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ABSTRACT
Various audio signal processing applications, such as source

separation and dereverberation, require an accurate mathematical
modeling of the input audio data. In the literature, many works
have focused on source signal modeling, while the reverberation
model is often kept very simplistic.

This paper aims to investigate a stochastic room impulse re-
sponse model presented in a previous article: this model is first
adapted to discrete time, then we propose a parametric estimation
algorithm, that we evaluate experimentally. Our results show that
this algorithm is able to efficiently estimate the model parameters,
in various experimental settings (various signal-to-noise ratios and
absorption coefficients of the room walls).

1. INTRODUCTION

Audio signal processing algorithms often involve the modeling of
room impulse responses. In the context of source separation or
dereverberation, for example, the observed signal x(t) is usually
defined as a sum of convolution products of acoustic source signals
si(t) with the corresponding room impulse responses (RIR) hi(t),
corrupted by additive noise n(t) as in (1):

x(t) =
∑
i

hi ∗ si(t) + n(t), (1)

where i refers to the different acoustic sources. Hence, the respec-
tive mathematical models chosen for the source signals and the
RIRs play an equally important role in the joint estimation of hi

and si.
The modeling of source signals has been the main focus in

numerous papers, with approaches such as Non-negative Matrix
Factorization (NMF) [1, 2], stochastic models [3], or methods that
take advantage of specific characteristics of the problem, like har-
monic/percussive separation [4].

As for the RIR, one standard model [5, 6] is a Gaussian process
with independent samples and exponentially decreasing variance:

h(t) = e−atb(t)

b(t) ∼ N (0, σ2).
(2)

We will show in Section 2 that this model is a good approximation
in the late part of the reverberation but it does not permit to ac-
curately represent the early reflections. However the early reflec-
tions, where the energy is mostly concentrated, are perceptually
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very important. Further attempts for modeling reverberation in-
clude the use of a spatial covariance matrix [7], complex Gaussian
latent variables [8] or a more general Student’s t model [3].

We present in this paper an algorithm that aims to estimate
the parameters of a model which accurately represents both the
early and late parts of reverberation, based on a previous work in
[9, 10]. We intend to adapt this algorithm to various signal pro-
cessing applications, such as source separation, noise reduction or
dereverberation.

This paper is organized as follows: in Section 2 we define the
stochastic model and discuss some of its properties, Section 3 ex-
poses the parametric estimation algorithm and Section 4 reviews
our experimental results. Finally, some conclusions and perspec-
tives are drawn in Section 5.

2. REVERBERATION MODEL BASED ON A POISSON
POINT PROCESS

The physical model we use is described in [9, 10]. We will sum-
marize in this section the main contributions and highlight some
interesting properties.

2.1. The image source principle

The model is based on the image source principle [11, 12], illus-
trated in Fig. 1. According to this principle, an indirect path from
an acoustic source to a microphone can equivalently be described
by a direct path from an image source to the microphone and con-
versely, where the image sources are at the positions obtained by
iterative symmetrization of the original source with respect to the
room walls.

A remarkable property of this principle is that, regardless of
the room dimensions, the density of the image sources is uniform
in the whole space: the number of image sources contained in a
given disk, of radius sufficiently larger than the room dimensions,
is approximately invariant under any translation of this disk. We
will additionally consider that the positions of the image sources
are random and uniformly distributed in the room. More precisely,
for any given volume V ⊂ R3, we assume that the number of
image sources in V follows a Poisson distribution (denoted P) of
parameter λ|V |:

N(V ) ∼ P(λ|V |) (3)

where|.| denotes the Lebesgue measure.
This assumption leads to the use of a Poisson random measure

with independent increments to describe the image sources, with
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Figure 1: Positions of microphone (plus sign), source (blue dot)
and image sources (black dots) with the room walls represented
as thick lines. A virtual straight trajectory from one image source
to the microphone is drawn, along with the real trajectory in the
original room [10].

an infinitesimal volume dxs:

dN(xs) ∼ P(λdxs)

N(V ) =

∫
V

dN(xs)
(4)

where we still have N(V ) ∼ P(
∫
V
λdxs)) = P(λ|V |).

2.2. Unified stochastic reverberation model

According to the image source principle, the RIR can be decom-
posed into a sum of direct sound waves from the image sources to
the microphone:

h(t) = e−ath̃(t) with h̃(t) =
∑
s

h̃s(t)

where we sum over all the image sources s, and a > 0 is a constant
exponential decay factor, assuming that the acoustic field is diffuse
(isotropic) and that the absorption of the walls is independent of
the frequency. We can further express the sound received from the
image source s, h̃s(t), if we assume the source and the microphone
to be omnidirectional:

h̃s(t) =
g
(
t− ∥x−xs∥2

c

)
∥x− xs∥2

where c is the speed of sound, ∥.∥2 denotes the Euclidean vec-
tor norm, x is the microphone position, xs is the source position,

1
∥x−xs∥2

is a consequence of the quadratic energy decay of spher-
ical waves, and the causal filter g corresponds to other convolutive
effects such as the inner response of the microphone, and must
verify Fg(0) =

dFg

df
(0) = 0, where Fg(f) is the Fourier trans-

form taken at frequency f , for technical reasons explained in [10].
Using the assumptions made in the last section, we can further de-
velop:

h̃(t) =

∫
xs∈R3

g

(
t−
∥x− xs∥2

c

)
dN(xs)

∥x− xs∥2
.

One final simplification can be made by noticing that, since
the microphone and the source are omnidirectional, the integrated
function only depends on the distance between the microphone

Figure 2: Representation of an ideal RIR, with isolated peaks in
the early reflections becoming denser in the late reverberation.

and the image source r = ∥x− xs∥2 = ct′, where t′ is the time
taken by a sound wave to travel from the image source to the mi-
crophone: ∀t ∈ R,

h̃(t) =

∫
t′∈R+

g
(
t− t′

) dN ′(t′)

ct′
(5)

where R+ denotes the set of non-negative real numbers, and dN ′(t′)
∼ P(4πc3λt′2dt′) is now a Poisson increment of quadratically in-
creasing parameter w.r.t. time.

2.3. Properties

The main difference between the exponentially decreasing Gaus-
sian model in (2) and the Poisson point process model in (5) is the
treatment of the early reflections. Fig. 2 shows that, in an ideal
RIR, the early reflections correspond to isolated peaks which be-
come denser with time, converging to a Gaussian process in the
late part of reverberation.

While the exponentially decreasing Gaussian model is a good
approximation in late reverberation, it does not accurately repre-
sent the early reflections. The Poisson point process model, on the
other hand, is representative of both the early and late parts of the
reverberation, thanks to the sparsity of the Poisson distribution.

2.4. Discrete-time model

From now on, we will consider the case of discrete-time signals,
sampled at frequency fs. Consequently the model (5) becomes:
∀u ∈ [0, Lh − 1],

h(u) = b(u) + w(u)

b(u) =
∑
v∈N

gd (u− v)
e−advp(v)

v

(6)

where:

• Lh is the length of the observed RIR h,

• w(u) ∼ N (0, σ2) is white Gaussian noise corresponding
to the measurement error of h,

• ad = a
fs

,

• gd(v) = e−adv fs
c
g( v

fs
),

• p(v) ∼ P(λdv
2),

• λd = 4πλ c3

f3
s

.
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For readability purposes, we will respectively denote the pa-
rameters a, λ and g instead of ad, λd and gd and stop referring to
their continuous equivalent in the rest of this paper.

3. ESTIMATING THE PARAMETERS

The model defined in (6) includes:

• the observed variable h(u),

• the latent variable b(u) 1,

• the parameters a, σ2 and λ,

• the impulse response g that filters the time series π(v) =
p(v)
v

scaled down by e−av , that we will model as a causal
autoregressive (AR) filter of parameters (1,−α1, . . . ,−αP ),

• one hyper-parameter, the order P of the AR filter g.

To simplify the estimating process, we will consider p(v) to
be drawn from a Gaussian process of same variance, instead of a
Poisson process. This invalidates some results from [10] but p still
has the same physical interpretation. Thus we have:

p(v) ∼ N (0, λv2)

π(v) =
p(v)

v
∼ N (0, λ)

(7)

where p(v) has an expected value of 0, instead of λv2 as in Sec-
tion 2.4, but this is compensated by the fact that we will no longer
need to assume Fg(0) =

dFg

df
(0) = 0 as in Section 2.2. A conse-

quence of this simplification is that the a posteriori distribution of
b is also Gaussian:

b | h, α, λ, a, σ2 ∼ N (µ,R). (8)

Given these last conditions, an Expectation-Maximization (EM)
algorithm [13] can be used to jointly estimate the parameters α, a,
λ and σ2 and the latent variable b(u) given an observed RIR h(u)
in the maximum likelihood sense. The algorithm alternates two
steps:

• expectation step (E-step): computing the a posteriori dis-
tribution of b given h (in this case we only need its mean
vector µ and covariance matrix R), given the current esti-
mates of the parameters,

• maximization step (M-step): maximizing (9) with respect
to the parameters θ = (α, λ, a, σ2) given the current esti-
mate of the a posteriori distribution of b.

More specifically, the a posteriori expectation of the log-probability
density function (PDF) of the joint distribution of observed and la-
tent random variables is:

Q =EP(b|h,θ)
[
lnP(h, b | θ)

]
=EP(b|h,θ)

[
lnP(b | θ)

]
+ EP(b|h,θ)

[
lnP(h | b, θ)

]
=− Lh

2
ln(2πλ) +

Lh(Lh − 1)

2
a

− 1

2λ

(
∥EAµ∥22 + Tr(E2ARAT )

)
− Lh

2
ln(2πσ2)− 1

2σ2

(
∥h− µ∥22 + Tr(R)

)
(9)

with:
1Note that we could equivalently define w(u) or p(v) as the latent vari-

able.

• MT the transpose of matrix M ,

• Tr(M) the trace of matrix M ,

• E the diagonal matrix of coefficients {eau}Lh−1
u=0 ,

• A the Lh × Lh Toeplitz matrix implementing the inverse
filter of the AR filter g, which has finite impulse response:

A =



1 0 . . . . . . . . . 0

−α1 1
. . .

...
...

. . .
. . .

. . .
...

−αP

. . .
. . .

. . .
...

. . .
. . . 1 0

0 −αP . . . −α1 1


.

3.1. Expectation

The expectation step corresponds to the exact updates:

R = λσ2(λI + σ2ATE2A)−1

µ =
Rh

σ2

with I the identity matrix. Since the matrix inversion in the update
of R is computationally expensive, using a Kalman filter with a
Rauch-Tung-Striebel (RTS) smoother as described in [14] and [15]
is preferable.

In this case, considering at each time step u ≥ 0 the state vari-
able B(u) =

[
b(u), b(u− 1), . . . , b(u− P + 1), b(u− P )

]T ∼
N (µu|Lh−1, Ru|Lh−1) (where µu|v and Ru|v denote the mean
vector and covariance matrix of B(u) given all observations h
from times 0 up to v), the following two equations hold for any
u > 0:

B(u) = FB(u− 1) + Π(u)

h(u) = CB(u) + w(u)

with:

• Π(u) ∼ N (0, Qu),

• Qu(0, 0) = λe−2au and Qu(i, j) = 0 if i ̸= 0 or j ̸= 0,

• F =



α1 α2 . . . αp 0
1 0 . . . 0 0

0
. . .

. . .
...

...
...

. . .
. . .

...
...

0 . . . 0 1 0


,

• C = [1, 0, . . . , 0].

The expectation step is then as described in Algorithm 1.

3.2. Maximization

As for the maximization step, the following updates directly max-
imize the a posteriori expectation of the joint log-PDFQ in (9).

DAFx.3
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Algorithm 1: Expectation step with Kalman filter and
RTS smoother

Result: µu|Lh−1 and Ru|Lh−1 for all u ≥ 0
µ−1|−1 = [0, . . . , 0];
R−1|−1 = 0 the zero matrix;
for u← 0 to Lh − 1 do

µu|u−1 = Fµu−1|u−1 (a priori state estimate);
Ru|u−1 = FRu−1|u−1F

T +Qu (a priori covariance
estimate);

ỹu = h(u)− Cµu|u−1 (pre-fit residual);
Su = CRu|u−1C

T + σ2 (pre-fit residual
covariance);

Ku = Ru|u−1C
T /Su (optimal Kalman gain);

µu|u = µu|u−1 +Kuỹu (a posteriori state estimate);
Ru|u = (I −KuC)Ru|u−1 (a posteriori covariance

estimate);
end
for u← Lh − 1 to 1 do

Ju−1 = Ru−1|u−1F
TR−1

u|u−1 (correction matrix);
µu−1|Lh−1 = µu−1|u−1+Ju−1(µu|Lh−1−µu|u−1)

(smoothed state estimate);
Ru−1|Lh−1 =

Ru−1|u−1 + Ju−1(Ru|Lh−1 −Ru|u−1)J
T
u−1

(smoothed covariance estimate);
end

Filter g: The optimal filter parameters are the unique solution of
the linear system: ∀0 < p ≤ P ,

P∑
q=1

αq

Lh−1∑
u=0

(µ(u− q)µ(u− p) +R(u− q, u− p))e2au

=

Lh−1∑
u=0

(µ(u)µ(u− p) +R(u, u− p))e2au.

(10)

Image sources density parameter λ: The optimal parameter λ
is:

λ =
1

Lh
(∥EAµ∥22 + Tr(E2ARAT )). (11)

Absorption parameter a: Substituting the value of λ in the ex-
pression of Q in (9) and canceling the partial derivative with re-
spect to a, we find:

Lh − 1

2

[
∥EAµ∥22 + Tr(E2ARAT )

]
=

Lh−1∑
u=0

u
[
(EAµ)(u)2 + (E2ARAT )(u, u)

]
.

(12)

This equation has no closed-form solution, but the solution is unique
and we can use a dichotomy method to find the optimal value of a.

White noise parameter σ2:
The update of the white noise parameter is:

σ2 =
1

Lh

(
∥h− µ∥22 + Tr(R)

)
. (13)

3.3. Initialization of the parameters

An adequate initialization of the parameters can make the EM al-
gorithm converge much faster. This is why we initialize the pa-
rameters as follows:

Filter g:
Filter g has an effect on the spectral shape of h, so that we can

approximate the squared magnitude of the frequency response of g
by taking the average power of each sub-band signal in the short-
term Fourier transform (STFT) of h. The inverse discrete Fourier
transform (DFT) of this squared magnitude of the frequency re-
sponse gives a biased estimate of the autocovariance function, and
the corresponding AR coefficients α are found by solving Yule-
Walker’s equations [16].

Absorption parameter a:
Since the energy of h is exponentially decreasing, we perform

linear regression on lnh2(u) in order to estimate its slope 2a.

Image sources density parameter λ:
Given that the approximate number of impulses in the early

part of the RIR between times 0 and N is λN3

3
, we consider the

first sample Nfirst where h reaches a certain threshold (for exam-
ple half the maximum amplitude of h), which is expected to cor-
respond to the first impulse (due to the direct path from the source
to the sensor). We then approximate λ = 3

N3
first

. Although in-

accurate, this approximation is sufficient for initializating the EM
algorithm.

White noise parameter σ2:
The white noise parameter σ2 is estimated as the average power

of the first values of h, before the first impulse at time Nfirst.

3.4. Implementation

The algorithm described in this section was implemented in Python.
Code and documentation can be found in the following GitHub
repository: https://github.com/Aknin/Gaussian-ISP-model.

4. EXPERIMENTAL RESULTS

4.1. Room impulse response dataset

In order to evaluate the performance of the EM algorithm, we used
synthetic RIRs generated by Roomsimove [17]. Roomsimove is
a MATLAB toolbox that simulates a parallelepipedic room, and
allows us to specify the dimensions of the room, the absorption
parameter of the walls, the filter g, and the position of the source
and microphone. We manually added the noise w(u) to account
for the measurement error. Although the model described in [9, 10]
applies to any room geometry and our algorithm is expected to
work regardless of the shape of the room, Roomsimove is limited
to the simulation of parallelepipedic rooms.

In all the experiments conducted, we used the following pa-
rameters in Roomsimove:

• gtrue is a combination of a low-pass filter with cut-off fre-
quency 20 Hz, that is implemented as a recursive filter of
order (2,2) (default settings of Roomsimove), and a Finite
Impulse Response (FIR) filter approaching the frequency
response of an Audio-Technica ATM650 microphone2,

2Based on http://recordinghacks.com/microphones/Audio-
Technica/ATM650.
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Figure 3: Frequency response of both the estimated and true filters
g in one of the experiments, where the absorption coefficient is 0.7
and σ2 = 10−4 (the corresponding SNR is 15 dB).

• the room is of size 2× 3× 4 (in meters),

• the sampling frequency is fs = 16000 Hz,

• the sources and microphones in the room are omnidirec-
tional.

We also set the hyper-parameter P = 20 (order of the AR filter).
Note that, since to the best of our knowledge the algorithm

presented in this paper is the first one that estimates the model pre-
sented in [10], it is not possible to compare its performance with
any other method in the literature. Instead, we will use the true
parameters of Roomsimove and compare them to the estimated
parameters. For instance, the comparison of the true and estimated
σ2 is straightforward, since the noise is manually added.

We can also compare the estimate gest and the ground truth
gtrue by computing the average relative error between their re-
spective DFTs:

Dr(gest, gtrue) =
1

Nfft − 1

Nfft−1∑
k=1

∣∣∣∣∣∣∣Ĝest(k)
∣∣∣−∣∣∣Ĝtrue(k)

∣∣∣∣∣∣∣∣∣∣Ĝtrue(k)
∣∣∣

where Nfft is the number of frequency bins k in the DFT Ĝ(k).
Note that the first frequency bin k = 0 is ignored because, as an
AR filter, gest is not expected to verify the property satisfied by
gtrue: Fgtrue(0) =

dFgtrue
df

(0) = 0. Fig. 3 shows an example
of the frequency response of the estimated gest along with the fre-
quency response of the true filter gtrue where Dr(gest, gtrue) =
0.151.

Parameter a is related to the reverberation time T60 of the
room (T60,est = 3 ln(10)

afs
) which can be computed with Room-

simove parameters using Eyring’s formula [18]:

T60,true = −0.1611 |V |
S ln(1−A)

where |V | is the volume of the room, S is the total surface of the
walls in the room and A is the absorption of the walls. We can also
estimate T60,baseline, that will serve as a baseline, by interpolat-
ing the logarithm of the Energy Decay Curve (EDC) with a linear

function of coefficient −T60,baseline
3 as described in [19].

As for parameter λ, it is theoretically related to the volume of
the room: λ = 1

|V | , and it is directly related to the energy of h.
But since the observed RIR h is normalized in practice, we cannot
compare λ to any ground truth parameter.

4.2. Complexity of the algorithm

While the exact expectation step, involving the inversion of an
Lh ×Lh matrix, is quite computationally expensive (O(L3

h)), the
complexity of the Kalman filtering and RTS smoothing algorithm
is only O(LhP

3).
Note that the maximization step is even less computationally

expensive. Indeed, the most expensive stage in this M-step is
the computation of the diagonal entries of matrix ARAT in (11)
and (12). Knowing that a multiplication Ax (or xTAT ) with x a
vector of length Lh is actually a convolution of x with a finite im-
pulse response of length P +1, the computation of these diagonal
entries amounts to a complexity of O(LhP

2).
In practice, on an Intel Xeon Gold 6154 CPU at 3.00 GHz, the

execution time for 500 iterations of the EM algorithm is 150 sec-
onds, in the case of short RIRs of length Lh = 750 (i.e. 47 ms), or
up to 600 seconds in the case of longer RIRs of length Lh = 2500
(i.e. 156 ms). It is important to observe that only 150 iterations
are sufficient to converge to accurate parameter estimates when
Lh = 750, but more iterations are needed when the reverberation
in longer.

4.3. Influence of the Signal to Noise Ratio on the estimation

In this experiment, we made the white noise parameter σ2
true vary

in order to investigate the influence of the signal-to-noise ratio
(SNR) on the estimation performance, while fixing the absorption
parameter to 0.7.

Fig. 4 compares the true and estimated parameters for several
SNRs between 5 and 35. Fig. 4c, that compares σ2

true and σ2
est,

displays the quotient of the estimate over the true parameter, in
order to improve the readability (σ2 takes values between 10−6

and 10−3). The blue dot represents the mean value and the blue
segment is bounded by this mean value plus or minus the standard
deviation, where the mean and standard deviations are computed
over 100 different experiments for each SNR value. Fig. 4a also
shows the baseline estimation T60,baseline using green dots and
green segments in a similar way.

We can draw several conclusions from these figures. First of
all, the estimation of the T60 seems to be better than the baseline
estimation, although slightly biased at any SNR value. Having a
high SNR gives more consistent results, but the estimation remains
biased.

On the other hand, a high SNR leads to better estimates of g,
by improving both the consistency and the mean results.

As for the estimation of σ2, it fits well the true values regard-
less of the SNR, except for a higher standard deviation when the
SNR is too low.

3Note that being able to estimate the T60 does not allow us to compare
this algorithm to other T60 estimators available in the literature, since they
are usually designed to work with speech or music signals, instead of RIRs,
and generally fail when applied to RIRs.
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Figure 4: Comparison of the mean and standard deviation of the
estimation over 100 different experiments (blue) to the true param-
eters (orange) as well as the baseline estimation of the T60 (green)
for different SNRs.
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4.4. Influence of the absorption of the walls on the estimation

In a second experiment, we explored the influence of the absorp-
tion parameter of the room walls on the quality of the estimation.
Fig. 5 shows the results obtained when the absorption ranges from
0.3 to 0.8 while σ2

true is set to 10−5, corresponding to an SNR of
15 dB.

In Fig. 5a we notice that the estimation of the reverberation
time is closely matching the curve of T60,true, while still being
slightly biased. As in the first experiment, our model estimates the
reverberation time better than the baseline.

On the other hand, a low absorption leads to better estimates
of g, by improving both the consistency and the mean results.

As for the estimation of σ2, the estimation appears to be good
at any absorption value. This experiment thus confirms that the
EM algorithm is robust to various absorption levels.

5. CONCLUSION

This paper investigated the application of a stochastic reverbera-
tion model and the estimation of its parameters given an observed
RIR. We presented the implementation of the estimating algorithm
and highlighted some experimental results.

In the future, this algorithm could be adapted to more specific
tasks, such as estimating the T60 in various settings (since it is
directly related to one of the parameters of the model), or also more
complex signal processing applications, like source separation and
dereverberation.

We now plan to further explore several directions:

• relaxing the assumption that the exponential decay is isotropic
and not frequency dependent, leading to a more realistic re-
verberation model [20],

• adapting the EM algorithm to consider non-omnidirectional
sources and microphones,

• implementing a similar algorithm with non-Gaussian pro-
cesses, into order to better account for the sparsity of early
reflections,

• estimating the model parameters from real audio signals
(speech, music) instead of the RIR,

• implementing an audio source separation algorithm using
this reverberation model in order to further evaluate the ben-
efits of using an accurate representation of the RIR.
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