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An Turyn-based neural Leech decoder

A new decoder for the Leech lattice is presented. This quasioptimal decoder utilizes a re-encoding paradigm, where candidates are obtained via a shallow neural network. This implies easy parallelization and low latency. The decoder exploits the fact that the Leech lattice is obtained from the direct sum of three polarized Gosset 8-dimensional lattices. This Turyn's construction was used in 2010 by G. Nebe to build the extremal even unimodular lattice in dimension 72 from three copies of the Leech lattice. Thus, we view this work as a first step towards the implementation of an efficient decoder for the Nebe 72-dimensional lattice.

Introduction

The Leech lattice Λ 24 was discovered at the dawn of the communications era [START_REF] Leech | Notes on sphere packings[END_REF]. Recently, it was proved that Λ 24 is the densest packing of congruent spheres in 24-dimensions [START_REF] Cohn | The sphere packing problem in dimension 24[END_REF]. Between these two major events, it has been subject to countless studies. This 24-dimensional lattice is exceptionally dense for its dimension and, unsurprisingly, has a remarkable structure. For instance, it contains the densest known lattices in all lower dimensions and it can be obtained in many different ways from these lower dimensional lattices. In fact, finding the simplest structure for efficient decoding of the Leech lattice has become a challenge among engineers. Forney even refers to the performance of the best algorithm as a world record [START_REF] Forney | A bounded distance decoding algorithm for the Leech lattice, with generalizations[END_REF]. Of course, decoding the Leech lattice is not just a useless game between engineers as it has many practical interests: its high nominal coding gain of 6dB makes it a good candidate for high spectral efficiency short block length channel coding and its spherical-like Voronoi region of 16969680 facets [START_REF] Conway | Sphere packings, lattices and groups[END_REF] enables to get state-of-the-art performance for operations such as vector quantization or lattice shaping.

Among others, Λ 24 can be obtained as (i) 8192 cosets of 4D , where H 24 is constructed by applying Construction B on the Golay code C 24 , and (iv) 4 cosets of the quarter-Leech lattice, where Q 24 is also built with Construction B but applied on a subcode of C 24 . Finally, one of the simplest construction is due to [START_REF] Bonnecaze | Quaternary Quadratic Residue Codes and Unimodular Lattices[END_REF], where the Leech lattice is obtained via Construction A applied on the quaternary Golay code.

The history of maximum-likelihood decoding algorithms for Λ 24 starts with [START_REF] Conway | On the voronoi regions of certain lattices[END_REF], where Conway and Sloane used (i) to compute the second moment of the Voronoi region of Λ 24 . The first efficient decoder was presented in [START_REF] Conway | Soft decoding techniques for codes and lattices, including the Golay code and the Leech lattice[END_REF] by the same authors using construction (ii). Two years latter, Forney reduced the complexity of the decoder by exploiting the same construction (ii), which he rediscovered in the scope of the "cubing construction", with a 256-state trellis diagram representation [START_REF] Forney | Coset codes II: Binary lattices and related codes[END_REF]. A year later, it was further improved in [START_REF] Lang | A Leech lattice modem[END_REF] and [START_REF] Be'ery | Fast decoding of the Leech lattice[END_REF] thanks to (iii) combined with an efficient decoder of C 24 . Finally, (iv) along with the Hexacode is used to build a state-of-the-art decoder in [START_REF] Vardy | Maximum-likelihood decoding of the Leech lattice[END_REF]. To further reduce the complexity, suboptimal bounded-distance decoders were also investigated based on the same constructions: e.g. [START_REF] Forney | A bounded distance decoding algorithm for the Leech lattice, with generalizations[END_REF] with (iii) and [START_REF] Amrani | The Leech lattice and the Golay code: bounded-distance decoding and multilevel constructions[END_REF] [27] with (iv). Most of these bounded-distance decoders don't change the error exponent (i.e. the effective minimum distance is not diminished) but increase the equivalent error coefficient. The extra loss is roughly 0.1dB on the Gaussian channel.

Besides lattice decoders tuned to the specific algebraic or geometric structure of a point lattice in the real Euclidean space, there exist universal lattice decoders, i.e. sphere decoders, based on point enumeration [START_REF] Viterbo | A universal lattice code decoder for fading channels[END_REF] [START_REF] Agrell | Closest point search in lattices[END_REF]. Sphere decoding is extremely fast at low noise level but it may get stuck (i.e. tragically slow) in looking for the closest point at high noise level for dense lattices in dimensions beyond 64. The parallelization of sphere decoding may help in overcoming this defect for high dimensions but its implementation over multiple processors was never made yet.

In this work, unlike the latest algebraic decoders, we don't use the Golay code to build our decoder but rather the multiple occurrence of E 8 in Λ 24 , similarly to [6][10]. This construction of the Leech lattice usually goes under the name of Turyn's construction. This structure enables to utilize a re-encoding process to correct errors. Since the decoder requires candidates, a simple list decoder for E 8 , based on a neural network, is presented: it uses the hyperplane logical decoder (HLD) [START_REF] Corlay | Neural Lattice Decoders[END_REF]. The advantages of the HLD are its low-latency and its hardware-friendly architecture. Moreover, to ensure the optimality of the HLD, we state a new theorem providing sufficient conditions for a basis of E 8 to be Voronoi-reduced. The performance of the proposed algorithm is investigated on the Gaussian channel.

Turyn's Construction

The story of Turyn's construction starts in 1967, when Turyn constructed the Golay code from two versions of the extended Hamming code [START_REF] Macwilliams | The Theory of Error-Correcting Codes[END_REF]. According to Nebe [START_REF] Nebe | A generalisation of Turyn's construction of self-dual codes[END_REF], it has then been remarked independently in [START_REF] Tits | Four presentations of Leech's lattice[END_REF], [START_REF] Lepowsky | An E8-approach to the Leech lattice and the Conway group[END_REF], and [START_REF] Quebbemann | A construction of integral lattices[END_REF] that there is an analogous construction of Λ 24 based on E 8 . Turyn's construction reappeared in [START_REF] Conway | Soft decoding techniques for codes and lattices, including the Golay code and the Leech lattice[END_REF] under the form of 4096 cosets of the lattice generated by glued copies of E 8 (construction (ii) above). Finally, it was rediscovered under both forms in the scope of the "cubing construction" [START_REF] Forney | Coset codes II: Binary lattices and related codes[END_REF]. We briefly describe below the Turyn's construction from E 8 and prove that the constructed lattice is the Leech Λ 24 . Our proof relies on simpler but less general arguments than those found in [START_REF] Quebbemann | A construction of integral lattices[END_REF] [START_REF] Lepowsky | An E8-approach to the Leech lattice and the Conway group[END_REF].

In the sequel, vol(Λ) denotes the fundamental volume of Λ, i.e. the volume of its Voronoi cell. The squared minimal distance (or minimal squared norm) of Λ will be denoted d 2 min (Λ). We say that an integral lattice is even if x 2 is even for any x in Λ. Let E 8 be a version of the Gosset lattice with squared minimal norm Theorem 1. Using the above notations, the lattice defined as

Λ ={(a, b, c) : a = m + n 1 , b = m + n 2 , c = m + n 3 , m ∈ M, n 1 , n 2 , n 3 ∈ N, n 1 + n 2 + n 3 ∈ 2L}
is the even unimodular Leech lattice Λ 24 .

Proof. Firstly, assume that m + n 1 and m + n 2 both have odd squared norms. This is equivalent to having the scalar products m, n 1 = λ 2 and m, n 2 = λ 2 , where λ and λ are odd integers. Then using n 1 +n 2 +n 3 ∈ 2L, we get that m, n 3 is integer. Thus m+n 3 has an even squared norm. We just proved that Λ is even.

Secondly, let us prove that d 2 min (Λ) = 4. Let x = (a, b, c) ∈ Λ. Given the symmetry with respect to the three sets of eight coordinates, we shall distinguish three cases according to the number of non-zero components:

1. x = {(a, 0, 0)} => a ∈ 2L => x 2 ≥ d 2 min (2L) = 4. 2. x = {(a, b, 0)} => a, b ∈ N => x 2 ≥ 2d min (N ) = 4. 3. x = {(a, b, c)} => x 2 ≥ 3d 2 min (L) = 3. But Λ is even, then x 2 ≥ 4.
This implies that Λ has d 2 min = 4. The last step aims at proving that Λ has a unit volume. Indeed, the definition of Λ is rewritten by developing a, b, c modulo 2L,

Λ ={(a, b, c) : a = d 1 + m + n 1 p1 , b = d 2 + m + n 2 p2 , c = d 3 + m + n 3 p3 , d 1 , d 2 , d 3 ∈ 2L, m ∈ M, n 1 , n 2 , n 3 ∈ N , n 1 + n 2 + n 3 = 0}, (1) 
where p 1 , p 2 , p 3 ∈ L/2L. [START_REF] Agrell | Closest point search in lattices[END_REF] shows that Λ is obtained by the union of cosets of (2L) 3 . The number of those cosets is determined by m , n 1 , and n 2 , with n 3 = -n 1n 2 . Hence, there are |M| × |N | 2 = 2 12 such cosets. Finally, vol(Λ) = vol((2L) 3 )/2 12 = 1. The Leech lattice is the unique lattice in dimension 24 with Hermite constant d 2 min /vol 2/24 = 4.

As stated in the introduction, a new extremal even unimodular lattice in dimension 72 of minimum 8 was discovered by Nebe in 2010 [START_REF] Nebe | An even unimodular 72-dimensional lattice of minimum 8[END_REF]. Given Nebe's lattice Hermite constant of 8 (9 dB) and its huge kissing number, we expect a performance about 2.5dB from Poltyrev limit [START_REF] Poltyrev | On coding without restrictions for the AWGN channel[END_REF] at a point error probability of 10 -5 on an additive white Gaussian noise channel. For a gentle introduction on this lattice and its Turyn's construction, the reader is invited to refer to [START_REF] Nebe | A generalisation of Turyn's construction of self-dual codes[END_REF]. Based on arguments similar to those in Theorem 1, we state the next lemma.

Lemma 1. N ebe 72 can be obtained as the union of 2 32 cosets of 2L ⊕ 2L ⊕ 2L , where L is a specific version of Λ 24 (with minimum 2) used in Turyn's construction of N ebe 72 .

Thanks to this lemma, it might be possible to use the algorithm presented in the next sections, with some modifications, to decode N ebe 72 .

A new Turyn-based Leech decoder

In [START_REF] Conway | Soft decoding techniques for codes and lattices, including the Golay code and the Leech lattice[END_REF] a point in R 24 is decoded in all 2 12 cosets of 2L ⊕ 2L ⊕ 2L and the best candidate is kept. However, as we shall see in the sequel it is not necessary to investigate all the cosets to get quasi-optimal performance on the Gaussian channel. To explain our decoder, we first introduce a naive decoder.

The main idea of this naive decoder is to generate several candidates for each of the three 8 dimensions of Λ 24 by decoding in L and keep only the combinations resulting in a valid point. The best point among these final candidates is then kept. To run the decoder, we first need to pre-compute the following elements.

1. Pick generator matrices for L, M, N . 2. Choose 256 coset leaders of 2L in L, a set denoted by C. For instance, they can be chosen with the "maximally biased method" of Forney [START_REF] Forney | Multidimensional Constellations -part II: Voronoi Constellations[END_REF]. 3. Generate M and N based on C (they are the unique 16 integers 8-tuples when the coset leaders in C are multiplied by the inverse of the generator matrix of M or N ). 4. Find the unique map between the 256 elements of C and the 256 elements of M + N mod 2L (create a look-up table ).

We are now ready to present the naive decoder. To decode a point y = (y 1 , y 2 , y 3 ) ∈ R 24 , the algorithm implements the following steps.

1. Generate ℵ candidates t 1 ∈ T 1 , t 2 ∈ T 2 , t 3 ∈ T 3 , t 1 , t 2 , t 3 ∈ L for each y 1 , y 2 , y 3 (i.e. |T 1 | = ℵ, |T 2 | = ℵ, and |T 3 | = ℵ).
2. For each of these candidates, find the coset of 2L it belongs to (i.e. find the proper coset leader in C). 3. For each of these coset leaders, find the unique corresponding elements m ti ∈ M and n ti ∈ N . 4. For each of the ℵ 3 combinations of (t 1 , t 2 , t 3 ), check if m t1 = m t2 = m t3 and n t1 + n t2 + n t3 = 0 (mod 2L). If the conditions are satisfied then store this point of Λ 24 . 5. For each point found, compute its distance to the received point. Keep the closest point.

Important choices are the rule to generate the candidates and the size of ℵ. We choose the candidates as the ℵ closest lattice points in L from y i .

Figure 1 illustrates the performance of the naive decoding algorithm on the Gaussian channel for several values of ℵ. Unsurprisingly, the performance is disappointing: if the noise realization is strong and concentrated on the 8 dimensions of a y i , even if y is within the decoding capability of Λ 24 , the proper t i is unlikely to be in the corresponding list, even if the list is large. Nevertheless, the noise is unlikely to be strong on two of the three 8 dimensions and almost null on the remaining 8 dimensions. Hence, if the list size is large enough (but not necessarily very large as shown below), at least two of the three lists probably contain the good point. Moreover, given a and b, thanks to (1), we know in which coset of 2L is located c (via the uniqueness of n 3 given n 1 and n 2 ). In other words, we can use these constraints to re-encode c based on a and b: once p 3 is computed, one can find d 3 by decoding y 3 in this coset of 2L. Note that the equivalent minimum distance of 2L is the same as Λ 24 . Consequently, if one decodes y 3 in the proper coset and the point y is within the decoding capability of Λ 24 , the closest lattice point from y 3 found in this coset of 2L is always the correct d 3 .

The second decoder (our main decoder) exploits these observations. It needs an additional element compared to the first decoder: a look-up table that gives the only valid n i ∈ N given one of the 256 possible tuples of 2 elements in N . We are now ready to present our main decoder.

1. Generate ℵ candidates t 1 ∈ T 1 , t 2 ∈ T 2 , t 3 ∈ T 3 , t 1 , t 2 , t 3 ∈ L for each y 1 , y 2 , y 3 (i.e. |T 1 | = ℵ, |T 2 | = ℵ, and |T 3 | = ℵ). 2.
For each of these candidates, find the coset of 2L it belongs to (i.e. find the proper coset leader in C). 3. For each of these coset leaders, find the unique corresponding elements m ti ∈ M and n ti ∈ N . 4. For each of the 3ℵ 2 combinations of (t i , t j ), if m ti = m tj find n k and generate the coset leader p k . Find the closest lattice point d k to y k in this coset of 2L and compute t k = d k + p k . Store the resulting point (t i , t j , t k ) ∈ Λ 24 (with the proper arrangement of t i , t j , t k ). 5. For each point found, compute its distance to the received point. Keep the closest point.

Figure 2 shows the very satisfactory performance of this decoding scheme for several values of ℵ. The candidates are the ℵ closest lattice points in L from y i . Fig. 2. Performance of the main decoder versus the optimal maximum-likelihood decoder (MLD) with different ℵ. The candidates are chosen to be the closest lattice points.

Note that the paradigm of this decoder is similar to the one of the Ordered Statistics Decoder [START_REF] Fossorier | Soft-decision decoding of linear block codes based on ordered statistics[END_REF], namely use a reliable subset of the received symbols to re-encode and correct errors.

A method to generate the list of candidates in L

In this section, we present a simple list decoder for E 8 . It is used in step 1 of the above main decoder.

Our strategy involves an optimal decoder for E 8 . We use the HLD because of its low-latency and its hardware-friendly architecture: it can be implemented via a neural network with only two hidden layers. This decoder operates in the fundamental parallelotope P and considers only the corners of P. Hence, to make sure that the HLD is optimal, we must prove that the closest lattice point to any point in P is one of the corner of P: i.e. we must prove that E 8 admits a Voronoi-reduced (VR) basis [START_REF] Corlay | Neural Lattice Decoders[END_REF].

Theorem 2. Let G be a generator matrix of E 8 , where all the basis vectors are from the first lattice shell. Let P be the interior of the fundamental parallelotope of E 8 . If (G -1 ) T is a generator matrix of E 8 with basis vectors from the first shell, then the G basis is Voronoi-reduced with respect to P.

The proof of this theorem is omitted due to the paper length. An example of a Voronoi-reduced basis for E 8 satisfying the sufficient conditions given by Theorem 2 can be found in [START_REF] Corlay | Neural Lattice Decoders[END_REF].

We are now ready to present the list decoder:

1. Find the closest lattice point x 1 ∈ L to the point to decode y i via the HLD. Compute y = R × (y ix 1 )/||y ix 1 || and find x 2 , the closest lattice point of y , also via the HLD (R = (1 + ) × d min / √ 2, where d min / √ 2 is the covering radius of E 8 ). 2. Compute x 3 = (x 2 + x 1 )/2. Two situations can be encountered: (i) if ||x 2 -

x 1 || = √ 2 × d min , then there are 14 lattice points at equal distance from x 3 . (ii) If ||x 2x 1 || = d min , then there are 56 lattice points at equal distance from x 3 . In both cases, the list is formed by x 1 , x 2 , and the other ℵ -2 points, among the 14 or 56 points at equal distance from x 3 , that are the closest to y i .

With ℵ = 11, the performance of the main decoder using this list decoder is almost the same as one depicted in Figure 2 by the purple curve.

Summary and complexity analysis

The decoder is summarized in Figure 3.

Nowadays, the CPU time of an algorithm is not as crucial as it used to be: with the advent of GPUs, parallelization is often more important than the raw amount of flops. This former aspect is clearly a strength of the proposed
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Fig. 3. Overview of the proposed decoder. From left to right: the point to decode y ∈ R 24 is split into three points y1, y2, y3 ∈ R 8 , which are then processed independently. A list of |{ti}| = ℵ candidates for each yi is generated. For each valid combination of (ti, tj), a lattice point of Λ24 is obtained. The closest point to y among these lattice points is the decoded point.

algorithm, mainly due to the parallel processing of the three 8 dimensions of the point to decode y ∈ R 24 and the shallow structure of the HLD.

The CPU time could be optimized, but at the cost of latency: for instance, a large amount of computations in our algorithm is due to the multiple use of the HLD. Hence, the number of flops could be reduced via folding techniques, such as the one presented in [START_REF] Corlay | A lattice-based approach to the expressivity of deep ReLU neural networks[END_REF], decreasing the complexity of the HLD. Nevertheless, this implies using neural networks which cannot be parallelized as efficiently due to a large depth. Similarly, one could also replace the HLD by the low-complexity E 8 decoder presented in [START_REF] Conway | Soft decoding techniques for codes and lattices, including the Golay code and the Leech lattice[END_REF] but this would also increase the latency.

A rough estimate of the CPU time C of our Leech decoder is the following. Let C(HLD) denote the complexity of the maximum-likelihood decoder of E 8 . The largest amount of operations are due to: (i) finding the two maximum-likelihood points in the list decoder of E 8 , (ii) finding the coset of 2L each candidate belongs to, and (iii) re-encoding and processing the 3ℵ 2 points. We get: C ≈ 3 × 2 × C(HLD) + 3 × ℵ × C(HLD) + 3ℵ 2 (a + C(HLD)) + b, where a and b are small constants. Our decoder is more complex than the stateof-the art decoder of Vardy [START_REF] Vardy | Even more efficient bounded-distance decoding of the hexacode, the golay code, and the leech lattice[END_REF] which requires only 331 real operations. However, this latter decoder is specific to Λ 24 whereas our decoder is more universal: the re-encoding paradigm can be used whenever some dimensions of the lattice are explicitly constrained by the others, which is the case of the Nebe 72-dimensional lattice.
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 8128 = 2 and a fundamental volume equal to unity, i.e. an even unimodular version. Consider L = with minimal norm 1 and volume 2 -4 . Starting from the quotient L/2L, we determine two versions M and N of E 8 satisfying 2L ⊂ M ⊂ L, and 2L ⊂ N ⊂ L, with vol(M ) = vol(N ) = 1, d 2 min (M ) = d 2 min (N ) = 2, and M N = 2L, to get the following polarisation of L [18]: L = M + N. M and N are integral even unimodular lattices. Now define the quotient groups M = M/2L and N = N/2L, |M| = |N | = 2 4 .
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