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Abstract

Natural and fluid human-robot interaction (HRI) systems rely

on the robot’s ability to accurately assess the user’s engagement

in the interaction. Current HRI systems for engagement analy-

sis, and more broadly emotion recognition, only consider user

data while discarding robot data which, in many cases, affects

the user state. We present a novel recurrent neural architecture

for online detection of user engagement decrease in a sponta-

neous HRI setting that exploits the robot data. Our architecture

models the user as a distinct party in the conversation and uses

the robot data as contextual information to help assess engage-

ment. We evaluate our approach on a real-world highly imbal-

anced data set, where we observe up to 2.13% increase in F1

score compared to a standard gated recurrent unit (GRU).

1. Introduction

The ability to detect user engagement in a conversation is cru-

cial for social robots, as it can be used to adapt the robot’s

dialogue strategy and, hence, improve the quality of the inter-

action. In social robotics, engagement can be defined as “the

process by which two (or more) participants establish, main-

tain, and end their perceived connection to one another” [1].

Aside from few attempts in human-human interaction [2] and

in human-virtual agent interaction [3, 4] at integrating second-

party information in the analysis of user’s socio-emotional be-

havior, current human-robot interaction (HRI) systems rely only

on the user data without exploiting the contextual information

offered by the robot data, despite the evident link between the

robot’s behavior and the user’s socio-emotional state. We argue

that architectures for automatic user engagement analysis can

benefit from using the robot data, as well as from learning the

interaction dynamics between the user and the robot.

We present HRI-RNN, a novel recurrent neural network

(RNN) for on-the-fly detection of user engagement decrease

in HRI1 that explicitly models the user as an individual party

in the interaction and exploits the robot data to encode a

context that we use, with the user state, for prediction (our

Python implementation of HRI-RNN is publicly available at

github.com/asmaatamna/HRI-RNN). Our model, to the best of

our knowledge, is the first one that exploits the robot data while

modeling the user-robot interaction dynamics. It is based on the

assumption that user engagement is determined by the user’s be-

havior and the current context of the interaction given partly by

the robot’s behavior, both modeled using recurrent gated units

(GRUs) [6] in HRI-RNN. Moreover, our architecture allows to

assess two important research questions:

Q1. Does robot data provide additional context information

that helps assess user’s engagement?

1We refer the reader to [5] for a more in-depth definition of user
engagement decrease.

Q2. How does distinguishing user data from robot data com-

pare to treating them indistinctly in a single feature vec-

tor?

Our experiments, conducted on a real-world spontaneous HRI

data set, show the benefit of using the robot data (speech fea-

tures in our case) as additional contextual information to detect

user’s engagement decrease.

This paper is organized as follows: Section 2 discusses re-

lated work, Section 3 presents the data set used to evaluate our

approach, Section 4 defines the task at hand and introduces our

architecture, Section 5 details the experimental procedure, Sec-

tion 6 discusses the results, and Section 7 concludes the paper.

2. Related Work

2.1. Engagement Analysis in HRI

Advances in deep learning have led to a surge in recurrent neu-

ral architectures for automatic engagement analysis [7, 8, 5, 9].

Features commonly used by these approaches to assess engage-

ment include posture, distance to the robot, speech, head mo-

tion, gaze, and facial expressions. Studies have shown that com-

bining features from different data modalities leads to a better

prediction of user engagement breakdown [10, 9]. In [5], a long

short-term memory (LSTM) [11] is used to detect in real-time

user engagement decrease in a spontaneous HRI setting. User

behavior is modeled by nonverbal features extracted from au-

diovisual data, and a comparative study investigates the optimal

size of the observation window. In [12], a different approach

is proposed to recognize engagement in child-robot interaction,

where a convolutional neural network is trained directly on fa-

cial images extracted from interaction videos. In [8], the authors

propose a hierarchical GRU-based architecture for engagement

recognition in spoken dialogue that handles the problem of dis-

similar data annotations. Engagement is investigated in user’s

listener mode based on seven manually annotated user features.

2.2. Emotion Recognition in Conversations

Neural architectures that handle conversations by explicitly

modeling the different parties involved are very recent. A no-

table work is presented in [13] for multimodal emotion detec-

tion at the utterance level in conversation. The proposed ar-

chitecture, DialogueRNN, uses three GRUs to model (i) the

speaker state, which is maintained for each party, (ii) the con-

text from the preceding utterances, and (iii) the emotion of the

preceding utterances respectively, the assumption being that the

emotion of an utterance depends on the three aforementioned

aspects. In [14], a related architecture is presented with the main

difference that the emotion of the preceding utterances is not

used to predict the emotion of the current utterance. The work

in [14] builds on [15], where a similar architecture with more

parameters to estimate is proposed. More recently, [16, 17] have



used graph convolutional networks [18] for emotion recognition

in conversation to address context propagation issues usually

associated with RNNs on long sequences. A conversation is

modeled as a graph whose nodes and edges respectively repre-

sent utterances and temporal dependencies between them, and

emotion recognition is modeled as a node classification task.

2.3. Positioning

Our model is inspired by DialogueRNN [13] which we adapt for

a real-time prediction task in a spontaneous HRI setting. How-

ever, unlike DialogueRNN that operates at the utterance level

where only one party is involved at a time (the speaker), our ap-

proach handles settings where data from both the user and the

robot are available simultaneously. Additionally, HRI-RNN is

user-centered in that we model the user state—in speaker and

listener modes—and use the robot data only to encode the con-

text of the interaction. More importantly, our model considers

user and user-robot dynamics to assess user’s engagement—

both crucial in engagement analysis [19]. This sets it apart from

existing engagement models that do not take into account inter-

party dynamics. Our work is also related to [5] in that we tackle

the same task, adopt the same problem formulation introduced

by the authors, and evaluate our model on the same public data

set, the UE-HRI [20]. Unlike [5] where the results are reported

on a rebalanced test set, however, we evaluate our model on test

sets that reflect the real data distribution. As for our data, we

make the assumption that nonverbal cues are the most relevant

for our task and use audio and video modalities.

3. Data Set

We assess our approach for detecting user engagement de-

crease on the UE-HRI data set [20]. This data set contains 278
audiovisual recordings of adult users spontaneously interact-

ing with the humanoid robot Pepper (see doc.aldebaran.com/2-

5/home pepper.html). While videos only feature users, audio

data corresponds to either the user or the robot. The space in

front of the robot is divided into three engagement zones of

increasing diameter. The interaction is initiated by the robot

whenever a user is detected in the first engagement zone (about

1.5 meters away from the robot), who can then interact and

leave whenever they wish. Although the users were warned

that only one user should be in the first engagement zone, 69
multiparty interactions were recorded, 32 of which started as

multiparty and ended as single-user. The average duration of an

interaction is 7± 5 minutes.

3.1. Engagement Annotation

Two annotators annotated the data set using ELAN [21]. Videos

were annotated segment by segment, according to whether the

user shows signs of engagement decrease (SED) based on ver-

bal and nonverbal behaviors expressed by the user (1 if SED, 0
otherwise). The overall Cohen’s kappa coefficient is κ = 0.73,

reflecting a substantial agreement. In this work, we only use

data segments on which the two annotators agree. Note that in

most interactions, the user exhibits SED in less than 10% of the

interaction. That is, the data classes are heavily imbalanced.

3.2. Feature Extraction

The features we use to detect SED can be grouped in four

categories: distance, gaze, head and face, and speech features.

The first three categories are extracted from video data that

Feature category User’s mode

Speaker Listener

Distance (front sonar, face distance, User User

head position, engagement zone)

Gaze (direction, is looking at robot) User User

Head & Face (head angles, User User

17 face AUs)

Speech (voicing probability, F0 User Robot

loudness, log-energy, 12 MFCCs,

is robot speaking, speech duration)

Table 1: Multimodal features used to detect user’s SED per cat-

egory. Columns 2 & 3 show whether the features characterize

the user or the robot depending on the user’s mode.

only shows the user. Speech features are extracted from either

the user or the robot audio data, depending on the user’s

mode (speaker or listener) as summarized in Table 1. These

multimodal features are extracted from raw audio and video

data collected by Pepper as detailed below.

Distance. User’s distance to the robot is measured using

Pepper’s front sonar. The face distance to the robot camera, as

well as the 3D head position with respect to the robot’s torso,

are extracted using the NAOqi People Perception module of

Pepper. User’s position with respect to the three engagement

zones is determined using the user’s 3D head coordinates in the

robot frame.

Gaze. User’s gaze direction with respect to Pepper’s

face plane along the (yaw, pitch) axes is extracted with Open-

Face [22]. We also use Pepper’s ALGazeAnalysis module,

which provides information on the user’s face orientation, to

determine whether the user is looking at the robot.

Head and Face. We use OpenFace [22] to estimate the

user’s head pose along the (yaw, pitch, roll) axes and to recog-

nize the occurrence and intensity of 17 facial action units (AUs).

Speech. We extract voicing probability, fundamental fre-

quency (F0), loudness, log-energy, and 12 Mel-frequency

cepstral coefficients (MFCCs) from one audio channel with

openSMILE [23] over 50 ms windows at a frame rate of

100 Hz. We also use a binary feature to represent the speaker

(1 for the robot, 0 for the user) and extract speech duration

from Pepper’s data directly.

To synchronize the feature vectors extracted from differ-

ent data streams with different sampling frequencies, we per-

form temporal integration [24] using non-overlapping integra-

tion windows of 500 ms, with the mean and variance as inte-

gration functions. The resulting synchronized unimodal feature

vectors are then concatenated (early fusion) to obtain the final

feature vectors. Consequently, the UE-HRI data set can be de-

fined formally as {X1, . . . ,XI}, where I is the number of in-

teractions and Xi = (x
(1)
i , . . . , x

(Ti)
i ) is an interaction of length

Ti, with x
(t)
i being a feature vector.

4. Methodology

4.1. Problem Definition

Let Xi = (x
(1)
i , . . . , x

(Ti)
i ) be an entire interaction of length Ti

between a user and the robot, where x
(t)
i ∈ R

d is the feature

vector representing the interaction at time step t and d is the



dimension of our data. Our aim is to detect the decrease in

user engagement in real time. That is, given a short sequence

(x
(t−τ)
i , . . . , x

(t)
i ) of Xi taken over an observation window of

length τ , that potentially contains both user and robot speaking

turns, we want to detect whether this sequence presents SED

from the user. The restriction to a short span is crucial for the

online detection setting we aim for.

For the binary classification task thus defined, we con-

sider all sequences of length τ in the UE-HRI data set,

(x
(t−τ)
i , . . . , x

(t)
i ), t = τ, . . . , Ti, i = 1, . . . , I , that we la-

bel with 1 (resp. 0) if there are SED (resp. no SED) in the

last η seconds of the sequence. Note that the choice of τ and η

values depends on the application and the problem design. In

this work, we set τ and η to 5 and 2 sec respectively, which

corresponds to 10 and 4 time steps respectively.

4.2. Proposed Model

We make the assumption that the perceived user engagement in

a sequence (x
(t−τ)
i , . . . , x

(t)
i ) depends on two key aspects:

1. The user’s multimodal behavior,

2. The context given by the robot’s behavior.

We introduce the Human-Robot Interaction Recurrent Neural

Network (HRI-RNN), shown in Fig. 1,2 that implements these

two aspects by maintaining a user state that is updated through-

out the sequence in order to capture the user state dynamics,

which reflect the user engagement level. Additionally, a con-

text is computed at each step of the interaction from the robot

(audio) data and the previous user state. This context, which

captures information that is not provided by the user data, is

used jointly with the latter to update the user state. Finally, the

last user state is used for SED detection (classification). We use

GRU cells [6], which have proven to be as effective as LSTMs

yet with fewer parameters, to update the user state and the con-

text. The update scheme of a general GRU cell is given by

h
(t) = GRU(h(t−1)

, z
(t)) , (1)

where z(t) is the current input, h(t−1) and h(t) are the previ-

ous and current GRU hidden states respectively, and h(0) = 0.

Internal update equations are omitted due to space limitations.

Classification, on the other hand, is performed using a multi-

layer perceptron (MLP).

4.2.1. Context

At each step of the interaction, HRI-RNN starts by computing

a context using the module GRUC (see Fig. 1). The aim of this

module is to extract additional information from the robot data

that may be correlated to the user engagement level and, hence,

could help detect SED. Given input x
(k)
i ∈ (x

(t−τ)
i , . . . , x

(t)
i ),

the context is computed by jointly using the robot data, the user

state, and the previous context as follows:

c
(k)
i = GRUC(c

(k−1)
i , x

(k)
i,R ⊕ u

(k−1)
i ) , (2)

where c
(k−1)
i ∈ R

dc is the previous context, dc is the size of

context vectors, x
(k)
i,R ∈ R

da is the robot audio extracted from

x
(k)
i if the robot is speaking and the zero vector otherwise, da

is the number of audio features, u
(k−1)
i ∈ R

du is the previous

2Our Python implementation of HRI-RNN and the HRI data after
feature extraction are available at github.com/asmaatamna/HRI-RNN.

user state, du is the size of user state vectors, and ⊕ denotes vec-

tor concatenation. The initial context vector c
(0)
i is set to zero.

The update in Eq. (2) allows to capture temporal dependencies

between the robot audio data and the user state and, therefore,

models the case where the user’s current state depends on the

past robot (vocal) behavior.

4.2.2. User State

The user state is modeled by the module GRUU of HRI-RNN

(see Fig. 1). It is updated at each step of the interaction by

jointly using the user data and the context, along with the pre-

vious user state. Formally, for input x
(k)
i ∈ (x

(t−τ)
i , . . . , x

(t)
i ),

the user state u
(k)
i is updated according to

u
(k)
i = GRUU (u

(k−1)
i , x

(k)
i,U ⊕ c

(k)
i ) , (3)

where u
(k−1)
i ∈ R

du is the previous user state, x
(k)
i,U is x

(k)
i

where audio features are replaced with 0 if the user is listening,

and c
(k)
i ∈ R

dc is the current context. The initial state u
(0)
i is

set to the zero vector. The update in Eq. (3) allows to capture

user state dynamics while taking into consideration the current

context of the interaction.

4.2.3. SED Detection

To classify a sequence (x
(t−τ)
i , . . . , x

(t)
i ) as presenting signs of

user engagement decrease or not, we use the last user state, u
(t)
i ,

that we feed to a MLP as shown in Fig. 1. Due to using a GRU

cell to model the user state (GRUU ), u
(t)
i contains information

on the past states and, consequently, on the entire interaction.

5. Experimental Procedure

5.1. Data Properties

We evaluate HRI-RNN on the UE-HRI data set [20], where we

consider sequences of length τ = 5 sec annotated over the last

η = 2 sec following the procedure described in Sec. 4.1. The

resulting data set contains 215 658 labeled sequences, and is

heavily imbalanced with approx. 90% of sequences labeled 0
(no SED) versus approx. 10% labeled 1 (SED). Robot’s audio

features are found in around 80% of the sequences, with a an

average speaking time per sequence of 40% (resp. 60%) for the

robot (resp. the user). The total number of features is d = 66
with da = 32 audio features.

5.2. Architecture of HRI-RNN

We set the sizes of user state vectors u
(k)
i and context vectors

c
(k)
i to du = dc = 32. For classification, we use a MLP with

one hidden layer of 16 neurons defined as follows:

ŷ
(t)
i = sigmoid

(

Wo · ReLU(Whu
(t)
i + bh) + bo

)

, (4)

where Wh ∈ R
16×du and bh ∈ R

16 (resp. Wo ∈ R
1×16 and

bo ∈ R) define the linear mapping and the bias for the hidden

(resp. output) layer, and ŷ
(t)
i ∈ [0, 1] is the predicted label.

5.3. Baseline

We compare our model to a classical GRU (see Eq. (1)) fol-

lowed by a MLP with one hidden layer for classification.

The aim of this experiment is to answer Q1 and Q2. To

this end, we evaluate two GRUs: GRUuser-only on sequences
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Figure 1: Architecture of HRI-RNN.

(x
(t−τ)
i,U , . . . , x

(t)
i,U ) of user-only data (Q1) and GRUuser-robot on

sequences (x
(t−τ)
i , . . . , x

(t)
i ) of mixed user-robot data (Q2).

Note that GRUuser-robot is equivalent to an ablation study where

we remove the context module GRUC from HRI-RNN (see

Fig. 1). Similarly to HRI-RNN, GRU’s last hidden state is used

for classification. We set the size of the hidden states to 32.

5.4. Training

We train HRI-RNN and the baseline GRUs using Adam opti-

mizer [25] on batches of size 5000, with weighted binary cross

entropy as the loss function, where the weights are inversely

proportional to class sizes. This allows to tackle class imbalance

at a lesser computational cost than over- or down-sampling.

Adam’s hyperparameters are set upon experimentation as fol-

lows. The models are trained for 50 epochs while the learning

rate and the L2 regularization factor (weight decay) are set to

10−3. To estimate the performance, we conduct 10-fold cross

validation using 9 folds for training and one fold for testing.

We also use 10% of training data as validation set to save the

model with the highest F1 score. We create train, validation,

and test sets in a user-independent way, i.e. sequences from one

particular user are found in only one set at a time.

6. Results

Table 2 summarizes the performance of HRI-RNN, the baseline

on user-only data, GRUuser-only, and the baseline on mixed user-

robot data, GRUuser-robot. Reported are the mean and standard

deviation over 10 runs of the F1 score, which is a more reliable

performance indicator than accuracy on imbalanced data sets,

the recall and precision, the area under the ROC curve (AUC),

and the accuracy for reference. Results are expressed in % and

the best performances are highlighted in bold.

HRI-RNN shows the best performance under all metrics

with the exception of recall, where GRUuser-only has the highest

recall. HRI-RNN, however, achieves the highest precision and

the best compromise between recall and precision, as reflected

by the F1 score, where a 2.13% (resp. 1.36%) increase is ob-

served in comparison to GNNuser-only (resp. GNNuser-robot). These

results show that using the robot audio data improves the detec-

tion of SED. A possible interpretation is that the extracted audio

features—in particular MFCCs—may indirectly encode verbal

content information, as well as prosodic features (e.g. pitch,

loudness), that reflect robot’s socio-emotional behavior influ-

encing user’s engagement. By using features that are strongly

correlated to user’s engagement level, our model has additional

key information to efficiently detect SED. Additionally, sepa-

rating robot data from user data, and using it in a context vector

as done in HRI-RNN, leads to a better performance than when

user and robot data are fused in the same input feature vector.

Note that following DialogueRNN [13], we experimented

with an attention mechanism over the history of context

vectors c
(k)
i without observing a significant improvement in

HRI-RNN’s performance (these results are omitted here for

space limitations). Our explanation is that on short input se-

quences like ours, earlier information propagates well through

GRUC , which manages to compute good enough context repre-

sentations without the need for an attention mechanism.

Model F1 score Recall Precision AUC Accuracy

HRI-RNN 46.04± 63.83± 36.31± 85.20± 85.86±
4.90 8.34 5.04 4.08 2.29

GRUuser-only 43.91± 66.94± 32.88± 84.58± 83.96±
4.58 8.28 3.90 3.88 1.46

GRUuser-robot 44.68± 66.23± 33.92± 85.05± 84.51±
4.83 7.83 4.67 3.53 2.18

Table 2: Performance (in %) of HRI-RNN and the GRU baseline

on user-only data and on mixed user-robot data.

7. Conclusion

We presented a recurrent neural architecture for user engage-

ment decrease detection in HRI that distinguishes itself from

standard approaches by exploiting the robot’s data. Our exper-

iments on a real-world spontaneous HRI data set helped val-

idate the underlying hypotheses to our model, namely (i) us-

ing robot’s data improves engagement decrease detection since

the robot’s and user’s behaviors are correlated and (ii) treating

user’s and robot’s data separately in order to capture the user-

robot interaction dynamics is more beneficial than fusing them

in a unique feature vector. Future work directions include in-

vestigating longer HRI sequences and context vectors history.
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