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Abstract—We present new efficient recursive decoders for the
Barnes-Wall lattices based on their squaring construction. The
analysis of the new decoders reveals a quasi-quadratic complexity
in the lattice dimension. The error rate is shown to be close to
the universal lower bound in dimensions 64 and 128.

I. INTRODUCTION

Barnes-Wall (BW ) lattices were one of the first series
discovered with an infinitely increasing fundamental coding
gain [2]. This series includes dense lattices in lower dimen-
sions such as D4, E8, Λ16 [5], and is deeply related to Reed-
Muller codes [8][16]: BW lattices admit a Construction D
based on these codes. Multilevel constructions attracted the
recent attention of researchers, mainly Construction C∗ [3],
where lattice and non-lattice constellations are made out of
binary codes. One of the important challenges is to develop a
lattice with a reasonable-complexity decoding where a fraction
of the fundamental coding gain is sacrificed in order to
achieve a lower kissing number. BW lattices are attractive
in this sense. For instance the lattice BW128, with an equal
fundamental coding gain as Nebe72 [19], sacrifices 1.5dB of
its coding gain with respect to MW128 [7] while the kissing
number is reduced by a factor of 200.

Several algorithms have been proposed to decode BW
lattices. Forney introduced an efficient maximum-likelihood
decoding (MLD) algorithm in [8] for the low dimension
instances of these lattices based on their trellis representation.
Nevertheless, the complexity of this algorithm is exponential
in the dimension and intractable for n > 32: e.g. decoding
in BW64 involves 2 · 224 + 2 · 216 decoders of BW16 and
decoding in BW128 involves 2 ·248 +2·232 decoders of BW32

(using the two-level squaring construction to build the trellis,
see [8, Section IV.B]). Later, [18] proposed the first bounded-
distance decoders (BDD) running in polynomial time: a paral-
lelisable decoder of complexity O(n2) and another sequential
decoder of complexity O(n log2(n)). The parallel decoder was
generalized in [13] to work beyond the packing radius, still
in polynomial time. It is discussed later in the paper. The
sequential decoder uses the BW multilevel construction to
perform multistage decoding: each of the ≈ log(n) levels is
decoded with a Reed-Muller decoder of complexity n log(n).
This decoder was also further studied, in [14], to design
practical schemes for communication over the AWGN channel.
The performance of this sequential decoder is far from MLD.
A simple information-theoretic argument explains why multi-
stage decoding of BW lattices cannot be efficient: the rates
of some component Reed-Muller codes exceed the channel
capacities of the corresponding levels [12][27]. As a result,

no BW decoders, being both practical and quasi-optimal on
the Gaussian channel, have been designed and executed for
dimensions greater than 32.

We present new decoders for the BW lattices based on
their (u, u+v) construction [16]. We particularly consider this
construction as a squaring construction [8] to establish a new
recursive BDD (Algorithm 2, Section III-A), new recursive
list decoders (Algorithms 3 and 5, Sections IV-B and IV-C),
and their complexity analysis as stated by Theorems 2-4. As
an example, Algorithm 5 decodes BW64 and BW128 with a
performance close to the universal lower bound on the coding
gain of any lattice and with a reasonable complexity almost
quadratic in the lattice dimension.

II. PRELIMINARIES

Lattice. A lattice Λ is a discrete additive subgroup of Rn.
For a rank-n lattice in Rn, the rows of a n × n generator
matrix G constitute a basis of Λ and any lattice point x is
obtained via x = zG, where z ∈ Zn. The squared minimum
Euclidean distance of Λ is d(Λ) = (2ρ(Λ))2, where ρ(Λ)
is the packing radius. The number of lattice points located
at a distance

√
d(Λ) from the origin is the kissing number

τ(Λ). The fundamental volume of Λ, i.e. the volume of its
Voronoi cell and its fundamental parallelotope, is denoted by
Vol(Λ). The fundamental coding gain γ(Λ) is given by the
ratio γ(Λ) = d(Λ)/vol(Λ)

2
n . The squared Euclidean distance

between a point y ∈ Rn and a lattice point x ∈ Λ is denoted
d(x, y). Accordingly, the squared distance between y ∈ Rn
and the closest lattice point of Λ is d(y,Λ).
For lattices, the transmission rate used with finite
constellations is meaningless. Poltyrev introduced the
generalized capacity [21], the analog of Shannon capacity for
lattices. The Poltyrev limit corresponds to a noise variance of
σ2
max = det(Λ)

2
n /(2πe) and the point error rate is evaluated

with respect to the distance to Poltyrev limit, i.e. σ2
max/σ

2.

BDD, list decoding, and MLD. Given a lattice Λ, a radius
r > 0, and any point y ∈ Rn, the task of a BDD is to
determine all points x ∈ Λ satisfying d(x, y) ≤ r2. If
r < ρ(Λ), there is either no solution or a unique solution.
Additionally, if d(x, y) < ρ2(Λ), we say that y is within the
guaranteed error-correction radius of the lattice. If r ≥ ρ(Λ),
there may be more than one solution. In this case, the process
is called list decoding rather than BDD. When list decoding
is used, lattice points within the sphere are enumerated and
the decoded lattice point is the closest to y among them.
MLD simply refers to finding the closest lattice point in Λ to
any point y ∈ Rn. If list decoding is used, it means choosing



a decoding radius equal to the covering radius of Λ.

Coset decomposition of a lattice. Let Λ and Λ′ be two lattices
such that Λ′ ⊆ Λ. If the order of the quotient group Λ/Λ′ is
q, then Λ can be expressed as the union of q cosets of Λ′. We
denote by [Λ/Λ′] a system of coset representatives for this
partition. It follows that Λ =

⋃
xi∈[Λ/Λ′] Λ′+xi = Λ′+[Λ/Λ′].

The BW lattices. Let the scaling-rotation operator R(2n) in
dimension 2n be defined by the application of the 2×2 matrix

R(2) =

[
1 1
1 −1

]
on each pair of components. I.e. the scaling-rotation operator
is R(2n) = In ⊗R(2), where In is the n× n identity matrix
and ⊗ the Kronecker product. For Λ ⊂ R2n with generator
matrix G, the lattice generated by G ·R(2n) is denoted RΛ.

Definition 1 (The squaring construction of BW2n [8]). The
BW lattices in dimension 2n are obtained by the following
recursion:
BW2n = {( v′1 +m︸ ︷︷ ︸

u1∈BWn

, v′2 +m︸ ︷︷ ︸
u2∈BWn

), v′i ∈ RBWn,m ∈ [BWn/RBWn]},

with initial condition BW2 = Z2.

Using this construction, it is easily seen that d(BW2n) =
d(RBWn) = 2d(BWn) and the fundamental coding gain
increases infinitely as γ(BWn) =

√
2 ·γ(BWn) =

√
n/2 [8].

Note that the squaring construction can be expressed under
the form of the Plotkin (u, u+ v) construction [20]:

BW2n = {(v′1 +m, v′2 +m), v′i ∈ RBWn,m ∈ [BWn/RBWn]},
= {(v′1 +m, v′1 + v2︸ ︷︷ ︸

v′2

+m)} = {(u1, u1 + v2)}.

III. BOUNDED-DISTANCE BW DECODING

A. The new BDD

Given a point y = (y1, y2) ∈ R2n to be decoded, a well-
known algorithm [25][6] for a code obtained via the (u, u+v)
construction is to first decode y1 as u1, and then decode y2−u1

as v2
1. Our lattice decoder, Algorithm 1, is double-sided since

we also decode y2 as u2 and then y1−u2 as v2: the decoder is
based on the squaring construction. The main idea exploided
by the algorithm is that if there is too much noise on one side,
then there is less noise on the other side, and vice versa.

Algorithm 1 Double-sided (u, u+ v) decoder of BW2n

Input: y = (y1, y2) ∈ R2n.
1: Decode (MLD) y1, y2 in BWn as u1, u2.
2: Decode (MLD) y2−u1 in RBWn as v2. Store x̂← (u1, u1+v2).
3: Dec. (MLD) y1−u2 in RBWn as v1. Store x̂′ ← (u2+v1, u2).
4: Return xdec = argmin

x∈{x̂,x̂′}
||y − x||

Theorem 1. Let y be a point in R2n such that d(y,BW2n)
is less than ρ2(BW2n). Then, Algorithm 1 outputs the closest
lattice point x ∈ BW2n to y.

1The standard decoder for (u, u + v) has a second round: once v2 is
decoded u1 is re-decoded based on the two estimates y1 and y2 − v2.

Proof. If (x1, x2) ∈ BW2n, then x1, x2 ∈ BWn.
Also, we have ||(y1, y2)||2 = ||y1||2 + ||y2||2. So if
d(y,BW2n) < ρ2(BW2n), then at least one among the two
yi is at a distance smaller than ρ2(BW2n)

2 = ρ2(BWn) from
BWn and thus no further than ρ(BWn) from BWn. Therefore,
at least one of the two ui is correct.
Assume (without loss of generality) that u1 is correct. We have
d(y2 − u1, RBWn) < ρ2(BW2n) = ρ2(RBWn). Therefore,
y2 − u1 is also correctly decoded.
As a result, among the two lattice points stored, at least one
is the closest lattice point to y.

Note that the BWn decoder in the previous proof got
exploited up to ρ2(BWn) only. Consequently, Algorithm 1
should exceed the performance predicted by Theorem 1 given
that step 1 is MLD.
Algorithm 1 can be generalized into the recursive Algorithm 2,
where operations 4, 5, and 6 of the latter algorithm correspond
respectively to operations 1, 2, and 3 of Algorithm 1. This
algorithm is similar to the parallel decoder of [18]. The main
difference is that [18] uses the automorphism group of BW2n

to get four candidates at each step of the recursion whereas we
use the squaring construction to generate only two candidates
at each step. Nevertheless, both our algorithm and [18] use
four recursive calls at each recursive step and have the same
asymptotic complexity.

Algorithm 2 Recursive BDD of BW2n (where 2n = 2t)
Function RecBW (y, t)

Input: y = (y1, y2) ∈ R2t , 1 ≤ t.
1: if t = 1 then
2: xdec ← (by1e, by2e) // Decoding in Z2

3: else
4: u1 ← RecBW (y1, t− 1), u2 ← RecBW (y2, t− 1)

// y2 − u1 (and y1 − u2) should be decoded in RBWn:
// this is equivalent to decoding (y2−u1)·R(2t−1)−1 in BWn

// and then rotate the output lattice point by R(2t−1).
5: v2 ← RecBW ((y2 − u1) ·R(2t−1)T /2, t− 1) ·R(2t−1).

Store x̂← (u1, u1 + v2).
6: v1 ← RecBW ((y1 − u2) ·R(2t−1)T /2, t− 1) ·R(2t−1).

Store x̂′ ← (u2 + v1, u2).
7: xdec = argmin

x∈{x̂,x̂′}
||y − x||

8: end if
9: Return xdec

Theorem 2. Let n be the dimension the lattice BWn to be
decoded. The complexity of Algorithm 2 is O(n2).

Proof. Let C(n) be the complexity of the algorithm for n = 2t.
We have C(n) = 4C(n/2) +O(n) = O(n2).

B. Performance on the Gaussian channel

In the Appendix (see [28, Section VII-A]), we show via
an analysis of the effective error coefficient of Algorithm 2
that the loss in performance compared to the MLD (in dB) is
expected to grow with n.
Our simulations show that there is a loss of ≈0.25dB for n =



16, ≈0.5dB for n = 32, ≈1.25dB for n = 64 (compare ℵ = 1
and ℵ = 20 on Figure 1) and ≈2.25dB for n = 128. As a
result, this BDD is not suited for effective decoding of BW
lattices on the Gaussian channel. However, it is essential for
building efficient decoders as shown in the next section.

IV. LIST DECODING OF THE BW LATTICES BEYOND THE
PACKING RADIUS

Let L(Λ, r2) be the maximum number of lattice points of Λ
within a sphere of radius r around any y ∈ Rn. If Λ = BWn

we write L(n, r2). The following lemma is proved in [13].

Lemma 1. The list size of the BWn lattices is bounded as
[13]:
• L(n, r2) ≤ 1

4ε if r2 ≤ d(BWn)(1/2− ε), 0 < ε ≤ 1/4.
• L(n, r2) = 2n if r2 = d(BWn)/2,
• L(n, r2) ≤ 4n16 log2(1/ε) if r2 ≤ d(BWn)(1 − ε),

0 < ε ≤ 1/2.

[13] also shows that the parallel BDD of [18], which uses
the automorphism group of BWn, can be slightly modified
to output a list of all lattice points lying at a squared
distance r2 = d(BWn)(1 − ε) from any y ∈ Rn in time
O(n2) · l(n, r2)2. With Lemma 1, this becomes nO(log(1/ε))

for any r2 = d(BWn)(1 − ε),∀ε > 0. This result is of
theoretical interest: it shows that there exists a polynomial
time algorithm in the dimension for any radius bounded away
from the minimum distance. However, due to the quadratic
dependence in the list size, the complexity of this list decoder
rapidely becomes intractable: for ε = 1/2, we get a complexity
of O(n4) and for any ε greater than 1/2 it is O(n66). Finding
an algorithm with quasi-linear dependence in the list-size is
stated as an open problem in [13].

In the following, we show that if we use the squaring
construction rather than the automorphism group of BWn we
get a quasi-linear complexity in the list size. This enables to
get a practical list decoding algorithm up to n = 128.

A. Some notations

Notice that L(n, r2) = L(RBWn, 2r
2), e.g. both are equal

to 2n if r2 = d(BWn)/2. It is therefore convenient to consider
the relative squared distance as in [13]: δ(x, y) = 2d(x,y)

n .
Then, if we define l(Λ, r2/d(Λ)) = L(Λ, r2) this yields for
instance l(BWn, 1/2) = l(RBWn, 1/2) = 2n. We call δ =
r2/d(Λ) the relative squared radius. Let y = (y1, y2) ∈ R2n.
Then, x = (u1, u1 + v2) = (u2 + v1, u2) ∈ BW2n is any
lattice point where δ(x, y) ≤ δ. We recall that for BDD of
BWn we have δ = 1/4.
The following lemma is trivial, but convenient to manipulate
distances.

Lemma 2. (Lemma 2.1 in [13])
Let y = (y1, y2) ∈ R2n and x = (u1, u1 + v2) ∈ BW2n.
Then,

δ(x, y) = δ(u1, y1)/2 + δ(v2, y2 − u1). (1)

Finally, let us choose an integer a = 2/3δ (i.e. such that
δ = a/2 + a, see (1)).

B. List-decoding with r2 < 3/4d(BWn)

Consider d(x, y) = d(x1, y1) + d(x2, y2). We split the
possible situations into four cases and establish a decoding
strategy to recover the lattice points x accordingly.
• a ≤ δ(u1, y1) ≤ δ and δ(v2, y2 − u1) < a:

then, y1 should be list-decoded in BWn with a relative
squared radius δ and y2−u1 list-decoded in RBWn with
a relative squared radius a.

• δ(u1, y1) < a and a ≤ δ(v2, y2 − u1) ≤ δ:
then, y1 should be list-decoded in BWn with a relative
squared radius a and y2−u1 list decoded in RBWn with
a relative squared radius δ.

• The two other cases are the symmetric cases using x =
(u2 + v1, u2) instead of x = (u1, v2 + u1).

This analysis yields Algorithm 3 listed below. The “remov-
ing step” (11 in bold) is added to ensure that a list with
no more than l(n, δ) elements is returned by each recursive
call. The maximum number of points to process by this
removing step is 4l(n/2, δ)l(n/2, a). Regarding step 12, using
the classical Merge Sort algorithm, it can be done in
O(n · l(n, δ) log(l(n, δ))) operations.

Theorem 3. Let f(δ) = − log2(1 − 4
3δ). Given any point

y ∈ Rn and 1/4 ≤ δ < 3/4, Algorithm 3 outputs the list
of all lattice points in BWn lying within a sphere of relative
squared radius δ around y in time:
• O(n2 · log(n)) if 1/4 ≤ δ ≤ 3/8,
• O(n2 · log2(n)) if 3/8 < δ ≤ 1/2,
• O(n2+f(δ) log2(n)) if 1/2 < δ < 3/4.

Note that if δ < 1/4, then one should simply use Algo-
rithm 2 of complexity O(n2).

Proof. Let C(n, δ) be the complexity of Algorithm 3. We have

C(n, δ) ≤ 4C(n/2, δ)︸ ︷︷ ︸
Four recursive calls with δ

+ 4C(n/2, a)︸ ︷︷ ︸
Four recursive calls with a

+

4 · l(n/2, δ)l(n/2, a)O(n)︸ ︷︷ ︸
removing

+O(n · l(n/2, δ) log(l(n/2, δ)))︸ ︷︷ ︸
Merge Sort

.

If δ ≤ 3/8, then l(n, δ) ≤ 2, l(n, a) ≤ 1,
4C(n/2, a) ≤ 4C(n/2, 1/4) = O((n/2)2) (the complexity
of Algorithm 2). Hence, the complexity becomes
C(n, δ) ≤ 4C(n2 , 3/8) +O(n2) = O(n2 log(n)).

If δ ≤ 1/2, then l(n, δ) ≤ 2n, l(n, a) ≤ 2,
4C(n/2, a) ≤ 4C(n/2, 3/8) = O(n2 log(n)). Hence, the
complexity becomes C(n, δ) ≤ 4C(n2 , 1/2) +O(n2 log(n)) =
O(n2 log2(n)).

For the case 1/2 < δ < 3/4, we first need to compute
4l(n/2, a) · l(n/2, δ), the maximum number of points to be
processed at each recursive step of the algorithm (the removing
step 11).

4l(n/2, a) · l(n/2, δ) ≤ 2

1− 4
3
δ
· l(n/2, δ),

=

(
2

1− 4
3
δ

)t
· 4 = n1−log2(1− 4

3
δ) · 4 = O(n1−log2(1− 4

3
δ)).



Let us define f(δ) = − log2(1 − 4
3δ). Then, we have

4C(n/2, a) ≤ 4C(n/2, 1/2) = O(n2 log2(n)). Hence, the
complexity becomes C(n, δ) ≤ 4C(n2 , 3/4) + O(n2+f(δ) ·
f(δ) log(n)) = O(n2+f(δ) log2(n)).

Algorithm 3 First recursive list decoding of BW2n (2n = 2t).
Function ListRecBW (y, t, δ)

Input: y = (y1, y2) ∈ R2t , 1 ≤ t, 1/4 ≤ δ < 3/4.
1: a← 2/3 · δ
2: r ←

√
2t−1 · δ

3: if t = 1 then
4: x̂← EnumZ2(y, r) // Enum. in Z2 with radius r =

√
δ.

5: else
6: x̂1 ← SubRoutine(y1, y2, t, a, δ, 0)
7: x̂2 ← SubRoutine(y1, y2, t, δ, a, 0)
8: x̂3 ← SubRoutine(y2, y1, t, δ, a, 1)
9: x̂4 ← SubRoutine(y2, y1, t, a, δ, 1)

10: Remove all candidates at a distance > r from y.
11: Sort the remaining list of candidates in a lexicographic order

and remove all duplicates.
12: end if
13: Return the list of all the candidates remaining.

Algorithm 4 Subroutine of Algorithms 3 & 5
Function SubRoutine(y1, y2, t, δ1, δ2, reverse)

Input: y1, y2 ∈ R2t−1

, 1 ≤ t, 0 < δ1, δ2 ≤ 3/4, rev. ∈ {0, 1}.
1: if δ1 ≤ 1/4 then
2: u1 List← RecBW (y1, t− 1)
3: else
4: u1 List← ListRecBW (y1, t− 1, δ1)
5: end if
6: for u1 ∈ u1 List do
7: if δ2 ≤ 1/4 then
8: v2 List(u1)← RecBW ((y2 − t1) ·R(2t−1)T /2, t − 1)·

R(2t−1)
9: else

10: v2 List(u1)← ListRecBW ((y2−t1) ·R(2t−1)T /2, t−
1, δ2) ·R(2t−1)

11: end if
12: end for
13: for u1 ∈ u1 List do
14: for v2 ∈ v2 List(u1) do
15: if reverse = 0 then
16: Compute and store x̂← (u1, v2 + u1).
17: else
18: Compute and store x̂← (v2 + u1, u1).
19: end if
20: end for
21: end for
22: Return the list of all candidates x̂.

Unfortunately, the performance of Algorithm 3 on the Gaus-
sian channel is disappointing. This is not surprising: notice
that due to the “removing step” (in bold), some points that are
correctly decoded by Algorithm 2 (the BDD) are not in the
list outputted by Algorithm 3! Therefore, instead of removing
all candidates at a distance greater than r, it is tempting to
keep ℵ candidates at each step.

C. An efficient list decoder on the Gaussian channel

Algorithm 5 Second rec. list decoding of BW2n (2n = 2t)
Function ListRecBW (y, t, δ)

Input: y = (y1, y2) ∈ R2t , 1 ≤ t, 1/4 ≤ δ < 3/4.
Global variables: {ℵ(δ)}.

1: a← 2/3 · δ
2: r ←

√
2t−1 · δ

3: if t = 1 then
4: x̂← EnumZ2(y, r) // Enum. in Z2 with radius r =

√
δ.

5: else
6: x̂1 ← SubRoutine(y1, y2, t, a, δ, 0)
7: x̂2 ← SubRoutine(y1, y2, t, δ, a, 0)
8: x̂3 ← SubRoutine(y2, y1, t, δ, a, 1)
9: x̂4 ← SubRoutine(y2, y1, t, a, δ, 1)

10: Sort the candidates from the closest to the furthest to y and
remove all duplicates.

11: Keep the ℵ(δ) closest candidates to y.
12: end if
13: Return the list of all the candidates remaining.

Note: ℵ(δ) means that the number of candidates kept depends on δ.

Algorithm 5 is a modified version of Algorithm 3 where
ℵ(δ) candidates are kept at each recursive step. The size of the
list ℵ(δ), for a given δ, is a parameter to be fine tuned: e.g. for
δ = 1/2, one needs to chose ℵ(1/2) and ℵ(2/3 · 1/2 = 1/3).
The following theorem follows from Theorem 3.

Theorem 4. The complexity of Algorithm 5 is:
• O

(
max

(
n2ℵ(δ) log(ℵ(δ)), n2 log(n)

))
with δ ≤ 3/8.

• O
(
max

(
n2ℵ′ log(ℵ′), n2 log2(n)

))
with 3/8 < δ ≤ 1/2

(where ℵ′ = ℵ(2/3 · δ) · ℵ(δ)).

V. NUMERICAL RESULTS

A. Performance of Algorithm 5

Figure 1 shows the influence of the list size when decoding
BW64 using Algorithm 5 with δ = 3/8. On this figure we
also plotted an estimate of the MLD performance of BW64,
obtained as τ(BW64)/2 · erfc(γ/(8σ2

max/σ
2)) [5, Chap. 3].

Figure 2 depicts the performance of Algorithm 5 for the
BW lattices up to n = 128 and the universal bounds provided
in [26] (see also [12] or [15], where it is called the sphere
lower bound). This universal bound is a limit on the highest
possible coding gain using any lattice in n dimensions. For
each BWn we tried to reduce as much as possible the list
size while keeping quasi-MLD performance. The choice of
δ = 3/8 yields quasi-MLD performance up to n = 64 with
small list size and thus reasonable complexity. This shows that
BW64, with Algorithm 5, is a good candidate to design finite
constellations in dimension 64. However, for n = 128 one
needs to set δ = 1/2 and choose ℵ(δ) = 1000. Nevertheless,
ℵ(2/3 · δ) can be as small as 4, which is still tractable.

In the litterature, several constructions have been proposed
for block-lengths around n = 100. For fair comparison
between the dimensions, Pe is either the normalized error
probability, which is equal to the point error rate divided by
the dimension (as done in e.g. [26]), or the symbol error rate.
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Fig. 1. Influence of the list size when decoding BW64 using Alg. 5, δ = 3/8.
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Fig. 2. Algorithm 5 for the BW lattices up to n = 128 and the universal
bounds of [26]. ∗For n = 128, ℵ(δ) = 1000 and ℵ(2/3δ) = 4.

We compare the constructions for Pe = 10−5.
In [17] a two-level construction based on BCH codes with
n = 128 achieves this error-rate at 2.4 dB. The decoding
involves an OSD of order 4 with 1505883 candidates. In [1]
the multilevel (non-lattice packing) S127 (n = 127) has similar
performance but with much lower decoding complexity via
generalized minimum distance decoding. In [22] and [24] a
turbo lattice with n = 102 and a LDLC with n = 100
achieve the error-rate at respectively 2.75 dB and 3.7 dB
(unsurprisingly, these two shemes are efficient for larger block-
lengths). All these schemes are outperformed by BW64, were
Pe = 10−5 is reached at 2.3 dB. Moreover, BW128 has
Pe = 10−5 at 1.7 dB, which is similar to many schemes with
block-length n = 1000 such as the LDLC with n = 1000 (1.3
dB) [24], the polar lattices with n = 1000 (2.2 dB) [27], the
turbo lattices (1.2 dB) [22]. This benchmark is summarized in
Figure 3.

B. Performance BW finite constellations

We uncover the performance of a Voronoi constellation
[4][9] based on the partition BW64/2

ηBW64 via Monte Carlo
simulation, where η is the desired rate in bits per channel
use (bpcu): i.e. both the coding lattice and the shaping lattice
are based on BW64. It follows that the encoding complexity
is the same as the decoding complexity: the complexity of
Algorithm 5 with δ = 3/8 and ℵ(δ) = 20. Figure 4 exhibits
the performance of our scheme for η = 4bpcu. In our
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Fig. 3. Perf. of different lattices for normalized error probability Pe = 10−5.
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Fig. 4. Performance of a Voronoi constellation based on the partition
BW64/24BW64 where Algorithm 5, with δ = 3/8 and ℵ(δ) = 20, is
used for encoding and decoding. The cutoff-rate limit is 1.7+0.179dB right
to Shannon limit (coding + shaping loss for n = 64)[11].

simulation, the errors are counted on the uncoded symbols.
The error-rate also includes potential errors due to incomplete
encoding, which seem to be negligible compared to decoding
errors. Again, we plotted the best possible performance of
any lattice-based constellation in dimension 64 (obtained from
[26]). The scheme performs within 0.7dB of the bound.

VI. CONCLUSIONS

Our recursive paradigm can be seen as a tree search
algorithm and our decoders fall therefore in the class of
sequential decoders. While the complexity of Algorithm 5
remains stable and low for n ≤ 64, there is a significant
increase for n = 128 and it becomes intractable for n = 256
due to larger lists. This is not surprising from the cut-off rate
perspective [11]; For n = 64 the MLD is still at a distance of
1dB from this limit (Figure 4), but it is very close to the
limit for n = 128 and potentially better at larger n. One
should not expect to perform quasi-MLD of these lattices
with any sequential decoder. This raises the following open
problem: can we decode lattices beyond the cut-off rate in non-
asymptotic dimensions, i.e. n < 500, where classical capacity-
approaching decoding techniques (e.g. BP) cannot be used?
As final words, note that our scheme offers perfor-
mance/complexity trade-off similar to that of trellis-coded
modulations [11] (the best non-capacity-approaching scheme)
but without the need to use large block lengths.
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VII. APPENDIX

A. Analysis of the effective error coefficient

Let us define the decision region of a BDD algorithm
RBDD(0) as the set of all points of the space that are decoded
to 0 by the algorithm. The number of points at distance
ρ(Λ) from the origin that are not necessarily decoded to 0
are called boundary point of RBDD(0) The number of such
points is called effective error coefficient of the algorithm.
The performance of BDD algorithms are usually estimated via
this effective error coefficient [10][23]. Indeed, BDD up to the
packing radius achieves the best possible error exponent on the
Gaussian channel, but the performance might be significantly
degraded, compared to MLD, due to a high effective error
coefficient.
In [18], the error coefficient of the parallel decoder is not
computed and the performance of the algorithm is not as-
sessed on the Gaussian channel. The following analysis of
Algorithm 2 is also valid for the parallel decoder [18]. Let
us express the point to be decoded as y = x + η, where
x ∈ BWn and η is a noise pattern. Scale BWn such that
its packing radius is 1. It is easily seen that any η of the
form (± 1√

2t

2t

) = (± 1√
2t
, ...,± 1√

2t
), t = log2(n), is on the

boundary of RBDD(0). The number of such noise patterns is
22t

= 2n. According to Forney’s rule of thumb, every factor-
of-two increase in the number of nearest neighbor results in
a 0.2dB loss in effective coding gain [11]. Since the kissing
number of BWn is

∏t
i=1(2i+2) ≈ 4.768...·20.5log2n(log2n+1)

[5], to be compared to the above number of noise patterns 2n,
we see that the loss in performance compared to the MLD
(in dB) is expected to grow as ≈ 0.2n. However, this rule
holds only if the effective error coefficient is not too large
and the performance of Algorithm 2 is not as bad in practice.
Nevertheless, this analysis hints that one should expect the
performance of this BDD to degrade as n increases.


