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Estimation of the Ricean K Factor
in the presence of shadowing

X. Leturc, P. Ciblat, C. J. Le Martret

Abstract—We address the estimation of the Ricean K factor
when the available complex channel samples are noisy and sub-
ject to Nakagami-m shadowing, i.e., the line-of-sight component
is modeled as a Nakagami-m random variable. We propose two
estimators: one based on the expectation-maximization (EM)
procedure, and a second one based on the method of moment
(MoM). The MoM estimator can be used to initialize the EM
procedure. We show by simulations that the two proposed
estimators outperform the existing ones.

I. INTRODUCTION

The propagation channel in mobile communications is
modeled by a random variable characterized by deterministic
parameters such as its mean and its variance. Estimating these
parameters is of great interest since knowing them enables the
system designer to perform efficient resource allocation [1].

A wireless channel can be analyzed at different scale: at
the large scale, the deterministic pathloss is dominant. At the
medium scale, shadowing has to be taken into account. At
the small scale, the most common stochastic model for the
wireless channel is to consider the Ricean model where the
impulse response follows a non-zero mean Gaussian distribu-
tion [2]. The Ricean model is characterized by the so-called
Ricean K factor which is related to the proportion of the mean
with respect to the random part. This parameter is an important
indicator of the link quality. For instance, when K = 0, the
Ricean channel boils down to the Rayleigh one.

The objective of this letter is to estimate the Ricean K factor
when i) shadowing is considered at the medium scale, and ii)
noisy complex channels’ samples are available at the receiver.

Many estimators have been developed in the literature
under the assumptions of noiseless complex-valued channels’
samples without shadowing [3]–[8]. When noisy samples
without shadowing are considered, the existing estimators
are based either on real-valued channels’ samples, i.e., the
magnitude of the channels’ components [9], [10] or on the
complex-valued channels’ samples [11], [12]. Only a few
works investigate the case with shadowing [13], [14]. More
precisely, in [13], an estimator based on noiseless magnitude
of the channels’ components is proposed and follows the
method of moments (MoM) approach [15, Chapter 9]. This
estimator requires a prior estimation step for the shadowing’s
statistical parameters. Very recently, in [14], another MoM
approach is proposed by considering high-order statistics (up
to 6th order). As a consequence, the algorithm requires a
large observation window, typically, up to 100, 000 samples
for standard operating signal-to-noise ratio (SNR) where the
system operates. In both papers, the shadowing is modeled
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with a Nakagami-m distribution, and changes between two
consecutive channel samples independently. This shadowing
model was first proposed in [16] and then often used, see
[17], [18] for instance.

Our contribution is as follows: we propose two estimators
for the Ricean K factor based on the complex-valued noisy
channels samples and assuming a Nakagami-m stochastic
model for the shadowing with arbitrary coherence time. Our
first estimator is based on the expectation-maximization (EM)
procedure whereas the second one is based on the MoM.

The rest of the paper is organized as follows. In Section II,
we provide the system and channel models. In Section III,
we introduce our proposed estimators. These estimators are
numerically evaluated and compared to the state-of-the-art in
Section IV. Concluding remarks are drawn in Section V.

II. SYSTEM AND CHANNEL MODELS

We estimate the Ricean K factor for an arbitrary point-
to-point link using an orthogonal frequency division multiple
access (OFDMA)-type communication where only a subset of
subcarriers is assigned to this link.

We assume that the received signal on the nsth subcarrier
of the ioth OFDMA symbol can be written as:

Y (io, ns) = H(io, ns)X(io, ns) +W (io, ns), (1)

where X(io, ns) is the transmit symbol, W (io, ns) ∼
CN (0, 2σ2

n) is a circularly-symmetric complex-valued white
Gaussian noise with zero-mean and variance 2σ2

n which is
assumed to be known by the receiver1, and H(io, ns) is the
channel frequency response. In this letter, we model H(io, ns)
using the channel model introduced in [16], which is a Ricean
channel whose line of sight (LoS) is subject to partial blockage
and thus it is random. More precisely, this LoS is assumed
to follow a Nakagami-m distribution. The resulting channel
model can be written as follows:

H(io, ns) = ac(i0)ejθ0 +HR(i0, ns), (2)

where HR(i0, n) is the diffuse component which is a circularly
symmetric Gaussian random variable with zero mean and
variance 2σ2

h, a is the magnitude of the LoS component,
c(i0) is the shadowing attenuation for OFDMA symbol io [16]
whose power is assumed to be normalized without any loss
of generality (the power of the shadowing component is taken
into account in a), and θ0 represents the LoS phase. As in [16],
θ0 is assumed to be constant which is realistic if the number
of samples to estimate the Ricean factor is small enough.

1The estimation of the noise variance in OFDMA systems is addressed for
instance in [19]. It can be performed prior to our estimation problem, and it
is out of the scope of this paper.
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For instance, if the receiver is moving at v = 50 km/h with
carrier frequency fc = 2.4 GHz, the phase difference is upper-
bounded by 4◦ when the time interval between two pilots is
Ts = 1.01 µs and the number of pilots is N = 100. We have
observed that the proposed estimators are robust to such a
variation. Notice that θ0 is assumed to change independently
from sample to sample in [14], yielding the authors to use
samples magnitude to estimate K and to use large values of
N . We assume that c(io) is constant over Ns OFDMA sym-
bols, and varies independently every Ns symbols following a
Nakagami-m distribution, whose probability density function
(PDF) is:

fcn(x) =
2mm

Γ(m)
x2m−1e−mx

2

, ∀x ≥ 0. (3)

When Ns =∞, there is no shadowing, and we fix c(io) = 1,
∀io.

From (2), we define the Ricean K factor of the channel
as the ratio between the average power of the LoS and the
average power of the non-LoS component as in [13], [14],
i.e., K := a2/(2σ2

h). This definition is consistent with the
case without shadowing.

We assume that the channel is estimated from (1) using
pilot symbols, meaning that X(io, ns) is known from the
receiver. The channel samples H(io, ns) can be estimated
as H̃(io, ns) = Y (io, ns)/X(io, ns). Assuming a normalized
quadrature phase shift keying (QPSK) for the pilots, we get

H̃(io, ns) = H(io, ns) + Ŵ (io, ns), (4)

where Ŵ (io, ns) ∼ CN (0, 2σ2
n) is the error in the channel

estimation. The number of pilot symbols per OFDMA symbol
is denoted by ip whereas the number of available OFDMA
symbols is denoted by is. The total number of available
estimated channel samples is thus N := is × ip. We assume
that the frequency spacing between two pilot symbols within
one OFDMA symbol is larger than the channel’s coherence
bandwidth (which can be evaluated with [20]), and thus we
neglect the channel’s frequency correlation. We also neglect
the channel’s fast fading time correlation. We assume Ns ≤ is
in order to see the shadowing effect. Let us rewrite our problem
in a more compact shape: let Nc := is/Ns (assumed to be an
integer for the sake of simplicity) be the number of different
realizations of the shadowing, let N` := Nsip be the number
of pilots per shadowing realization. We define the entries of
the N` ×Nc matrix Ĥ as follows

Ĥ(i, n) = H̃(1+(i−1 mod ip), 1+(n−1)Ns+

⌊
i− 1

ip

⌋
) (5)

with bxc the floor function, and x mod y the modulo operator.
One can prove that

Ĥn ∼ CN
(
cnae

jθ01Nc , diagN`×N`(2σ
2
h + 2σ2

n)
)

where Ĥn is the nth column of Ĥ, 1N` is the column vector
composed by N` ones, {cn := c(1 + (n mod Ns))}n=1,...,Ns

are independent and identically distributed (i.i.d.) random
variables whose PDF is given by (3). Moreover, ∀n1 6= n2,
E[(Ĥn1

− cn1
1N`)

∗(Ĥn2
− cn2

1N`)] = 0, where (.)∗ stands
for the transpose-conjugate operator.

Our matrix model encompasses the case without shadowing
by setting N` = N , Nc = 1 and c1 = 1, or the case considered
in [13] and [14] by setting 2σ2

n = 0, N` = 1 and Nc = N .
Our goal is to estimate K = a2/(2σ2

h) from the channel
estimates Ĥ when θ0, a, σ2

h, and m are unknown whereas σ2
n

is known. The vector of unknown parameters is denoted by
θ = [θ0, a, 2σ

2
h,m].

III. PROPOSED ESTIMATORS OF THE RICEAN K FACTOR

We propose to estimate the Ricean K factor using the EM
procedure, which has been originally proposed in [21] and
then widely used for channel statistical parameters estimation
[22]–[24]. This procedure aims to find local maximum of
the likelihood function iteratively. It is especially interesting
when analytical maximization of the log-likelihood function is
intractable, but is rendered possible by fixing some parameters.

Let LĤ(Ĥ;θ) be the likelihood of Ĥ for the param-
eters θ. The maximum-likelihood estimator is given by
arg maxθ LĤ(Ĥ;θ). As the columns of Ĥ are independent,
we get

log
(
LĤ

(
Ĥ;θ

))
=

Nc∑
n=1

log
(
LĤn

(
Ĥn;θ

))
, (6)

where LĤn
(Ĥn;θ) is the likelihood of Ĥn. Like in [14], we

use the law of total probability which yields:

LĤn
(Ĥn;θ) =

∫ +∞

0

LĤn|cn(Ĥn|x;θ)fcn(x)dx, (7)

where LĤn|cn(Ĥn|x;θ) is the likelihood of Ĥn knowing that
cn = x. Then we have

LĤn|cn(Ĥn|x;θ) =
e
−

∑N`
i=1
|Ĥ(i,n)−xaejθ0 |2

2σ2
h
+2σ2n

(π(2σ2
h + 2σ2

n))N`
. (8)

Plugging (8) and (3) into (7) and using [25, 3.462] yields

LĤn
(Ĥn;θ) =

B1,nΓ(2m)e
B23,n
8B2,n

(2B2,n)
m D−2m

(
B3,n√
2B2,n

)
, (9)

with

B1,n =

(
2mm

(π(2σ2
h + 2σ2

n))N`Γ(m)

)
e
−

∑N`
i=1

|Ĥ(i,n)|2

2σ2
h
+2σ2n ,

B2,n = N`
a2

2σ2
h + 2σ2

n

+m,

B3,n = − a

σ2
h + σ2

n

N∑̀
i=1

<
(
Ĥ(i, n)e−jθ0

)
,

and where D−2m(•) is the parabolic cylinder function [25,
9.24-9.25]. This function is due to the presence of the
Nakagami-m shadowing and prevents us from maximizing the
likelihood function (9) analytically. To overcome this issue,
we propose to resort to the EM procedure, by seeing the
shadowing c = [c1, . . . , cNc ] as nuisance parameters. The next
two steps are performed at iteration t of the EM procedure:
expectation (E) step: let θ̂

(t)
=
[
â(t), 2σ̂

2,(t)
h , θ̂

(t)
0 , m̂(t)

]
be
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the available parameters’ estimation at iteration t. This step
consists in computing the following expectation:

QEM

(
θ, θ̂

(t)
)

= E
c|Ĥ,θ̂(t)

[
log
(
LĤ,c(Ĥ, c;θ)

)]
, (10)

maximization (M) step: this step consists in finding θ̂
(t+1)

as follows

θ̂
(t+1)

= arg max
θ

{
QEM

(
θ, θ̂

(t)
)}

. (11)

According to [21], the EM procedure converges to a local
maximum of the likelihood function given in (6). Our goal is
now to apply this procedure to our estimation problem, i.e.,
to characterize QEM and to maximize it in closed-form.

A. The expectation step

First, we express in closed-form log
(
LĤ,c(Ĥ, c;θ)

)
. To

do so, we decompose it as follows:

log
(
LĤ,c(Ĥ, c;θ)

)
= log

(
LĤ|c(Ĥ|c;θ)

)
+ log (Lc(c;θ)) ,

(12)
where Lc (c;θ) is the likelihood function of c. For the first
term in right hand side (RHS), we get

log
(
LĤ|c

(
Ĥ|c;θ

))
= −NcN` log

(
π
(
2σ2

h + 2σ2
n

))
−
∑N`
i=1

∑Nc
n=1 |Ĥ(i, n)− cnaejθ0 |2

2σ2
h + 2σ2

n

.

(13)

For the second term in RHS, as the components of c are i.i.d.
whose PDF are given by (3), we obtain

log (Lc (c;θ)) = Nc (m log(m) + log(2)− log (Γ(m)))

+ (2m− 1)

Nc∑
n=1

log (cn)−m
Nc∑
n=1

c2n. (14)

Plugging (13) and (14) into (10) yields

QEM

(
θ, θ̂

(t)
)

=−NcN` log
(
π
(
2σ2

h + 2σ2
n

))
−∑N`

i=1

∑Nc
n=1 |Ĥ(i, n)|2

2σ2
h + 2σ2

n

+∑N`
i=1

∑Nc
n=1 T

(t)
1 (n)a<(Ĥ(i, n)e−jθ0)

σ2
h + σ2

n

−

N`

Nc∑
n=1

T
(t)
2 (n)

a2

2σ2
h + 2σ2

n

+

Nc (m log(m) + log(2)− log (Γ(m))) +

(2m− 1)

Nc∑
n=1

T
(t)
3 (n)−m

Nc∑
n=1

T
(t)
2 (n),

(15)

with T (t)
1 (n) := E

cn|Ĥ,θ̂
(t) [cn], T (t)

2 (n) := E
cn|Ĥ,θ̂

(t) [c2n], and

T
(t)
3 (n) := E

cn|Ĥ,θ̂
(t) [log(cn)].

According to Bayes’ rule, we have

T
(t)
k (n) =

U
(t)
k (n)

U
(t)
0 (n)

, k = 1, 2, 3 (16)

where U
(t)
k (n) =

∫ +∞
0

LĤn|cn

(
Ĥn|x; θ̂

(t)
)
fcn(x)gk(x)dx,

with gk(x) = xk for k = {0, 1, 2}, and g3(x) = log(x).
After some derivations which are omitted due to space

limitation, we get:

U
(t)
k (n) = B(t)1,n

(
2B(t)2,n

)− 2m+k
2

Γ(2m̂(t) + k)e

(B(t)3,n)
2

8B(t)2,n

× D−2m̂(t)−k

 B(t)3,n√
2B(t)2,n

 (17)

for k = {0, 1, 2}, and

U
(t)
3 (n) = B(t)1,ne

(B(t)3,n)
2

8B(t)2,n Γ(2m̂(t))
(

2B(t)2,n

)−m̂(t)

×

−1

2
log
(

2B(t)2,n

)
D−2m̂(t)

 B(t)3,n√
2B(t)2,n


+ ψ0

(
2m̂(t)

)
D−2m̂(t)

 B(t)3,n√
2B(t)2,n


+

∂

∂w
D−2m̂(t)−w

 B(t)3,n√
2B(t)2,n


|w=0

 , (18)

where ψ0(x) is the digamma function, and B(t)i,n is defined
as Bi,n where values of θ have been replaced with these of
θ(t). We evaluate the derivative as follows ∂

∂wf(w)|w=0
≈

(f(ε) − f(−ε))/(2ε) for any function f . In our simulations
in Section IV, we use ε = 10−3.

B. The maximization step

The optimization over θ of QEM(θ, θ̂
(t)

) given (15) is
obtained by computing its derivative. After some algebraic
manipulations, we obtain the following estimates:

θ̂
(t+1)
0 = ∠

(
N∑̀
i=1

Nc∑
n=1

T
(t)
1 (n)Ĥ(i, n)

)
, (19)

â(t+1) =

∑N`
i=1

∑Nc
n=1 T

(t)
1 (n)<

(
Ĥ(i, n)e−jθ̂

(t+1)
0

)
N`
∑Nc
n=1 T

(t)
2 (n)

, (20)

2σ̂
2,(t+1)
h =

1

N`Nc

N∑̀
i=1

Nc∑
n=1

(
|Ĥ(i, n)|2 + T

(t)
2 (n)(â(t+1))2

− 2T
(t)
1 (n)â(t+1)<

(
Ĥ(i, n)e−jθ̂

(t+1)
0

))
− 2σ2

n,

(21)

and

m̂(t+1) = arg max
m

{
log

(
mm

Γ(m)

)
− m

Nc

Nc∑
n=1

T
(t)
2 (n)

+
2m− 1

Nc

Nc∑
n=1

T
(t)
3 (n)

}
, (22)
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where ∠(z) is the phase of the complex number z. The
estimators of θ0, a and 2σ2

h at iteration t have been obtained
in closed-form while the estimator of m still requires a
one dimension maximization, which is performed through a
linesearch.

C. Initialization and stopping criterion for the EM procedure
Through extensive simulations, we observed that initializing

the EM procedure randomly diverges in some cases. Thus, we
propose to use the MoM adapted to shadowing case, yielding
an estimator which is also a new contribution of this paper.

Let us first remind that Ĥ(i, n) can be expressed as follows:

Ĥ(i, n) = cnae
jθ0 +Hc(i, n), (23)

with Hc(i, n) ∼ CN (0, 2σ2
h + 2σ2

n). Like [13], (23) leads to
obtain closed-form expressions for µ1 = E[Ĥ(i, n)], µ2 =
E[|Ĥ(i, n)|2], and µ4 = E[|Ĥ(i, n)|4] as follows

µ1 =
a√
m

(
Γ(m+ 0.5)

Γ(m)

)
ejθ0 , (24)

µ2 = 2σ2
h + 2σ2

n + a2, (25)

µ4 = 2
(
2σ2

h + 2σ2
n

)2
+ 4

(
2σ2

h + 2σ2
n

)
a2

+
m+ 1

m
a4. (26)

Plugging (25) into (26) by removing σ2
h + σ2

n, yields

m =
a4

µ4 − 2 (µ2 − a2)
2 − 4 (µ2 − a2) a2 − a4

. (27)

Plugging (27) into (24) provides the following estimator â(0)

for a by solving the following implicit function:

|µ̂1|2 =

(
â(0)

)2
u
(
â(0)

) (Γ
(
u
(
â(0)

)
+ 0.5

)
Γ
(
u
(
â(0)

)) )2

, (28)

where u(x) = x4/(µ̂4 − 2
(
µ̂2 − x2

)2 − 4
(
µ̂2 − x2

)
x2 −

x4), and µ̂1, µ̂2, and µ̂4 are the empirical estimates of
µ1, µ2, and µ4 respectively. In our simulations, we solved
the implicit function (28) as â(0) = arg minâ∈A ||µ̂1|2 −
(â)

2
/u (â) Γ (u (â) + 0.5) /Γ (u (â))

2 | with A = {n ×
0.001}n∈{1,105}.

Finally, from (27), (25), and (24), we respectively obtain

m̂(0) = u
(
â(0)

)
, (29)

2σ̂
2,(0)
h = µ̂2 − 2σ2

n −
(
â(0)

)2
, (30)

θ̂
(0)
0 = ∠

(√
m̂(0)

µ̂1Γ
(
m̂(0)

)
â(0)Γ

(
m̂(0) + 0.5

)) . (31)

Therefore, the EM is initialized as follows:

K̂MoM =

(
â(0)

)2
2σ̂

2,(0)
h

, (32)

and it is stopped at iteration tEM when the condition ||θ̂
(tEM)

−
θ̂
(tEM−1)|| < εEM is fulfilled, providing the following Ricean
K factor estimate:

K̂EM =

(
â(tEM)

)2
2σ̂

2,(tEM)
h

. (33)

D. Complexity analysis

The EM is more complex than the MoM since it is iterative
and initialized by the MoM. Each iteration of the EM requires
to compute (19)-(22) whose complexity is driven by (22)
involving transcendental functions (in T2(n) and T3(n)) avail-
able in standard softwares, and solved through a linesearch.
Moreover, we have observed through simulations that the EM
converges to a nearly optimal point with about 15 iterations.
Consequently, the overall complexity of the EM is roughly 15
times the complexity of a linesearch involving transcendental
functions such as the parabolic cylinder function.

IV. NUMERICAL RESULTS

We perform simulations to compare the proposed EM based
estimator K̂EM as well as the proposed MoM estimator K̂MoM

derived in (32) with the following ones: K̂WMoM from [13],
and K̂MML from [12]. We have also simulated K̂LMoM from
[14] but not displayed its performance which are very poor for
the chosen values for N since this estimator uses the 6th order
moment of the samples and thus requires very large sample
size. Notice that K̂WMoM is implemented by knowing m as in
[13] whereas K̂EM use its own estimates for m, and K̂MML

does not require an estimate of m since it does not take into
account the shadowing.

Our simulation setup is as follows: we set Nc = N , N` = 1
as in [13], i.e., one subcarrier is used for channel estimation
and the shadowing changes independently between consecu-
tive OFDMA symbols. We set N = 100, and εEM = 10−5.
The estimators’ performance are averaged through 10, 000
Monte-Carlo trials.

In Fig. 1, we set m = 5, 2σ2
n = 0, i.e., the channel is

perfectly known, and we plot the normalized mean square error
(NMSE) for the different estimators versus K. Both proposed
estimators perform better than those of [12], and [13]. This
is rational since [12] does not take into account shadowing,
and [13] does not use the phase information of the complex
samples. For small K, K̂MML yields better performance than
other estimators. This can be explained as for low K, the
deterministic component in the channel impulse response is
not dominant and thus the shadowing has less impact as
already observed in [14]. We see that the EM offers gains
as compared to the MoM. For instance when K = 5, the
NMSE of the EM is approximately 70% lower than those of
the MoM.

1 2 3 4 5 6 7 8 9 10

10
−1

10
0

N
M

S
E

K

 

 

K̂ M M L [1 2 ]

K̂W M oM[1 3 ]

K̂ M oM, o ur pro p o sa l

K̂ EM, o ur pro po sa l

Fig. 1: Performance of the considered estimators versus K,
2σ2

n = 0, N = 100, m = 5.
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In Fig. 2, we plot the NMSE for the different estimators
versus SNR, defined as (a2 + 2σ2

h)/2σ2
n. Once again K̂EM

yields the best performance except for low SNR where the
shadowing may be neglected and K̂MML is better.

10 12 14 16 18 20 22 24 26 28 30

10
−1

N
M

S
E

SNR (dB)

 

 

K̂ M M L [1 2 ]

K̂W M oM[1 3 ]

K̂ M oM, o ur pro p o sa l

K̂ EM, o ur pro po sa l

Fig. 2: Performance of the considered estimators versus the
SNR, N = 100, K = 5, m = 5.

We have also observed through simulations that the two
proposed estimators outperform the state of the art ones for N
varying from 100 to 104 (not shown due to space limitation).

Finally, we study the impact of m on the estimators’
performance. In Fig. 3, we set 2σ2

n = 0, K = 5, N = 100,
and we plot the performance of the different estimators versus
the value of m. We can see that: i) the NMSE of the proposed
estimators is once again better than those of [13], regardless
of the value of m, and ii) K̂MML provides better performance
than the proposed estimators when m > 8. Indeed, when
m is large enough, the Nakagami-m distribution is close to
a Dirac around its expectation and thus it is preferable to
compute the best known deterministic estimator in the absence
of shadowing (K̂MML) than ours which need to estimate an
extra parameter (m).
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Fig. 3: Performance of the considered estimators versus m,
N = 100, 2σ2

n = 0.

V. CONCLUSION

We addressed the estimation of the Ricean K factor from
noisy complex channel samples subject to Nakagami-m shad-
owing. We proposed two estimation procedures: one based
on the EM and the other one based on the MoM. We
provided numerical results and showed that both EM and MoM
estimators outperform the existing ones from the literature.
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