure 12 shows a graphical represen-
tation of the temperature sensor, modeled as a cluster
containing a single TDF block. From these graphical



control(sensorOn)
control(sensorOn)

startController

sensorData(distanceLeft, distanceFront, distanceLeft)

state0

state2

state1

tempData(temp)

measureTemp

calculateDistance

changeRate

changeRate(samplingRate)

controlTempSensor

setVelocity

motorCommand(leftVelocity, rightVelocity)

dodgeObstacle

sendMotorCommand

turnLeft turnRight

rightVelocity=1
leftVelocity=speedLow

leftVelocity=1
rightVelocity=speedLow

[ else]

[ distanceLeft>distanceRight] [else ]

[ state!=2]

[ state==2]
sensorOn=true

after (1, 5)

[ samplingRate!=newRate]

after (10, 20)

state=2
newRate=rateHigh

computeFor (10, 20)

computeFor (2, 5)

[ else]

[distanceFront<3 ]

[ distanceFront>8]

computeFor (1, 10)

after (20, 30)
computeFor (20, 30)

[ state==2]

state=0
newRate=rateLow
leftVelocity=speedNormal
rightVelocity=speedNormal

state=1
newRate=rateMed
leftVelocity=speedLow
rightVelocity=speedLow

[ state<2]
sensorOn=false

after (2, 10)

[else ]

computeFor (1, 5)

startController
(entry code)

state0

state2

state1

measureTemp
(entry code)

calculateDistance
(entry code)

changeRate
(entry code)

controlTempSensor
(entry code)

setVelocity

motorCommand(leftVelocity, rightVelocity)

dodgeObstacle

sendMotorCommand

turnLeft turnRight

rightVelocity=1
leftVelocity=speedLow

leftVelocity=1
rightVelocity=speedLow

[ else]

[ distanceLeft>distanceRight] [else ]

[ state!=2]

state=2
newRate=rateHigh

computeFor (10, 20)

[ else]

[distanceFront<3 ]

[ distanceFront>8]

after (20, 30)
computeFor (20, 30)

[ state==2]

state=0
newRate=rateLow
leftVelocity=speedNormal
rightVelocity=speedNormal

state=1
newRate=rateMed
leftVelocity=speedLow
rightVelocity=speedLow

after (2, 10)

computeFor (1, 5)

after (1, 10)

after (2, 5)

Figure 8. Main control state machines: original(left) and AMS (right) with entry code in the startCon-
troller, readDistanceSensor, setTempSensor and measureTemp states

<<CPU>>
CPU0

Design::MainControl

Design::MotorControl

<<TTY>>
TTY0

<<RAM>>
Memory0

MainControl/out motorCommand

<<VGMN>>
Bus0

<<SystemC-AMS Cluster>>
distance_sensor

<<SystemC-AMS Cluster>>
temperature_sensor

Figure 9. Extended deployment diagram



information, TTool first computes a coherent schedule,
and then generates SystemC-AMS code, including the
ports, delays and interfaces [11]. These steps are done
in a so-called validation window (Figure 10). Once the
cluster schedule is validated, one can then initiate simu-
lation code generation (start button). In case TTool de-

Figure 10. Validation/code generation window

tects that additional delays are necessary, the designer
shall also modify the high level activity diagrams (i.e.
in DIPLODOCUS) in order to insert them manually.

distance_sensor

Ultrasonic_sensor

Tm = 100.0 ns

rate_in

change_in

out_data

Controller

change

in_data

rate

in

out

GPIO2VCI

out

in

ultrasonicData

changeRate

samplingRate

Figure 11. SystemC-AMS representation of the
ultrasonic distance sensor in TTool

temperature_sensor

sensor_unit

Tm = 10.0 μs
out

in

GPIO2VCI

in

out

Figure 12. SystemC-AMS representation of the
temperature sensor in TTool

Extended deployment diagram Figure 9 shows the
extended deployment diagram containing the analog

and the digital parts. The two software tasks (Main-
Control and MotorControl) are mapped onto the CPU,
and the channel between the tasks — which does not ap-
pear explicitly at mapping level — is mapped onto the
memory. TDF clusters appear as gray boxes along with
digital hardware components; they are interconnected
to the central (digital) interconnect — bus or network
on chip — through the GPIO interface components.

The extended deployment diagram (Figure 9) gives
an overview of the mapping of software tasks and chan-
nels. The former are mapped to CPUs, the latter to
on-chip memory. For a better overview, the diagram
contains sensors as gray boxes, each corresponding to
a SystemC-AMS cluster connected via a GPIO. Click-
ing on the box opens the corresponding SystemC-AMS
panel.

5.3. Investigating latencies

Interesting latencies to study are typically the reac-
tion delay of the rover to an obstacle, i.e. the latency
to adapt its speed and modify its sampling rate. For
instance, we measure the latency between the reception
of an ultrasonic signal and the reaction by motor control
on the virtual prototype generated from the deployment
view, important for braking in reaction to an obstacle.

In order to have a better estimate of the delay pa-
rameter, we use the validation mechanism of the Sys-
temC AMS modules on the lower level, which calcu-
lates valid schedule and by doing so yields a cluster
period (for the temperature sensor and for the distance
sensor). We modified the delay parameters for the two
sensor clusters accordingly. Table 1 compares to the
software-only models from [19] and shows that the lat-
ter were unrealistic.

5.4. Trace generation

While it was possible to generate cycle accurate
vcd traces of the digital signals in TTool before adding
the AMS extensions, the integration of SystemC-AMS
necessitates the tracing of the analog, thus continuous,
signals, on the virtual prototype. This functionality, if
activated from the TTool graphical interface, allows to
create one trace file per cluster. Code lines are gener-
ated and inserted in the SystemC-AMS code of the vir-
tual prototype and of the SoCLib topcell. Traces can
then be displayed with a tool adapted to analog traces,
like GAW - Gtk Analog Wave viewer [28]. As usual,
traces of the SystemC digital part can displayed with
e.g. gtkwave. In Figure 13, the incoming signals from
the two sensors are traced with GAW. The upper curve
shows the output from the distance sensor, the lower the



Table 1. Average latencies compared to those obtained in [18]

Signal AMS sensor models Software sensor models
send(tempData)-> receive(tempData) 16.2 4

send(ultrasonicData)-> receive(ultrasonicData) 34.1 34
send(motorCommand)->receive(motorCommand) 19.3 8
send(ultrasonicData)-> receive(motorCommand) 4.9 2

receive(ultrasonicData)-> send(changeRate) 13.4 23

output from the temperature sensor.

6. Discussion and Future Work

We show how we can take into account digital and
analog aspects of an embedded system from the first
modeling phases onwards: for that purpose, we have
extended TTool’s partitioning models with SystemC-
AMS components. Thus, we use the already existing
simulation methods at DIPLODOCUS level, relying on
the generation of C++ code. For this, we describe the
behavior of a TDF cluster more abstractly in terms of
activity diagrams, and adapt the method with which
other hardware coprocessors are simulated.

We use cluster timestep obtained on the software
design and deployment level to obtain a more accurate
estimation of the execution time for an operation. Yet,
automated feedback to the new models is not yet auto-
mated. It would also be very interesting to try to estab-
lish a "translation" between TDF description and activ-
ity diagrams and vice versa.

Currently, the communication between digital and
analog part is handled by only one GPIO2VCI channel
in either sense per TDF cluster, which obliges to send
control and samples one by one [11].

Our toolchain relies entirely on free software.
Many others, also cycle-accurate, use commercial
SysML editors or simulation tools [32, 24, 31]. TTool
itself is already used in industry, for instance by Nokia
(in the domain of telecommunication, e.g. 5G systems),
with whom long standing collaborations exist.

The added features, allowing to model analog parts
—in particular sensors— more realistically, open up
new perspectives for application in the automotive and
robotics domains. In this, TTool does not compete
against commercial tools, but can complement them
by its very fast high-level modeling facilities, while, if
necessary, providing very detailed low-level simulation
data. We are also currently working on larger industrial
case studies in the scope of the AQUAS H2020 project.
Yet, cycle-bit accurate simulations are slow, sometimes
too slow for complex systems. TTool can already gener-
ate standalone SystemC-AMS code which can be use-
ful when no MPSoC platform is required for running

software, and will be extended to generate Transaction
Level SoCLib prototypes.

References

[1] L. Andrade, T. Maehne, A. Vachoux, C. Ben Aoun,
F. Pêcheux, and M.-M. Louërat. Pre-Simulation For-
mal Analysis of Synchronization Issues between Dis-
crete Event and Timed Data Flow Models of Compu-
tation. In Design, Automation and Test in Europe, DATE
Conference, Mar. 2015.

[2] L. Apvrille. Webpage of TTool, https://ttool.telecom-
paris.fr/, 2003.

[3] L. Apvrille, W. Muhammad, R. Ameur-Boulifa,
S. Coudert, and R. Pacalet. A uml-based environment
for system design space exploration. In 2006 13th IEEE
International Conference on Electronics, Circuits and
Systems, pages 1272–1275. IEEE, 2006.

[4] F. Balarin, Y. Watanabe, H. Hsieh, L. Lavagno,
C. Passerone, and A. L. Sangiovanni-Vincentelli.
Metropolis: An integrated electronic system design en-
vironment. IEEE Computer, 36(4):45–52, 2003.

[5] M. Barnasconi, K. Einwich, C. Grimm, T. Maehne, and
A. Vachoux. Advancing the systemc analog/mixed-
signal (ams) extensions. Open SystemC Initiative, 2011.

[6] M. Barnasconi, K. Einwich, C. Grimm, T. Maehne, and
A. Vachoux. SystemC AMS Extensions 2.0 Language
Reference Manual. Accellera systems initiative, January
2016.

[7] M. Ben Youssef, J.-F. Boland, G. Nicolescu, G. Bois,
and J. Hugues. Bridging the high-level model to exe-
cution platform for design space exploration and imple-
mentation. In ERTSS, 2014.

[8] J. Bengtsson and W. Yi. Timed automata: Semantics,
algorithms and tools. In Lecture Notes on Concurrency
and Petri Nets, pages 87–124. W. Reisig and G. Rozen-
berg (eds.), LNCS 3098, Springer-Verlag, 2004.

[9] Beyond Dreams Consortium. Beyond Dreams
(Design Refinement of Embedded Analogue
and Mixed-Signal Systems), 2008-2011.
http://projects.eas.iis.fraunhofer.de/beyonddreams.

[10] T. Blochwitz, M. Otter, M. Arnold, C. Bausch,
H. Elmqvist, A. Junghanns, J. Mauß, M. Monteiro,
T. Neidhold, D. Neumerkel, et al. The functional
mockup interface for tool independent exchange of sim-
ulation models. In Proceedings of the 8th Interna-
tional Modelica Conference; March 20th-22nd; Techni-



Figure 13. Analog trace generated from TTool’s simulation

cal Univeristy; Dresden; Germany, number 063, pages
105–114. Linköping University Electronic Press, 2011.

[11] R. Cortés Porto. Integration of SystemC-AMS simula-
tion platforms into TTool. Master’s thesis, Technische
Universität Kaiserslautern, 2018.

[12] A. Davare, D. Densmore, T. Meyerowitz, A. Pinto,
A. Sangiovanni-Vincentelli, G. Yang, H. Zeng, and
Q. Zhu. A next-generation design framework for
platform-based design. In DVCon, volume 152, 2007.

[13] K. Einwich. SystemC AMS PoC2.1 Library, COSEDA,
Dresden, 2016.

[14] P. H. Feiler, B. A. Lewis, S. Vestal, and E. Colbert.
An overview of the SAE architecture analysis & design
language (AADL) standard: A basis for model-based
architecture-driven embedded systems engineering. In
P. Dissaux, M. Filali-Amine, P. Michel, and F. Vernadat,
editors, IFIP-WADL, volume 176 of IFIP, pages 3–15.
Springer, 2004.

[15] P. Fritzson and V. Engelson. Modelica—a unified
object-oriented language for system modeling and simu-
lation. In European Conference on Object-Oriented Pro-
gramming, pages 67–90. Springer, 1998.

[16] A. Gamatié, S. L. Beux, É. Piel, R. B. Atitallah, A. Etien,
P. Marquet, and J.-L. Dekeyser. A model-driven de-
sign framework for massively parallel embedded sys-
tems. ACM Trans. Embedded Comput. Syst, 10(4):39,
2011.

[17] D. Genius and L. Apvrille. Virtual yet precise pro-
totyping: An automotive case study. In ERTSS’2016,
Toulouse, Jan. 2016.

[18] D. Genius, L. W. Li, and L. Apvrille. Multi-level La-
tency Evaluation with an MDE Approach. In MODEL-
SWARD, Jan. 2018.

[19] Genius, Daniela, Cortés Porto, Rodrigo, Apvrille, Lu-
dovic, and Pêcheux, François. A tool for high-level
modeling of analog/mixed signal embedded systems. In
MODELSWARD, 2019.

[20] H-Inception Consortium. Heterogeneous In-
ception Project, 2012-2015. https://www-
soc.lip6.fr/trac/hinception.

[21] IEEE. SystemC. IEEE Standard 1666-2011, 2011.
[22] E. A. Lee and D. G. Messerschmitt. Synchronous data

flow. Proceedings of the IEEE, 75(9):1235–1245, 1987.
[23] L. W. Li, D. Genius, and L. Apvrille. Formal and vir-

tual multi-level design space exploration. In MODEL-
SWARD, Springer CCIS vol 880, pages 47–71, 2018.

[24] W. Mueller, D. He, F. Mischkalla, A. Wegele,
A. Larkham, P. Whiston, P. Peñil, E. Villar, N. Mitas,
D. Kritharidis, et al. The SATURN approach to sysml-
based hw/sw codesign. In VLSI 2010 Annual Sympo-
sium, pages 151–164, Lixouri, Greece, 2011. Springer.

[25] G. Pedroza, D. Knorreck, and L. Apvrille. AVATAR:
A SysML environment for the formal verification of
safety and security properties. In The 11th IEEE Con-
ference on Distributed Systems and New Technologies
(NOTERE’2011), Paris, France, May 2011.

[26] Polarsys. ARCADIA/CAPELLA (webpage). In
https://www.polarsys.org/capella/arcadia.html, 2008.

[27] Ptolemy.org, editor. System Design, Modeling, and Sim-
ulation using Ptolemy II. 2014.

[28] H. Quillevere. Gtk Analog Wave viewer, 2019.
[29] B. Selic and S. Gérard. Modeling and Analysis of Real-

Time and Embedded Systems with UML and MARTE:
Developing Cyber-Physical Systems. Elsevier, 2013.

[30] SocLib consortium. The SoCLib project: An Inte-
grated System-on-Chip Modelling and Simulation Plat-
form, www.soclib.fr, 2003.

[31] Sodius Corporation. Mdgen for SystemC.
http://sodius.com/products-overview/systemc.

[32] S. Taha, A. Radermacher, and S. Gérard. An entirely
model-based framework for hardware design and simu-
lation. In DIPES/BICC, volume 329 of IFIP Advances
in Information and Communication Technology, pages
31–42. Springer, 2010.

[33] A. Vachoux, C. Grimm, and K. Einwich. Analog and
mixed signal modelling with SystemC-AMS. In ISCAS
(3), pages 914–917. IEEE, 2003.

[34] J. Vidal, F. de Lamotte, G. Gogniat, P. Soulard, and J.-
P. Diguet. A co-design approach for embedded system
modeling and code generation with UML and MARTE.
In DATE, pages 226–231. IEEE, 2009.

[35] VSI Alliance. Virtual Component Interface Standard
(OCB 2 2.0), Aug. 2000.


