
HAL Id: hal-02915937
https://telecom-paris.hal.science/hal-02915937

Submitted on 19 Aug 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

SysML Models: Studying Safety and Security Measures
Impact on Performance Using Graph Tainting

Maysam Zoor, Ludovic Apvrille, Renaud Pacalet

To cite this version:
Maysam Zoor, Ludovic Apvrille, Renaud Pacalet. SysML Models: Studying Safety and Security Mea-
sures Impact on Performance Using Graph Tainting. 17th Workshop on Model Driven Engineering,
Verification and Validation (MoDeVVa 2020), Oct 2020, Montreal, Canada. �hal-02915937�

https://telecom-paris.hal.science/hal-02915937
https://hal.archives-ouvertes.fr

SysML Models: Studying Safety and Security Measures Impact
on Performance Using Graph Tainting

Maysam Zoor
maysam.zoor@telecom-paris.fr
LTCI, Télécom Paris, Institut

polytechnique de Paris
France

Ludovic Apvrille
ludovic.apvrille@telecom-paris.fr
LTCI, Télécom Paris, Institut

polytechnique de Paris
France

Renaud Pacalet
renaud.pacalet@telecom-paris.fr
LTCI, Télécom Paris, Institut

polytechnique de Paris
France

ABSTRACT
Designing safe, secure and efficient embedded systems implies
understanding interdependencies between safety, security and per-
formance requirements and mechanisms. In this paper, we intro-
duce a new technique for analyzing the performance impact of
safety/security implemented as hardware and software mechanisms
and described in SysML models. Our analysis approach extracts a
dependency graph from a SysML model. The SysML model is then
simulated to obtain a list of simulation transactions. Then, to study
the latency between two events of interest, we progressively taint
the dependency graph according to simulation transactions and to
dependencies between all software and hardware components. The
simulation transactions are finally classified according to which
vertex taint they correspond, and are displayed according to their
timing and related hardware device. Thus a designer can easily
spot which components need to be re-modeled in order to meet
the performance requirement. A Rail Carriage use case studied in
the scope of the H2020 AQUAS project illustrates our approach, in
particular how tainting can handle the multiple occurrences of the
same event.

CCS CONCEPTS
• Computer systems organization→ Embedded software.

KEYWORDS
Embedded Systems, Safety, Security, Performance, MBSE, Simula-
tion, verification,Tainting
ACM Reference Format:
Maysam Zoor, Ludovic Apvrille, and Renaud Pacalet. 2018. SysML Models:
Studying Safety and Security Measures Impact on Performance Using Graph
Tainting. In MoDeVVa ’20: 17th Workshop on Model-Driven Engineering Ver-
ification & Validation, October 18–23, 2020,Montreal, Canada. ACM, New
York, NY, USA, 10 pages. https://doi.org/10.1145/1122445.1122456

1 INTRODUCTION
One of the challenges when designing embedded systems is to
satisfy altogether its safety, security and performance requirements.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MoDeVVa ’20, October 18–23, 2020, Montreal, Canada
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/10.1145/1122445.1122456

The advantages of designing embedded systems while taking the
interactions of safety, security and performance requirements into
consideration early in the design cycle is highlighted in several
approaches [18][16][27]. To study the requirements dependencies,
simulation and verification shall be used as early as possible in the
design process. Estimating performance at this stage of the design
process is considered as “very valuable approach in the area of SoC
design” [31] as it results in updating the model in a cost efficient
manner [29].

Thus, the paper introduces a new technique for analyzing the
impact on performance when changing a SysML model. A model
change consists in adding or removing safety and security mech-
anisms. Mechanisms are based on a set of software or hardware
components. For example, adding encryption may result in addi-
tional computation and communication time due to encryption
—and decryption— functions. Also, longer messages to transfer may
create additional contentions on shared resources [32]. This new
analysis approach can assist the designer in tuning and adapting
the model by indicating which hardware components or software
functions provoke an extra latency between selected events. It can
also report how much a new function is involved in this latency.

This paper is organized as follows. Section 2 discusses different
model verification approaches with a focus on performance verifica-
tion and on approaches with security and performance dependency.
Then, Section 3 presents the SysML—Sec modeling and verification
approach upon which our new contribution is based. In Section 4,
our performance analysis algorithm is detailed. A Rail Carriage use
case studied in the scope of the H2020 AQUAS project illustrates
our contribution in Section 5. Finally, Section 6 concludes the paper.

2 RELATEDWORK
Several tools exists to analyze and verify the timing properties of
real-time systems. These tools are based on static or dynamic anal-
ysis and verification methods [19]. Static methods don’t require
model execution [19]. Static methods are used in hard real-time
systems to guarantee that deadlines are met and calculate worst-
case execution time [25]. Dynamic methods require the execution
of the model, they are applied on soft real-time systems and are
further divided into formal and simulation methods. Tools like
Metropolis from Berkeley [10] implements simulation and formal
verificationmethods while TimeSquare [12] simulate a design based
on MARTE model where clock constraints are specified based on
Clock Constraint Specification Language (CCSL) [9]. Some tools
like Time4Sys [7] connect system modeling editors and real-time
analysis tools. Tideal [30] uses Time4Sys to analyze and simulate
models. In [26], high level modeling and simulation methods and

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

MoDeVVa ’20, October 18–23, 2020, Montreal, Canada Maysam Zoor, Ludovic Apvrille, and Renaud Pacalet

tools for system level performance evaluation of embedded systems
are introduced. The approach is based on Kahn process networks
(KPN). Another tool proposed in [23] for performance evaluation
based on SystemC and traces analysis has a limited support for flex-
ible task mapping and scheduling policies. Ptolemy framework [13]
is used to model, design and simulate the interactions of concurrent
real-time components in embedded systems. In [17] a modeling
and simulation methodology for complex embedded systems based
on NS-2/SystemC integration is presented. Inspired by [17], Sys-
temC and OMNeT++ are combined in [24] to form a cosimulation
framework for a distributed system of systems.

Several contributions specifically address the impact of security
on performance. In [32], a cross-layer design framework combines
control-theoretic methods and cybersecurity techniques. The result
of this framework is a Pareto front between two normalized metrics
representing control performance and security level. The provided
region denotes all feasible solutions for the requirements under
study, an important output for making decision choices. Another ap-
proach presented in [21] addresses automotive security and timing
constraints for message exchange. This approach takes a task graph
as input and computes a task allocation and scheduling by taking
security and schedulability into account. To evaluate the impact of
security on performance in modern systems, Fujdiak et al. [16] rely
on experimental measurements. Their results demonstrate a linear
relation between security levels and performance. The authors of
[15] propose the interaction of two tools to study the link between
security requirements and their impact on performance, and help
deciding high-level metrics to better capture the performance of
security mechanisms. The authors are thus able to compare the
performance of system models for different security levels.

To deal with requirements of different kind (safety, security,
performance), industrial and academic partners collaborated on
several projects including MERgE [2], Sesamo [3], CRYSTAL [6].
While most of these projects considered the relation between safety
and security, some also added performance to the scope like, for
example, SAFURE [8], AMASS [28], EVITA [1] and AQUAS [4].

Nevertheless, to the best of our knowledge, the aforementioned
works do not address a tool in which safety and security require-
ments can be verified along with their detailed impact on perfor-
mance. The detailed impact on performance can be achieved by
identifying which components lead to extra processing time or
hardware contention, and providing designers with advices on how
to improve the model while satisfying safety/security and perfor-
mance requirements.

3 SYSML-SEC
3.1 Method
TTool [5] is a free and open source framework for the design and
verification of embedded systems. SysML-Sec is one of the mod-
eling profiles supported by TTool. SysML-Sec is used to design
safe and secure embedded systems while taking performance into
account. In the first stage of SysML-Sec (Figure 1), requirements are
identified and explicitly tagged as safety, security or performance.
Also, in this step, attacks that could target the system and faults
that could occur in the system are modeled in attack and fault trees

Legend
Modeling
Verification
Method Flow
Functional Model
As Input

Analysis

Attack Trees

Fault Trees

HW/SW Partitioning

Functional Architecture

Mapping

Requirements

Safety Security Performance

(Formal) Verification

Performance

ProVerifUPPAAL

Safety Security

 Simulator

Latency
Detailed Analysis

 Simulator

Figure 1: SysML-Sec modeling profile used in TTool

respectively. Next, in the HW/SW partitioning step, the architec-
ture and high-level functional behavior are modeled before being
linked in the mapping phase: this step helps deciding how functions
should be split between hardware and software mechanisms, and
how communications between functions are realized using physi-
cal elements. Second, the design of the software elements can be
performed in the software design stage: functions mapped to proces-
sors are expected to be refined as software components. Verification
can be performed with a press-button approach from most views so
as to check that all requirements are satisfied. TTool can perform
verifications using formal techniques (e.g., model-checking) and
simulations. Safety verification relies on the TTool model checker
or on UPPAAL. Security verification relies on the ProVerif [11]
external toolkit. Performance verification relies on a System-C like
simulator provided by TTool. Once a model has been verified, C
code generation can be performed from partitioning models or from
software design.

3.2 HW/SW partitioning
A HW/SW partitioning is formally defined as the composition of a
Functional view, an Architecture Model and a Mapping Model [20].

In the functional view, composite components (colored in yel-
low) serve as containers for primitive components. Primitive com-
ponents (green), also referred to as tasks, have attributes and be-
haviors assigned to them. The behavior is described by an activity
diagram built upon a set of operators. Operators can be divided
into 3 categories.

(1) Control operators: handle the execution flow of a task e.g.
loops.

(2) Complexity operators: intend to facilitate the modeling of
algorithms’ complexity in terms of, e.g., integer operations
(ExecI).

(3) Communication operators: Channels, Events or Requests.
• Channels: model data exchange. As we are considering
a high level of abstraction, only the amount of data is
considered not the data values. There are 3 possible types
of channels [14]:

SysML Models: Studying Safety and Security Measures Impact on Performance Using Graph Tainting MoDeVVa ’20, October 18–23, 2020, Montreal, Canada

(a) Blocking Read — Non Blocking Write (BR-NBW): this is
equivalent to an infinite FIFO buffer between the sender
and receiver task. The sender can write infinite times
while the receiver task blocks when attempting to read
from an empty channel.

(b) Non Blocking Read — Non Blocking Write (NBR-NBW):
this is equivalent to a shared memory of infinite size
between the sender and receiver task. The sender can
infinitely write and the receiver never blocks when at-
tempting to read.

(c) Blocking Read — Blocking Write (BR-BW): this is equiv-
alent to a finite FIFO buffer between the sender and
receiver. The sender blocks when attempting to write
to a full channel and the receiver task blocks when at-
tempting to read from an empty one.

• Events: used for synchronization between two tasks. Events
arriving at a given task can be managed in 3 ways:

(a) Infinite FIFO: events are never lost.
(b) Non Blocking finite FIFO: when the FIFO is full, the first

(oldest) element is removed from the FIFO and the new
one is added.

(c) Blocking finite FIFO: when the FIFO is full, no event
is added until the FIFO is not full. The event sender is
blocked until the event is added to the FIFO.

• Requests: used to model task spawning. Requests arriving
at a given task are stored in an infinite FIFO; they are never
lost. Requests are never blocking for the sender task.

An Architecture Model is built upon a set of parametrized hard-
ware nodes and physical links between nodes. Hardware nodes are
split into three categories:

(1) Execution nodes: Hardware Accelerators, CPUs, FPGAs. . .
(2) Communication nodes: Buses, Bridges. . .
(3) Storage nodes: Memories
A mapping model allocates tasks and communications to hard-

ware components. Tasks mapped to processors are software imple-
mented while tasks mapped to Hardware Accelerators or FPGAs
are hardware implemented. The semantics of hardware nodes can
be customized with parameters. The high level semantics of these
nodes makes it possible to perform formal verifications or fast
transaction-based simulations.

3.3 Performance Evaluation
Performance evaluation mostly consists in generating simulation
traces from a given SysML mapping, and then analyzing these
traces. Trace analysis helps figuring out performance parameters
of the hardware nodes (e.g. processor and bus load) but also how
the application behaves. There, one important application metrics
is the latency between two events executing within the application,
as shown in [20]. While in some simple cases having the min/max
latency can be beneficial for the designer, in other complex cases,
especially when new safety and security measures are added to the
model, having only the min/max delay between operators doesn’t
help much the designer on the precise cause of the latencies or on
how to enhance the model to further improve performance. For this,
the performance evaluation technique of TTool has been updated
in [33].

Transaction 1
Transaction n

Latency
Directed

Graph

Simulation Trace Analysis (STA)

Mapping 1

M
apping 1

CPU_S
Bus

CPU_R

θA θB

Simulation

D
etaile d

 L
aten

cy
 A

n
alys is

chl
S2R_CHANNEL(4)

evt
S2R_EVENT()

Loop for ever
chl

R2C_CHANNEL(4)

Figure 2: Detailed Latency Analysis Technique added to
SysML-Sec

The enhanced performance analysis technique analyzes the sim-
ulation traces of a SysML mapping model to show which elements
of the platform contributed to the latency value. Themain algorithm
named Simulation Trace Analysis (STA) takes as input (Figure 2):
(1) the simulation trace (2) a generated latency graph corresponding
to the mapping model and (3) two operators — named θA and θB
— selected by the user to study the latency across them. Operators
are defined in Section 3.2. The output of STA is two arrays of trans-
actions: mandatory transactions and non-mandatory transactions.
The mandatory transactions are the transactions that should be
executed after the first operator and are mandatory for the second
operator to execute. Non-mandatory transactions are those related
to the same hardware as either one of the two operators, they are
not mandatory to execute and might contribute to an additional
latency that can be eliminated between the two operators. More
details on mandatory and non-mandatory transactions is given in
Section 4.1.

4 DETAILED LATENCY ANALYSIS
TECHNIQUE (DLAT)

4.1 Simulation Trace
A mapping model p is simulated for a time interval using TTool
simulator. TTool simulator [19] is transaction-based. A transaction
represents a computation or communication operation in the task
activity diagram. Control flow operators do not have a correspond-
ing transaction since we assume that they are executed in zero
time. After simulating the model, the executed transactions can be
saved in a simulation trace sp according to their start times. Thus a
simulation trace is defined as a set of simulation transactions where
each simulation transaction contains the following attributes:

MoDeVVa ’20, October 18–23, 2020, Montreal, Canada Maysam Zoor, Ludovic Apvrille, and Renaud Pacalet

• device, task and operator: defines to which task/operator
the transaction belongs and on which hardware node it was
executed.
• runnableTime (in clock cycles): defines the absolute time at
which the transaction is ready to be executed. This attribute
is independent of shared resource contention.
• length: number of clock cycles needed to execute the trans-
action.
• startTime and endTime (in clock cycles): define the time at
which the hardware node started and ended the transaction
execution. In case of hardware congestion, a transaction
may be postponed, thus delaying its start time. endTime
is calculated as: startTime+ length+ Penalties. Penalties
represent the time taken by the OS and the CPU hardware
to go idle and the time taken by the OS for a context switch
(Task switching time).

Simulating the mapping of Figure 2 for 402 cycles results in 90 trans-
actions. An excerpt of the simulation trace showing six transactions
is shown in Figure 6(a).

4.2 Latency Analysis Using Graph Tainting
The Detailed Latency Analysis Technique (Figure 2) already imple-
mented in TTool [33] helps the designer to investigate the model
performance and the cause of delay between two operators θA and
θB . However, it is based on the assumption that the two opera-
tors have a one-to-one relation. In other words, it assumes that the
ith occurrence of the second operator θB corresponds to the ith
occurrence of the first operator θA. While this assumption holds
for some use cases as shown in [33], removing this assumption
opens new avenues. To overcome the one-to-one limitation, a new
analysis technique is defined in this section. This analysis is now
based on graph tainting. In addition, our new contribution takes
into account contentions on communication and storage nodes and
identifies in its output the transactions that caused extra delays due
to contentions on communication and storage nodes.

Similar to Figure 2, the Detailed Latency Analysis based on graph
tainting has a main algorithm named Simulation Trace Analysis-
Graph Tainting (STA-GT). STA-GT (detailed in Section 4.4) takes
as inputs:

(1) A Latency Graph: To analyze the dependencies and rela-
tion between the transactions in a simulation trace, a SysML
mapping model is translated into a directed graph. Vertices
of this graph are tainted with the STA-GT algorithm (Sec-
tion 4.3).

(2) A Simulation Trace: TTool simulator generates a simula-
tion trace of the considered mapping model (Section 4.1).

(3) 2 operators: The designer selects two operators (θA and θB)
between which he wishes to study the latency. These opera-
tors must be part of the activity diagram of the considered
tasks (Section 3.2).

4.3 Latency Graph
The first step in DLAT is generating a directed graph from the
mapping model.

As shown in figure 3, the architecture model is a UML Deploy-
ment Diagram built upon a set of connected nodes that represent

Figure 3: Section of the Metamodel Diagram of SysML-Sec
Methodology

resources. These nodes are divided into 3 categories: computation,
communication and storage nodes. The functional view is built on
a set of tasks interconnected by data and control ports and chan-
nels. It is defined by SysML Block Definition and Internal Block
Diagrams. Each task is defined by a SysMLBlock and its internal
behavior is a sequence of actions (activity diagram) defined in a
SysML Activity diagram. In the mapping model, tasks along with
their communication channels are allocated on the Nodes of the
architecture model.

Throughout this section, the mapping displayed at the top of
Figure 2 is considered. The functional view corresponding to this
mapping is shown in Figure 4, with block instances at the top and
related activity diagrams below blocks. This toy example illustrates
sending an event then data from one task (STASK) to another task
(RTASK). In RTASK , the data is received, a computation is done and
data is send to a third task (CTASK). T IMER is a "toy competing
task" that runs a delay of 1ns added to create contentions on its host
CPU. The latter task was omitted from Figure 4 to keep it readable.

A Latency Graph (G) is a directed graph consisting of a set of
vertices ν and a set of directed edges ϵ :G = (ν , ϵ).G is built from a
mapping model. For instance, the directed graph of the toy example
is shown in Figure 5 (T IMER task omitted). A vertex is added to
G for each hardware node i.e. for computation, communication
or storage node (Bus0, CPU _R, CPU _S ,Memory0). Then for every
task mapped to a node, a vertex is added. Moreover, a directed edge
is added from the corresponding node vertex to the added task
vertex to represent the mapping. The same is applied for mapped
communication channels. For example, considering the mapping
in Figure 2 : CTASK vertex is added and CPU _R vertex connected
to it, S2R_CHANNEL vertex is added and Bus0 vertex connected
to it in Figure 5. This approach is applied to all model elements
including activity diagrams.

SysML Models: Studying Safety and Security Measures Impact on Performance Using Graph Tainting MoDeVVa ’20, October 18–23, 2020, Montreal, Canada

STASK
S2R_CHANNEL

RTASK

+ x = 0 : Natural;R2C_CHANNEL
CTASK

S2R_EVENT

chl
S2R_CHANNEL(4)

evt
S2R_EVENT() Loop for ever

chl

R2C_CHANNEL(4)

evt
S2R_EVENT()

S2R_CHANNEL(4)

Loop 5 times

inside loop

exit loop

[x<2]

[else]

x=x+1

10

20
chl

R2C_CHANNEL(4)

Figure 4: Functional view and Activity Diagrams of figure 2
Mapping

Figure 5: Directed Graph

For every action in the activity diagram, a vertex is added along
with the required edges to preserve the sequence on the control
flow. In addition, directed edges are added to represent the logical
connections between tasks (i.e. events and requests. For exam-
ple: Send Event "STASK .send (S2R_EVENT)" is directly connected
to Receive Event "RTASK .wait (S2R_EVENT)". For the channels,
directed edges are added between the read/write channel action
and the vertex that correspond to the communication channel. In
figure 5, STASK .write (S2R_CHANNEL, 4) vertex is connected to
S2R_CHANNEL vertex.

In the mapping model a unique ID is given to each element. This
ID combined with the name of the element serve as the key value of
each vertex inG . To implement the tainting withinG , in addition to

{
{

{

(a)

(b)

Figure 6: (a) Six Simulation Transactions (b) Tainting Part of
Directed Graph

the vertex ID, basic attributes are added to vertices. These attributes
are:

(1) type: identifies to which kind of element of a mappingmodel
each vertex corresponds: Node, task, for ever loop, for loop,
control, channel, start, end, choice, sequence, unordered se-
quence or transaction operator. . .

(2) taintValues: stores the taint values of a vertex. Every taint
value is unique within a DLAT. An 8-byte unique taintValue
is generated whenever a transaction related to the first oper-
ator (θA) is encountered in the simulation trace. The gener-
ated taintValue is added to the taintValues attribute of the
vertex corresponding the first operator. The taintValue is
propagated to other vertices as discussed in section 4.4.

(3) taintFixedNumber (fixedNbr): is the default number of
times this vertex is considered in calculating the delay be-
tween two operators per taintValue. The fixedNbr is 1 for
all vertex types except for “for loops” where it is equal to
the number of iterations and for “for ever loop” where it is
equal to integer maximum value. For example in figure 5,
the vertex “RTASK . f orLoop (5)” fixedNbr is 5. The fixedNbr
is used to determine themaxNbr introduced next.

(4) taintMaxNumber (maxNbr): stores the maximum number
of times this vertex is considered in calculating the delay
between two operators per taintValue (i.e in the presence
of loops). The maxNbr differs from the fixedNbr when the
vertex is inside a loop. For example in figure 5, if the vertex
“RTASK . f orLoop (5)” is tainted, its fixedNbr is 5, the maxNbr
for “RTASK .action(x = x+1)” is f ixedNbr (RTASK .f or Loop (5))
∗ f ixedNbr (RTASK .action (x=x+1)) = 5 ∗ 1 = 5.

(5) taintConsideredNumber (conNbr): identifies the number
of times this vertex is already considered in calculating the
delay between two operators per taintValue.

The STA-GT algorithm detailed in the following section shows
the use of these different attributes. Note that the type andfixedNbr
attributes are set during graph generation when a vertex is added.
In the scope of this paper, the communication semantics of finite

MoDeVVa ’20, October 18–23, 2020, Montreal, Canada Maysam Zoor, Ludovic Apvrille, and Renaud Pacalet

FIFO buffer where read/write channels, send/receive events or re-
quest can be overwritten in the buffer are not (yet) handled in the
graph vertices. We intend to address this limitation in future work.

4.4 Simulation Trace Analysis-Graph Tainting
(STA-GT)

Let’s consider a simulation trace sp . To study in sp the latency
between two operators θA and θB defined in the mapping model
p, the simulation transactions in sp are ordered according to their
start time. In case several transactions have the same start time, the
transactions are further ordered according to their end time. The
order of considering transactions that have the same start and end
time is indifferent as in the simulator only transactions with earlier
end time may alter later transactions due to the cause and effect
policy [19].

Algorithm 1 performs the simulation trace analysis using graph
tainting to calculate the latency between two operators θA and θB .
The delay between the occurrence of θA and θB is calculated based
on the propagation of a taint value along the generated directed
graph. In addition, algorithm 1 highlights for the designer which
hardware component or software function contributed in increas-
ing the delay between θA and θB . In this algorithm, the transactions
in sp are considered sequentially. For each transaction its corre-
sponding operator, startTime, endTime, device and runnableTime
are used to determine if the transaction contributed to extra delay
between θA and θB execution and whether its corresponding vertex
should be tainted with a taintValue.

For every taintValue (t) added to the vertex corresponding to θA
(VθA) we should have:
• a simulation transaction (stAt) where st .operator = θA: this
situation leads to adding (t) to VθA
• a simulation transaction (stBt) where st .operator = θB : this
simulation transaction is encountered after (t) is propagated
to VθB
• an array of simulation transactions that were executed af-
ter the occurrence of the stAt , and are mandatory for stBt
occurrence (ArrayMandatory).
• an array of simulation transactions that don’t belong
to arrayMandatory , but that are in the simulation trace
sp and occurred between stAt , and stBt . This array
(ArrayNonMandatory) is further split into two sub arrays:
– ArrayContention : contains transactions that have delayed
the execution of transactions from ArrayMandatory be-
cause of a contention on a shared and common execution
node.

– ArrayNonContention : contains transactions
from ArrayNonMandatory that don’t belong to
ArrayContention , i.e. transactions that have used
hardware execution nodes without impacting the delay
between the operators under study.

Using the output of algorithm 1, the latency λt between θA and
θB for a taint value t is computed as:

λt = endTimestBt − startTimestAt (1)

To show how a taint value propagates along a generated graph,
lets consider the example given previously. let θA be the writing

channel S2R_CHANNEL operator in STASK task and θB be the
reading channel R2C_CHANNEL operator in CTASK task. VθA
and VθB are colored green in Figure 5. In this example, the one-
to-one relation between θA and θB doesn’t hold since the data
channels S2R_CHANNEL and R2C_CHANNEL are Non Blocking
Read — Non Blocking Write (Section 3). Thus, in the simulation
trace multiple simulation transactions corresponding to reading
these channels may exist before writing them (first 2 transactons
in Figure 6(a)). To calculate the latency algorithm 1 is used.

A taintValue is generated whenever a simulation transaction
(st) where st .operator = θA is encountered. The generated taint-
Value is added to the taintValues attribute of VθA . The taintVal-
ues attribute of VθA contains a unique taintValue for every oc-
currence of st .operator = θA in sp . In Figure 6, a taintValue
(t), presented in purple circle, is added to VθA once a simulation
transaction with st .operator = θA is encountered in sp (second
simulation transaction in Figure 6(a)). In addition to adding t
to VθA , t is propagated to all successors vertices of VθA (shown
in red arrows in Figure 6(b)) and maxNbr determined for each.
A successor vertex is a vertex connected by one incoming edge
from VθA . In Figure 6, t is propagated to VS2R_CHANNEL corre-
sponding to communication on BUS0 and to VSTASK .stop . The
conNbr for a vertex is incremented by one once its successors are
tainted. conNbr of a vertex is compared to its maxNbr to check
if this vertex can still be considered for t . Once st .operator =
VS2R_CHANNEL is encountered afterVθA andVS2R_CHANNEL are
tainted with t (third simulation transaction in Figure 6(a)), t is
propagated to VRTASK .r ead (S2R_CHANNEL,4) (shown in green ar-
row in Figure 6(b)). When a simulation transaction corresponding
to VRTASK .r ead (S2R_CHANNEL,4) is encountered (fifth simulation
transaction in Figure 6(a)), and VRTASK .r ead (S2R_CHANNEL,4) is
tainted with t , then this simulation trace corresponds to reading the
tainted data. t is propagated to VRTASK .f or Loop (5) (navy color ar-
row in figure 6(b)). As no transactions corresponds to control opera-
tors including “for loops”, t is propagated toVRTASK .action (x=x+1)
where themaxNbr is also set to 5 since it falls inside a for loop.

The conNbr for the RTASK . f orLoop (5) will be incremented
after all the vertex inside the loop are considered once. Ver-
texes corresponding to control operators are tainted and their
conNbr is updated in order to maintain the progress of a taint
value across the graph according to the functional logic in
the mapping. The vertex corresponding to the exit of the loop
(RTASK .write (R2CCHANNEL, 4) in our case) will be tainted after
the conNbr for the RTASK . f orLoop (5) equals itsmaxNbr .

We consider reading channel R2C_CHANNEL in CTASK task
to be θB . t will be transmitted to VCTASK .r ead (R2C_CHANNEL,4)
after R2C_CHANNEL is tainted. The simulation transaction where
st .operator = θB , encountered after t is propagated to VθB , is used
to calculate the latency λt .

Algorithm 1 (lines 13 — 34) is executed to fill ArrayMandatory
and ArrayNonMandatory . The first step is to check if VθA and VθB
are connected by at least one path in the graphG . A path is defined
as a sequence of vertices such that each vertex in the sequence is
connected with directed edge to vertex next to it. This sequence
should start with VθA and end with VθB to say that we have a path
between VθA and VθB . For every simulation transaction added to

SysML Models: Studying Safety and Security Measures Impact on Performance Using Graph Tainting MoDeVVa ’20, October 18–23, 2020, Montreal, Canada

Table 1: Time Values of Two Simulation Transaction in Fig-
ure 6

runnableTime starttime endtime

sti 1 200 202
stii 200 300 302

Table 2: The Tainting Progress
V
θ B

V
θ A

V
S
2R

_C

V
T
IM

E
R

V
θ B

Vθst is VθA? NO YES NO NO NO

Vθst is VθB ? YES NO NO NO YES

t = Null? YES NO NO NO NO

vertexHasSuccessors (д,Vθst)? − YES YES − YES

Vθst ∈ path? − YES YES NO YES

add (st) to ArrayMandatoryt ? − YES YES NO YES

add (st) to ArrayNonMandatt ? − − − YES NO

ArrayMandatory its runnableTime and startTime are saved to
be used to divide ArrayNonMandatory between ArrayContention
and ArrayNonContention (Algorithm 1: lines 35 — 44). Generally
speaking, if the runnableTime and startTime values of a transaction
don’t match, it means that the simulator scheduled a transaction
but didn’t execute it since the resource was busy.

Lets consider the fourth and sixth transaction in the excerpt
of the simulation trace of the example introduced before (Fig-
ure 6). We refer to the fourth simulation transaction as sti and
the sixth as stii . The simulation transactions sti and stii be-
long to ArrayNonMandatory and ArrayMandatory respectively.
sti and stii are executed on the same hardware. sti is exe-
cuted at cycle 200 between the runnableTime (200) and start-
Time (300) of stii (Table 1). Thus sti caused a delay in a manda-
tory transaction stii , so sti is added to ArrayContention .Table 2
summarize the main points that the tainting algorithm checks
for each simulation transaction. The second column corre-
spond toVCTASK .r ead (R2C_CHANNEL,4) (VθB) encountered before
VθA . Then VθA , VS2R_CHANNEL and VT IMER are considered in
columns 3,4 and 5. Column 6 represent a simulation trace where
st .operator = VCTASK .r ead (R2C_CHANNEL,4) however this time
VR2C_CHANNEL is considered to be tainted.

4.5 Graphical Interface
DLAT is implemented within TTool [5]. TTool enables the designer
to simulate the model through graphical interface. The simulation
trace can be saved in xml format.DLAT can be initiated on the saved
simulation trace within TTool with a mouse click on the simulation
trace name. Once DLAT is initiated on the simuation trace, the
graph corresponding to the model is automatically generated in
the background. The designer is informed of the number of edges
and vertices of the graph. VθA and VθB are then chosen from drop

Figure 7: Latency Displayed in Tabular Format

Figure 8: DLAT output showing No Contention

Figure 9: DLAT output showing Contention

down list to run STA_GT . Thanks to STA_GT output, the latency
λt for each taint t is calculated and displayed along startTimestAt
and endTimestBt in tabular format. Figure 7 shows us the latency
between writing channel S2R_CHANNEL operator in STASK task
and reading channel R2C_CHANNEL operator in CTASK task of
the previous example. The latency λt in this case is 281 cycles. In
addition to λt , the arrays ArrayMandatory , ArrayContention and
ArrayNonContention for each λt are also displayed in a tabular
format.

Transactions in these arrays are placed according to their ex-
ecution time and device, and colored according to which array
they belong. Those that belong to ArrayMandatory are colored
green since they are essential for stBt execution, others that be-
long to ArrayNonContention are colored orange since in this sim-
ulation they didn’t delay other transactions while the ones that
belong to ArrayContention are colored red as they caused con-
tentions on hardware nodes. Figure 8 shows simulation traces in
ArrayNonContention and ArrayMandatory . However in time-slot
201 (figure 9) the RTASK function was scheduled to execute but
found the resource CPU _R busy executing T IMER task, thus the
simulation trace corresponding to the T IMER operator is colored
red. Thanks to this display, the designer can directly identify which
transactions are causing an increase in the latency between the ex-
ecution of two operators and quickly spot contention on hardware
nodes.

As mentioned previously, ideally we should have stBt for each
taintValue (t) ofVθA . However if the simulation was stopped before
VθB is tainted, a message indicating “no transaction was found for
this taint” is shown to the user.

5 CASE STUDY
We illustrate the benefits of graph tainting with the Rail Carriage
Mechanisms use case defined in the scope of the H2020 AQUAS
project [4], with a focus on the control of automatic platform gates.

The system consists of Lidars with their processing units, a
main computing unit, a relay and a PSD (Platform Screen Doors)
controller. The Lidars are divided in two categories. Positioning
Lidars scan for a train presence and door Lidars scan the train doors

MoDeVVa ’20, October 18–23, 2020, Montreal, Canada Maysam Zoor, Ludovic Apvrille, and Renaud Pacalet

Algorithm 1: Simulation trace analysis with Graph tainting
Data: θA,θB , sp , д
Result: Tainted Detailed time analysis between θA,θB

1 foreach SimulationTransaction st in sp do
2 if Vθst is VθA then
3 t= generateTaintValue()
4 addTaintValue(VθA ,t)
5 stAt = st ;
6 end
7 else if !Vθst .getTaintValue().isEmpty() then
8 t= Vθst .getTaintValue();
9 end

10 if vertexHasSuccessors(g,Vθst) && t ! = Null then
11 addTaintValueToSuccessors();
12 end
13 if ∃ path(VθA → VθB) in д then
14 if Vθst ∈ path && t ! = Null then
15 if Vθst is VθB then
16 stBt = st

17 end
18 ArrayMandatoryt .add(st);
19 addRunnableTimePerDevice();
20 end
21 else if st.deviceName ==

hardwareθA | |θB | |θX |VθX ∈path
then

22 ArrayNonMandatoryt .add(st);
23 end
24 end
25 else if ∃ path(VθA → Vθst) | | ∃ path(Vθst → VθB) then
26 if Vθst ∈ path && t ! = Null then
27 ArrayMandatoryt .add(st);
28 addRunnableTimePerDevice();
29 end
30 else if st.deviceName == hardwareθA | |θB | |θX |θX ∈path

then
31 ArrayNonMandatoryt .add(st);
32 end
33 end
34 end
35 foreach SimulationTransaction stE in ArrayNonMandatoryt

do
36 foreach SimulationTransaction stR in ArrayMandatoryt

do
37 if stE .startTime >= stR .runnableTime &&

stE .startTime <= stR .startTime && stE .deviceName
== stR .deviceName then

38 ArrayContentiont .add(stE);
39 end
40 else
41 ArrayNonContentiont .add(stE);
42 end
43 end
44 end

to determine their status. The processing unit of the positioning
Lidars calculates the position and the speed of the train once it is
present while the processing unit of the door Lidars detects the
state of doors e.g. opening, open, closing and closed. The main
computing unit gathers data from the Lidars processing units and
issues orders to relays to open or close the platform screening doors.
This open/close authorization is sent to the PSD controller through
the relay.

Our design captures four Lidars (2 positioning Lidars and 2 door
Lidars). We also consider the four following requirements:

(1) Req_1: The delay between sending the data from the posi-
tioning Lidar and the relay receiving the order from the main
computing unit shall be less than 130ms (safety requirement)

(2) Req_2: The delay between sending the data from the posi-
tioning Lidar and processing it in the corresponding process-
ing unit shall be less than 85ms . (safety requirement)

(3) Req_3: Data sent from the Lidars processing units (speed
and direction, or door status) to the main computing unit
should remain authentic (security requirement)

(4) Req_4: Data sent from the Lidars to their corresponding
processing units should remain confidential (security re-
quirement)

5.1 HW/SW partitioning models
Figure 10 shows the functional view of the use case where only one
Lidar is presented. The primitive component PL1 is used to repre-
sent sending data by the first positioning Lidar. PL1 sends 1 frame of
data once triggered by triggerPL1 every 67ms . This frame is received
by another primitive component named F1_1and2_PL1 where the
frame is copied to the algorithm buffer then checked for validity by
checking its length and CRC calculation. After being checked, a de-
tection algorithm is run that includes rotational mapping, filters and
pattern detection. The computation complexity of this algorithm is
modeled in the activity diagram using complexity operators (Sec-
tion 3). F1_3_PL1 reads the output of the detection algorithm, runs
CRC calculation and sends a message to the F3_1_MsgAcquisition
component. F1_3_PL1 is triggered every 50ms . F1_1and2_PL1 and
F1_3_PL1 represent the functionality of the positioning lidar pro-
cessing unit. All these blocks are duplicated for the 3 remaining
Lidars. The door Lidars are triggered every 20ms .

F3_1_MsgAcquisition is a primitive component in a composite
component named SafetyComponent. F3_1_MsgAcquisition reads
data from F1_3_PL1. The same applies for the data received from
the other 3 Lidars processing unit functions. In the composite com-
ponent SafetyComponent, another primitive component named
F3_2_MsgAcquisition_SafePart is a redundant function added to
the model to ensure safety. F3_2_MsgAcquisition_SafePart is trig-
gered every 50ms. It runs a validity check and a sequence algorithm
(represented by computation complexity) to compute the adequate
result to be sent to Relay. The later is triggered every 33 ms.

The architecture of the system is as follows. Each Lidar is cap-
tured by its own set of processors, buses, memories, while the safety
platform is built upon a CPU (MainCPU) and 2 memories: Main-
Memory and RelayMemory. The mapping model associates LIDAR
blocks triggerPL1, PL1, F1_1and2_PL1 and F1_3_PL1 and their com-
munications to their corresponding hardware while safety blocks

SysML Models: Studying Safety and Security Measures Impact on Performance Using Graph Tainting MoDeVVa ’20, October 18–23, 2020, Montreal, Canada

SafetyComponent

F3_1_MsgAcquisition

frameAvailable_PL1framePL1

F3_2_MsgAcquisition_SafePart

computationResult

TriggerSafePart

TriggerF1_3_PL1
triggerF1_3_LP1

F1_1and2_PL1

...

PL1

...

Relay

controlData

triggerLP1

F1_3_PL1

send_train_position1_Frame_R

RelayTrigger

SendPos1

sendPosition1frame
Position1frame

AlgoBuf_L1

train_position1_result

framebuffer

relayPeriod

triggerSP

SW

SW

Figure 10: Functional view of Rail CarriageMechanisms Use
Case

are mapped to MainCPU. A share memory helps exchanging data
between a MainCPU and Relay.

5.2 System verification
The System Under Analysis (SUA) is supposed to run at 80 MHz.
TTool was used to simulate it on a Intel Core i7–7820HQ CPU run-
ning at 2.9 GHz. 150 ms of the SUA execution have been simulated;
the simulation trace contains 19575 transactions and is saved in
xml format. A duration of 150 ms is chosen since it is the minimum
duration that permit us to validate Req_1 using DLAT. DLAT is
used to validateReq_1 since the computationResult −ControlData
channel in Figure 10 is Non Blocking Read — Non Blocking Write
(NBR-NBW). This means — as mentioned previously — that it is
equivalent to a shared memory between the sender and the receiver.
In other words, the receiver task is not blocked if the sender didn’t
send data on the channel. Thus, tainting should be used to trace
when the control data is computed based on the position frame
input. So data sent from PL1 should be tainted to calculate the exact
time delay between θA and θB . Sending a frame from the Position-
ing Lidar (request “SendPos1” in triggerPL1) is θA in Req_1 and
the relay receiving a control signal to send to the PSD (channel
“controlData” in Relay) is θB . STA_GT requires as input: the sim-
ulation trace, the generated latency graph of the model, and the
2 operators θA and θB . The latency graph д corresponding to the
model is generated based on the algorithm presented in [33]. In

this use case, the latency graph is composed of 244 vertices and 393
edges.

The latency between θA and θB can be calculated wheneverVθB
is tainted with the same taint value as θA and the conNbr of VθB
is greater than 0. Based on algorithm 1, the latency between θA
and θB is 10170380 cycles (127.1 ms). Thus Req_1 is satisfied. The
latency corresponding to Req_2 is 681372 cycles (8.51 ms) thus
Req_2 is not satisfied.

To validate the authenticity of the data sent from F1_3_PL1
to F3_1_MsgAcquisition and from F3_1_MsgAcquisition to
F3_2_MsgAcquisition_SafePart (Req_3), and the confidentiality
between PL1 and F1_3_PL1 (Req_4), the formal security verifica-
tion of TTool/ProVerif is used. The latter proves that Req_3 and
Req_4 are not satisfied and shows it to the user by adding a red
lock on the concerned data channels. To ensure the authenticity
property on these channels, CRC is replaced by HMAC-SHA256 in
F1_3_PL1. [20] describes how a security operator can be added in
TTool to represent HMAC-SHA256. To determine the computation
complexity of HMAC-SHA256 (i.e. 8322 clock cycles), we have
used the technique described in [15] and relying on SSDLC (Secure
Software Development Life Cycle). The overhead of the message is
set to 256 bits.

To ensure the confidentiality property on the channel between
PL1 and F1_3_PL1 (Req_4) encryption/decryption operators are
added.We chose the AES algorithm in Cipher Block Chaining (CBC)
mode and set the computational complexity to 3000 as indicated
in [15].

By adding authenticity and confidentialitymechanisms, we could
formally prove that (Req_3) and (Req_4) are now satisfied. The
concerned data channels are annotated with green locks in figure 10.
In TTool, channels can be either private or public and only attacks
on public channels are considered [22].

We run again DLAT along with its new model and new simula-
tion trace. The time delay corresponding toReq_1 is now 10249025
cycles (128.1 ms) while the time delay corresponding to Req_2 is
683551 cycles (8.54 ms). The increase of the time delay of Req_2 is
due to the added encryption/decryption operators and the increase
of the time delay of Req_1 is due to the scheduling policy of the
mainCPU. The details corresponding to the increase or decrease of
the time delay are displayed in the output table of DLAT.

To satisfy Req_2 while keeping the confidentiality property of
Req_4 valid, we replace AES CBC with AES CTR (counter mode).
The computational complexity is now set to 428 cycles. This value is
obtained by applying the same interaction as indicated in [15]. The
security verification indicates that the confidentiality property still
hold. The latencywas recalculated in a similar manner asmentioned
before. The maximum delay corresponding toReq_2 now is 678029
cycles (8.47 ms). The maximum delay of Req_1 wasn’t effected as
the latency for Req_1 depend on the trigger time and scheduling
policy of mainCPU.

Table 3 summarizes the result of each requirement along each
tested model in this use case. While replacing AES CBC with AES
CTR mode enhanced performance by decreasing the latency pro-
portionally to the decrease in the computational complexity cycles,
several other methods can be tested in case further performance
enhancement is required, e.g. by adding hardware accelerators for
cryptographic functions, by using other security algorithms, by

MoDeVVa ’20, October 18–23, 2020, Montreal, Canada Maysam Zoor, Ludovic Apvrille, and Renaud Pacalet

Table 3: Requirement Satisfaction Summary table

Security Req 1 Req 2 Req 3 Req 4

CRC Yes No No No
HMAC + AES CBC Yes No Yes Yes
HMAC + AES CTR Yes Yes Yes Yes

trying a different mapping, by adjusting the scheduling policy of
CPUs or buses, of by using more powerful processing units,
After applying the required enhancements, the designer can simu-
late the model and run the verification process again to test if the
requirements still hold.

6 CONCLUSION AND PERSPECTIVES
To accurately study the impact of safety/security measures on per-
formance when designing an embedded system, an approach named
Detailed Latency Analysis Technique based on graph tainting has
been described. It is intended to be used at a high level of abstrac-
tion, thus giving early design guarantees. Its main idea is to model
systems at a high level of abstraction and then simulating them.
Simulation traces are then used to gradually taint a generated di-
rected graph that corresponds to the model under investigation.
Depending on the tainting progress, the latency between two events
in the model can be evaluated. Studying this latency using tainting
not only reveals the delay between the events under study but also
highlights in a clear way which model components are involved in
this delay. Last but not least, the approach is now implemented in
SysML-Sec.

The object of our future work is to enhance the graph generation
to consider other functional-level communication semantics and to
settle an automated search for a solution satisfying safety/security
requirements while minimizing system latency.

ACKNOWLEDGEMENTS
The AQUAS project is funded by ECSEL JU under grant agreement
No 737475

REFERENCES
[1] 2008-2011. EVITA E-safety vehicle intrusion protected applications. Retrieved

May 7, 2020 from https://www.evita-project.org/index.html
[2] 2012-2016. MERGE: multi-concerns interactions system engineering. Retrieved

May, 2019 from http://www.merge-project.eu/
[3] 2012-2016. SESAMO: security and safety modelling. Retrieved May, 2019 from

http://sesamo-project.eu/
[4] 2013. Aggregated Quality Assurance for Systems (AQUAS). Retrieved May 7,

2020 from https://aquas-project.eu
[5] 2013. TTool. Retrieved May 7, 2020 from https://ttool.telecom-paris.fr
[6] 2013-2016. CRYSTAL - CRITICAL SYSTEM ENGINEERING ACCELERATION.

Retrieved May 9, 2020 from http://www.crystal-artemis.eu/
[7] 2015. Time4Sys. Retrieved May 7, 2020 from https://www.eclipse.org/time4sys/
[8] 2015-2018. SAFURE - Safety And Security By Design For Interconnected Mixed-

Critical Cyber-Physical Systems. Retrieved May 9, 2020 from https://safure.eu/
[9] Charles André. 2009. Syntax and semantics of the clock constraint specification

language (CCSL). (2009).
[10] Felice Balarin, Yosinori Watanabe, Harry Hsieh, Luciano Lavagno, Claudio

Passerone, and Alberto Sangiovanni-Vincentelli. 2003. Metropolis: An integrated
electronic system design environment. Computer 36, 4 (2003), 45–52.

[11] Bruno Blanchet, Ben Smyth, Vincent Cheval, and Marc Sylvestre. 2018. ProVerif
2.00: Automatic Cryptographic Protocol Verifier, User Manual and Tutorial. Ver-
sion from (2018), 05–16.

[12] Julien DeAntoni and Frédéric Mallet. 2012. Timesquare: Treat your models with
logical time. In International Conference on Modelling Techniques and Tools for
Computer Performance Evaluation. Springer, 34–41.

[13] Johan Eker, Jörn W Janneck, Edward A Lee, Jie Liu, Xiaojun Liu, Jozsef Lud-
vig, Stephen Neuendorffer, Sonia Sachs, and Yuhong Xiong. 2003. Taming
heterogeneity-the Ptolemy approach. Proc. IEEE 91, 1 (2003), 127–144.

[14] Andrea Enrici, Letitia Li, Ludovic Apvrille, and Dominique Blouin. 2018. A
Tutorial on TTool/DIPLODOCUS: an Open-source Toolkit for the Design of
Data-flow Embedded Systems.

[15] Radek Fujdiak, Petr Blazek, Ludovic Apvrille, Zdenek Martinasek, Petr Mlynek,
Renaud Pacalet, David Smekal, Pavel Mrnustik, Maros Barabas, andMaysam Zoor.
2019. Modeling the Trade-off Between Security and Performance to Support the
Product Life Cycle. In 2019 8th Mediterranean Conference on Embedded Computing
(MECO). IEEE, 1–6.

[16] Radek Fujdiak, Petr Mlynek, Petr Blazek, Maros Barabas, and Pavel Mrnustik.
2018. Seeking the relation between performance and security in modern systems:
Metrics andmeasures. In 2018 41st International Conference on Telecommunications
and Signal Processing (TSP). IEEE, 1–5.

[17] Franco Fummi, Giovanni Perbellini, Paolo Gallo, Massimo Poncino, Stefano
Martini, and Fabio Ricciato. 2003. A timing-accurate modeling and simulation
environment for networked embedded systems. In Proceedings 2003. Design Au-
tomation Conference (IEEE Cat. No. 03CH37451). IEEE, 42–47.

[18] Thomas Gruber, Christoph Schmittner, Martin Matschnig, and Bernhard Fischer.
2018. Co-Engineering-in-the-Loop. In International Conference on Computer
Safety, Reliability, and Security. Springer, 151–163.

[19] Daniel Knorreck. 2011. UML-based design space exploration, fast simulation and
static analysis. Ph.D. Dissertation. Telecom ParisTech.

[20] Letitia Li. 2018. Approche orientée modèles pour la sûreté et la sécurité des systèmes
embarqués. Ph.D. Dissertation. Paris Saclay.

[21] Chung-Wei Lin, Bowen Zheng, Qi Zhu, and Alberto Sangiovanni-Vincentelli.
2015. Security-aware design methodology and optimization for automotive
systems. ACM Transactions on Design Automation of Electronic Systems (TODAES)
21, 1 (2015), 1–26.

[22] Florian Lugou, Letitia W Li, Ludovic Apvrille, and Rabéa Ameur-Boulifa. 2016.
Sysml models and model transformation for security. In 2016 4th International
Conference on Model-Driven Engineering and Software Development (MODEL-
SWARD). IEEE, 331–338.

[23] Shankar Mahadevan, Kashif Virk, and Jan Madsen. 2007. ARTS: A SystemC-based
framework for multiprocessor systems-on-chip modelling. Design Automation
for Embedded Systems 11, 4 (2007), 285–311.

[24] Bernd Muller-Rathgeber and Holm Rauchfuss. 2008. A cosimulation framework
for a distributed system of systems. In 2008 IEEE 68th Vehicular Technology
Conference. IEEE, 1–5.

[25] Dorina C Petriu. 2010. Software model-based performance analysis. Model
Driven Engineering for distributed Real-Time Systems: MARTE modelling, model
transformations and their usages (JP Babau, M. Blay-Fornarino, J. Champeau, S.
Robert, A. Sabetta, Eds.), ISTE Ltd and John Wiley & Sons Inc (2010).

[26] Andy D Pimentel, Cagkan Erbas, and Simon Polstra. 2006. A systematic approach
to exploring embedded system architectures at multiple abstraction levels. IEEE
Trans. Comput. 55, 2 (2006), 99–112.

[27] Luigi Pomante, VittorianoMuttillo, Bohuslav Křena, Tomáš Vojnar, Filip Veljković,
Pacôme Magnin, Martin Matschnig, Bernhard Fischer, Jabier Martinez, and
Thomas Gruber. 2019. The AQUAS ECSEL Project Aggregated Quality Assur-
ance for Systems: Co-Engineering Inside and Across the Product Life Cycle.
Microprocessors and Microsystems 69 (2019), 54–67.

[28] Alejandra Ruiz, Barbara Gallina, Jose Luis de la Vara, Silvia Mazzini, and Huáscar
Espinoza. 2016. Architecture-driven, multi-concern and seamless assurance and
certification of cyber-physical systems. In International Conference on Computer
Safety, Reliability, and Security. Springer, 311–321.

[29] Sanjit A Seshia, Shiyan Hu, Wenchao Li, and Qi Zhu. 2016. Design automation
of cyber-physical systems: challenges, advances, and opportunities. IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems 36, 9 (2016),
1421–1434.

[30] Benoit VIAUD, Laurent RIOUX, and Aurélien DIDIER. 2020. Applying Timing
Verification with TIDEAL/Time4Sys on Flight Management System.

[31] Alexander Viehl, Timo Schönwald, Oliver Bringmann, and Wolfgang Rosenstiel.
2006. Formal performance analysis and simulation of UML/SysML models for
ESL design. In Proceedings of the conference on Design, automation and test in
Europe: Proceedings. European Design and Automation Association, 242–247.

[32] Bowen Zheng, Peng Deng, Rajasekhar Anguluri, Qi Zhu, and Fabio Pasqualetti.
2016. Cross-layer codesign for secure cyber-physical systems. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems 35, 5 (2016), 699–711.

[33] Maysam Zoor., Ludovic Apvrille., and Renaud Pacalet. 2020. Impact of Security
Measures on Performance Aspects in SysML Models. In Proceedings of the 8th
International Conference on Model-Driven Engineering and Software Development
- Volume 1: MODELSWARD,. INSTICC, SciTePress, 373–380. https://doi.org/10.
5220/0008970203730380

https://www.evita-project.org/index.html
http://www.merge-project.eu/
http://sesamo-project.eu/
https://aquas-project.eu
https://ttool.telecom-paris.fr
http://www.crystal-artemis.eu/
https://www.eclipse.org/time4sys/
https://safure.eu/
https://doi.org/10.5220/0008970203730380
https://doi.org/10.5220/0008970203730380

	Abstract
	1 Introduction
	2 Related Work
	3 SysML-Sec
	3.1 Method
	3.2 HW/SW partitioning
	3.3 Performance Evaluation

	4 Detailed Latency Analysis Technique (DLAT)
	4.1 Simulation Trace
	4.2 Latency Analysis Using Graph Tainting
	4.3 Latency Graph
	4.4 Simulation Trace Analysis-Graph Tainting (STA-GT)
	4.5 Graphical Interface

	5 Case Study
	5.1 HW/SW partitioning models
	5.2 System verification

	6 Conclusion and Perspectives
	References

