

Digital Predistortion for Wideband 5G Transmitters

Dang-Kièn Germain Pham

▶ To cite this version:

Dang-Kièn Germain Pham. Digital Predistortion for Wideband 5G Transmitters: Telecom ParisTech - COMELEC Seminar. 2019. hal-02915057

HAL Id: hal-02915057 https://telecom-paris.hal.science/hal-02915057

Submitted on 13 Aug 2020

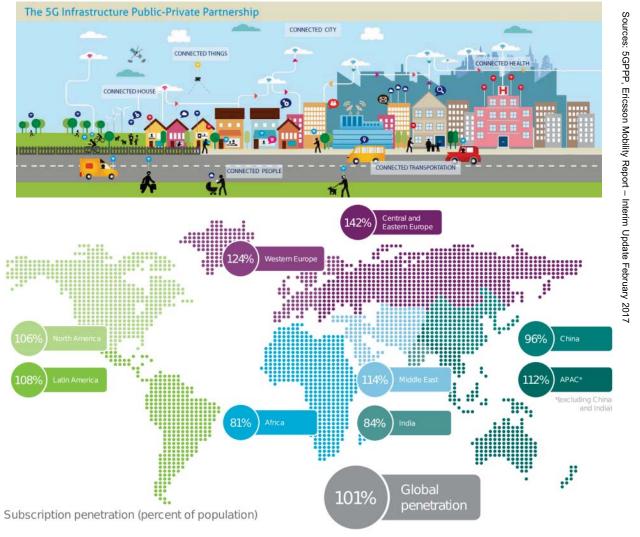
HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Digital Predistortion for Wideband 5G Transmitters

21st March 2019

Germain Pham C²S - COMELEC

dpham@telecom-paristech.fr


Outline

- Introduction
- Power amplifier characterization
- Power amplifier modeling for digital predistortion
- The digital predistortion technique
- DPD challenges & Solutions for 5G
- Conclusion

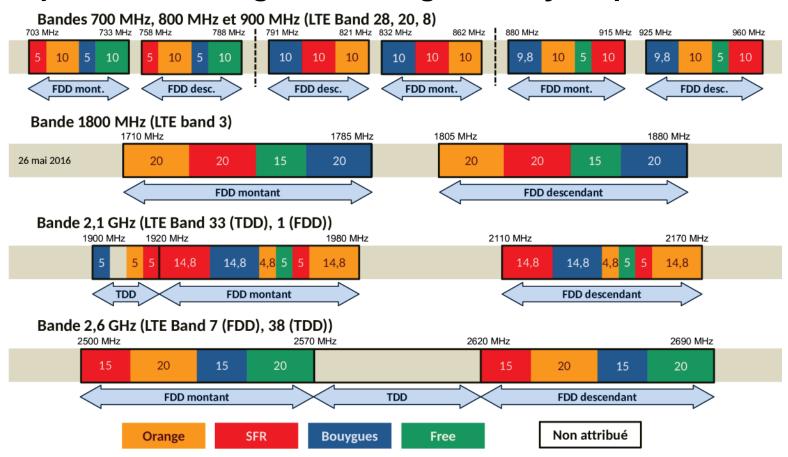


Wireless civilization

5G disruptive capabilities

5G Key enabling technologies

- Wide and contiguous spectrum bandwidth
- New flexible resource management and sharing schemes
- Flexible air interfaces
- New waveforms
- Advanced multi-antenna beam-forming and beamtracking and MIMO techniques
- Millimeter-waves
- Denser cells leading to ultra-dense networks

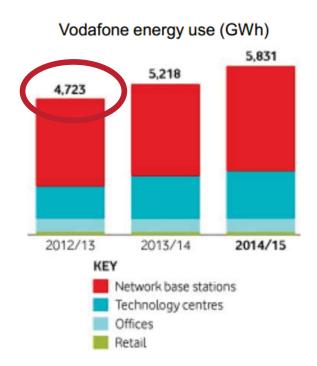

5G issue #1 : Spectrum scarcity

Spectrum allocation in France FIXE MOBILE SCIENTIFIQUE SATELLITE RADIOLOCALISATION MARITIME **AERONAUTIQUE** RADIOAMATEUR METEOROLOGIE RADIODIFFUSION Services primaires secondaires Appareils de faible portée

5G Issue #1 : Spectrum scarcity – « Zoom »

Spectrum sharing must be rigourously respected

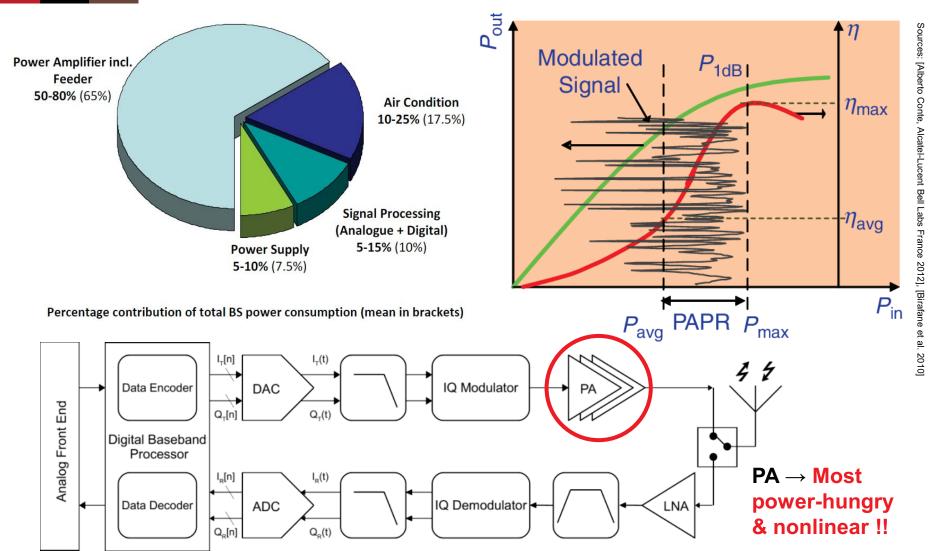
Note: les éventuelles bandes de garde de 200 kHz, en haut ou bas de bande, ou entre les attributions de deux opérateurs adjacents ne sont pas mentionnées



21/03/2019

5G issue #2: Energy consumption

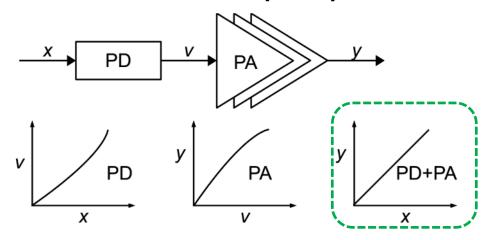
Vodafone energy use (GWh)



65% in BSs

6,043 2016 6,197 2017 2018 1.000 2,000 3.000 4.000 5,000 6,000 7,000 0 Offices Network base Technology Retail station sites centres 29% 65% 5% 1% base station sites retail stores technology centres offices

Sources: Vodafone Sustainability Reports 2015 & 2018

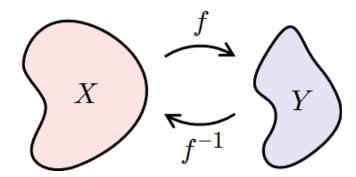

The power amplifier linearity/efficiency trade-off

Predistortion and Challenges in 5G

Predistortion principle

Predistortion challenges in 5G BSs

- High signal bandwidths (>100 MHz) → Memory Effects ↑
- Spectral efficient modulation formats → PAPR ↑
- Energy efficient → Nonlinearity ↑
- Low-cost → Cheaper PA with Nonlinearity ↑

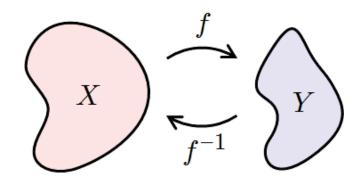


21/03/2019

Predistortion with « inverse » functions

Definition

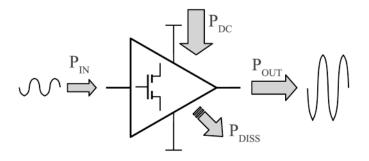
- g(x) is inverse of f(x) when g(f(x)) = x
 - -g(x) is usually denoted $f^{-1}(x)$ by mathematicians

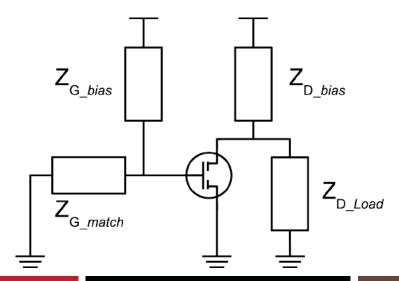

- -g(x) does not always exist! Particularly true for nonlinear functions.
 - g(f(x)) = x is usually possible only for a limited range of x

○ Example :
$$f(x) = x^2$$
 ; $g(x) = \sqrt{x}$ only for $x \ge 0$ (Note the different « nature » of $f(\cdot)$ and $g(\cdot)$)

Consequence on predistortion process

- For DPD systems we only search for approximate inverse
- We need to « know » f(x) to find its inverse g(x)
 - First, find an adequate approximation of f(x)
 - Second, find an approximate inverse of f(x)


Power amplifier characterization



Considered power amplifier

Abstract view

General circuit model

Device example

PA characteristics – more details

Actual PA example TYPICAL CHARACTERISTICS — 2110-2200 MHz

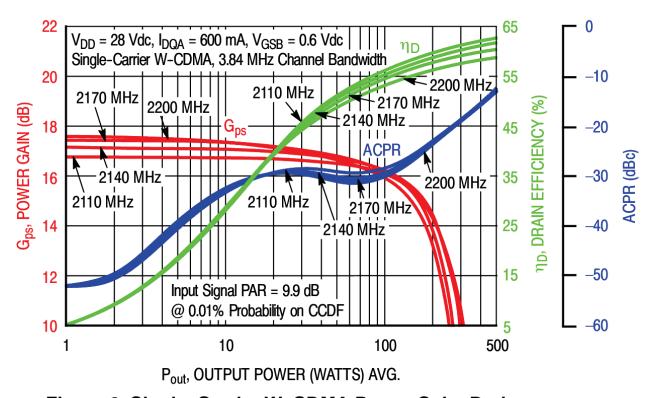
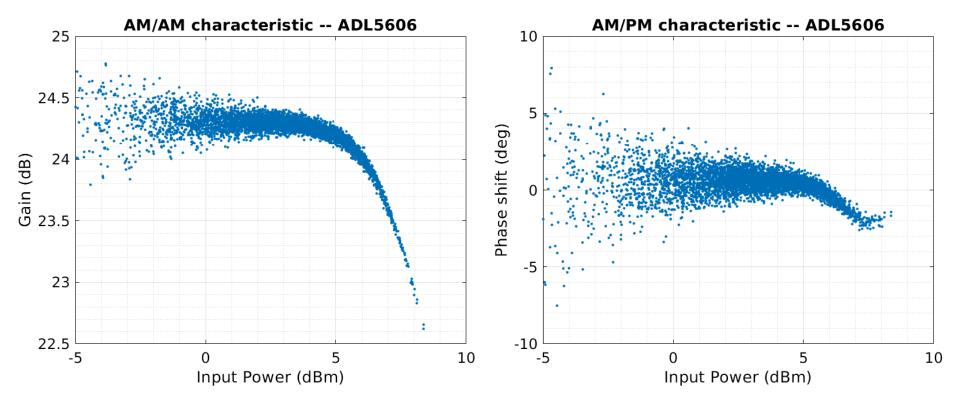
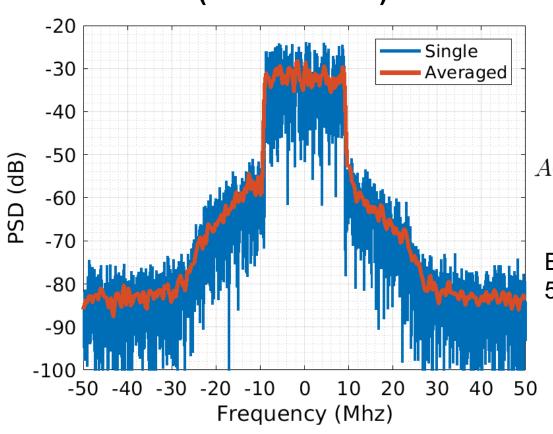


Figure 6. Single-Carrier W-CDMA Power Gain, Drain **Efficiency and ACPR versus Output Power**


Source: NXP Semiconductors -- RF Power LDMOS Transistor - A3T21H360W23S

Dynamic characterization with Modulated Signals

Amplitude and Phase transfer function


Measurement results with LTE signal BW= 20 MHz, PAPR=12,1 dB

Dynamic characterization with Modulated **Signals**

Adjacent Channel Leakage (or Power) Ratio (ACLR/ACPR)

$$ACPR_{dB} = 10 \log_{10} \left(\frac{\int_{BW \text{main}} P(f) df}{\int_{BW \text{adj}} P(f) df} \right)$$


Example: 5G specifications ACLR > 45 dBc

Dynamic characterization with Modulated Signals

Error Vector Magnitude (EVM)

$$EVM(\%) = \sqrt{\frac{\frac{1}{N} \sum_{i=1}^{N} |S_{actual,i} - S_{ideal,i}|^2}{\frac{1}{N} \sum_{i=1}^{N} |S_{ideal,i}|^2}}$$

Example:

EVM<12.5% pour LTE-A pour 16-QAM

Linearity requirements for 3G/4G/5G base stations

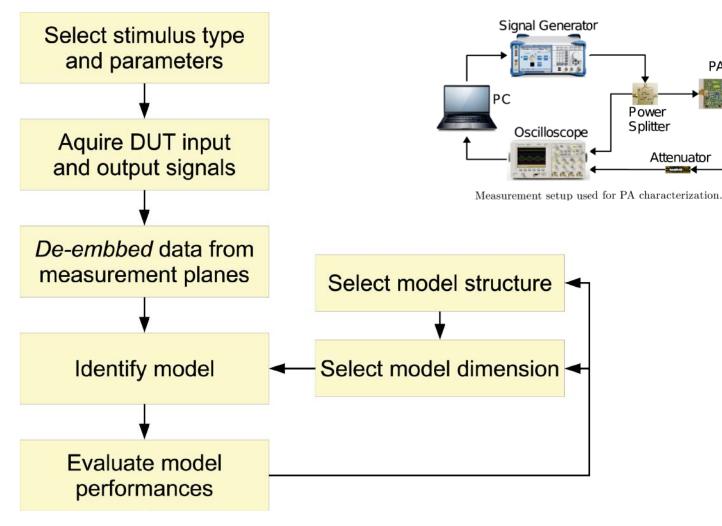
TABLE 1. Linearit	y rec	juirements in t	ypica	13G/	/4G base stations.
--------------------------	-------	-----------------	-------	------	--------------------

Standard Multiplexing Type	UMTS [37] WCDMA	WiMAX [38] OFDMA	LTE [39] OFDMA	LTE-A [40] OFDMA
Single-channel bandwidth (MHz)	5	1.25, 5, 10, 20	1.4, 3, 5, 10, 15, 20	20
Maximum aggregated bandwidth (MHz)	60 (12-band)	20	20	100 (5-band)
In-band requirement EVM ^a (%)	< 12.5	<6	< 12.5	< 12.5
Out-of-band requirement ACLR1 ^b (dBc) ACLR2 ^c (dBc)	<-45 <-50	<-45 <-50	<-45 <-45	<-45 <-45

^{a.} Based on the 16-QAM modulation scheme.

Source: 2014 - Guan, Zhu - Green Communications: Digital Predistortion for Wideband RF Power Amplifiers

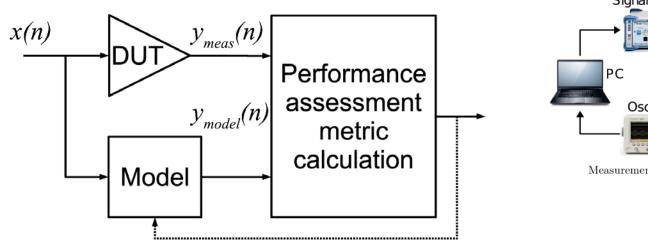
21/03/2019


b. Refers to the first adjacent channel leakage power ratio.
c. Refers to the second adjacent channel leakage power ratio.

PA modeling for Digital Predistortion

Characterization and modeling method

Source: 2015 - Ghannouchi, Hammi, Helaoui - Behavioral Modeling and Predistortion of Wideband Wireless Transmitters



PA

Power Splitter

Attenuator

Modeling accuracy assessment

Measurement setup used for PA characterization.

Time domain metric

Normalized Mean Square Error

$$-NMSE = 10 \log_{10} \left(\frac{\sum_{\ell=1}^{L} |y_{model}(l) - y_{meas}(l)|^2}{\sum_{\ell=1}^{L} |y_{meas}(l)|^2} \right)$$

21/03/2019

Nonlinear models – the most popular

Baseband equivalent signal

$$x(t) = A(t) e^{j\theta(t)} (A(t), \theta(t) \in \mathbb{R})$$

Memoryless systems

$$y(t) = x(t) \cdot G\{A(t)\} = A(t) G_A\{A(t)\} e^{j(\Phi_G\{A(t)\} + \theta(t))}$$

Polar Saleh Model

$$G_A\{A(t)\} = \frac{\alpha_a}{1 + \beta_a A^2}$$

$$\alpha_{\Phi}$$

$$\Phi_G\{A(t)\} = \frac{\alpha_\Phi}{1 + \beta_\Phi A^2}$$

Polynomial

$$y(t) = \sum_{k=1}^{N} a_k |x(t)|^{k-1} x(t)$$

Odd order only Polynomial

$$y(t) = \sum_{k=0}^{N} a_k |x(t)|^{2k} x(t)$$

Nonlinear models – the most popular

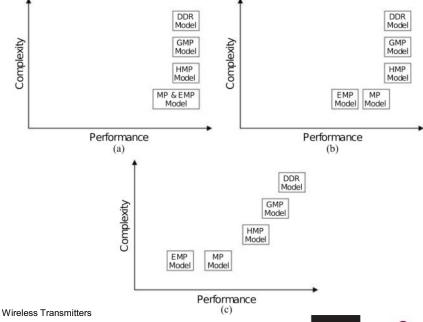
Memory polynomial based models

Memory polynomial

$$y_{MP}(n) = \sum_{m=0}^{M} \sum_{k=1}^{K} a_{mk} x(n-m) |x(n-m)|^{k-1}$$

Odd orders only memory polynomial

$$y_{MP}(n) = \sum_{m=0}^{M} \sum_{k=0}^{K} a_{mk} x(n-m) |x(n-m)|^{2k}$$


Nonlinear models – the most popular

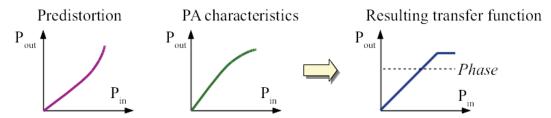
Volterra series models

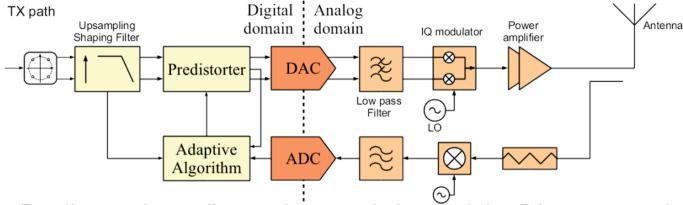
$$y_{\text{volterra}}(n) = \sum_{k=1}^{K} \sum_{m_1=0}^{M} \cdots \sum_{m_k=0}^{M} h_k(m_1, \cdots, m_k) \prod_{j=1}^{k} x(n-m_j)$$

Many variations

 Comparison between memory polynomial based models. (a) Weakly nonlinear memory effects, (b) mildly nonlinear memory effects, and (c) strongly nonlinear memory effects

Source: 2015 - Ghannouchi, Hammi, Helaoui - Behavioral Modeling and Predistortion of Wideband Wireless Transmitters

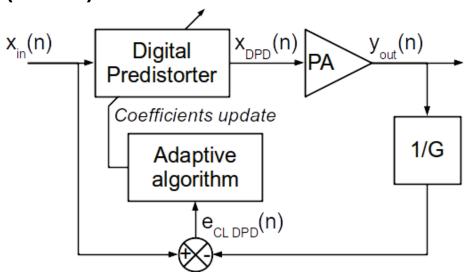

The digital predistortion technique



Fundamental elements

Principle (reminder)

Transmitter architecture


- Predistorter's nonlinear characteristics and the PA must match
- Nonlinearity of the PA varies with time due to changes in the drive signal, aging, or drifts
 - Track variations and update predistortion function

DPD architectures – Closed loop

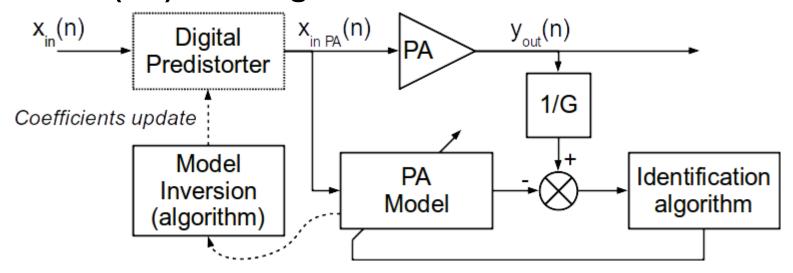
Closed loop (direct) architecture

Advantages

- No modeling of the PA
- Compensates for time-varying effects

Drawbacks

- Suitable for memoryless systems
- No direct relation between error signal and predistorter's coefficients

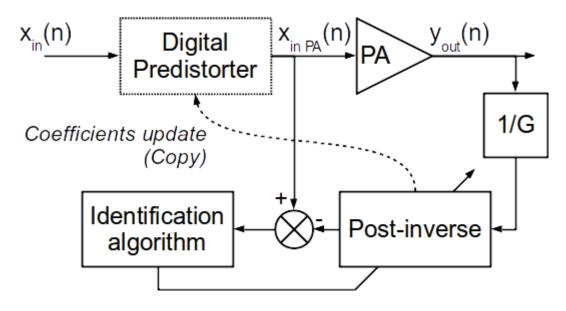

References:

- C. D. Presti, D. F. Kimball and P. M. Asbeck, "Closed-Loop Digital Predistortion System With Fast Real-Time Adaptation Applied to a Handset WCDMA PA Module," in IEEE TMTT; March 2012.
- Fadhel M. Ghannouchi, Oualid Hammi, Mohamed Helaoui, "Behavioral Modeling and Predistortion of Wideband Wireless Transmitters", John Wiley & Sons; Jul 2015

DPD architectures – Open loop

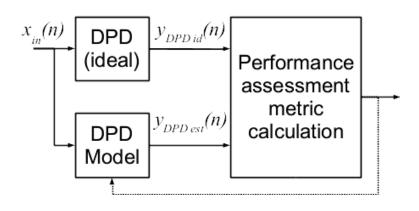
Direct (PA) learning architecture

« 2 steps » learning

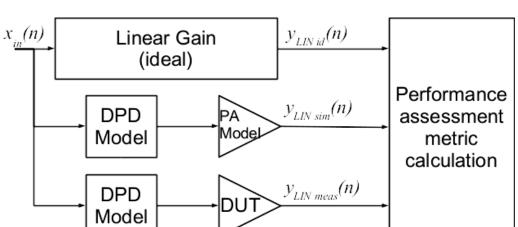

- PA model is identified first; then the inverse is derived from the PA
- A theoretical inverse model can be computed as the p-th order inverse
 - Suitable for memoryless systems

DPD architectures – Open loop

Indirect learning architecture


« 1 step » learning

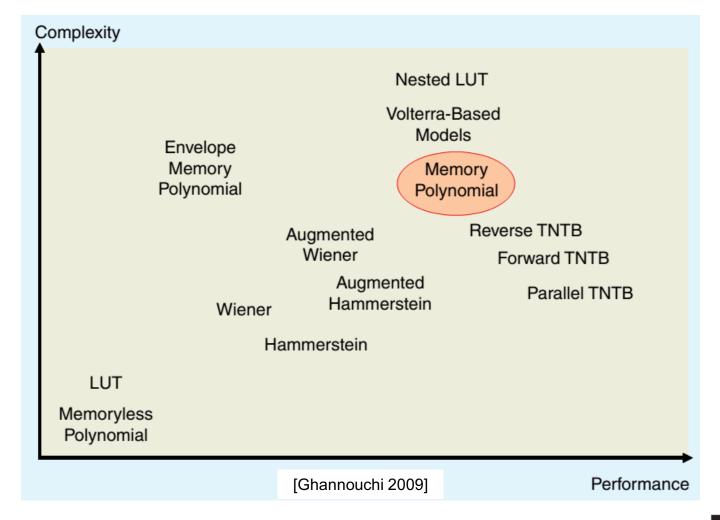
- the PD function is directly derived by calculating the post-inverse of the PA
- Suitable for memory systems



Computation methodology of the inverse

- Match $y_{DPD,id}$ and $y_{DPD,est}$
- Example of model oriented metrics
 - Normalized Mean Square Error

$$-NMSE =$$



$$10\log_{10}\left(\frac{\sum_{\ell=1}^{L}|y_{est}(l)-y_{id}(l)|^{2}}{\sum_{\ell=1}^{L}|y_{id}(l)|^{2}}\right)$$

Conventional DPD models

Objective functions and computational aspects

- Least-squares (LS): $\min_{x \in \mathcal{X}} \|\overrightarrow{y}(n) \Gamma_{x}(n) \cdot A\|^{2}$
 - Common approaches: Moore–Penrose pseudo-inverse $A^{+} = (A^{H}A)^{-1}A^{H}$, QR decomposition, SVD
 - Significant computational complexity ($\mathcal{O}((M \times K)^3)$)
- Least-mean-squares (LMS): $\min_{i} E[|y(n) \overrightarrow{A}^{H} \cdot \overrightarrow{\gamma}_{x}(n)|^{2}]$
 - Iterative approach: $e(n) = y(n) \overrightarrow{A}^{H}(n) \cdot \overrightarrow{\gamma}_{x}(n)$ $A(n+1) = A(n) + \mu e^{*}(n) \overrightarrow{\gamma}_{x}(n)$
 - Reduced computational complexity ($\mathcal{O}(M \times K)$)
 - Convergence issues (µ)

21/03/2019

Objective functions and computational aspects

Recursive (weighted) least-squares (RLS):

$$\min_{\overrightarrow{A}} \sum_{i=0}^{k} \lambda^{k-i} |y(i) - \overrightarrow{A}^{H}(i) \cdot \overrightarrow{\gamma}_{x}(k)|^{2}$$
• Iterative approach: $e(k) = y(k) - \overrightarrow{A}^{H}(k-1) \cdot \overrightarrow{\gamma}_{x}(n)$

$$\overrightarrow{s}(k) = \mathbf{S}(k-1) \cdot \overrightarrow{\gamma}_{x}(n)$$

$$\overrightarrow{\kappa}(k) = \frac{\overrightarrow{s}(k)}{1 + \overrightarrow{\gamma}_{x}^{H}(n) \cdot \overrightarrow{s}(k)}$$

$$\mathbf{S}(k) = \frac{1}{\lambda} [\mathbf{S}(k-1) - \frac{\overrightarrow{\kappa}(k) \cdot \overrightarrow{\kappa}^{H}(k)}{\lambda + \overrightarrow{\gamma}_{x}^{H}(n) \cdot \overrightarrow{s}(k)}]$$

$$\overrightarrow{A}(k) = \overrightarrow{A}(k-1) + e^{*}(k) \cdot \overrightarrow{\kappa}(k)$$

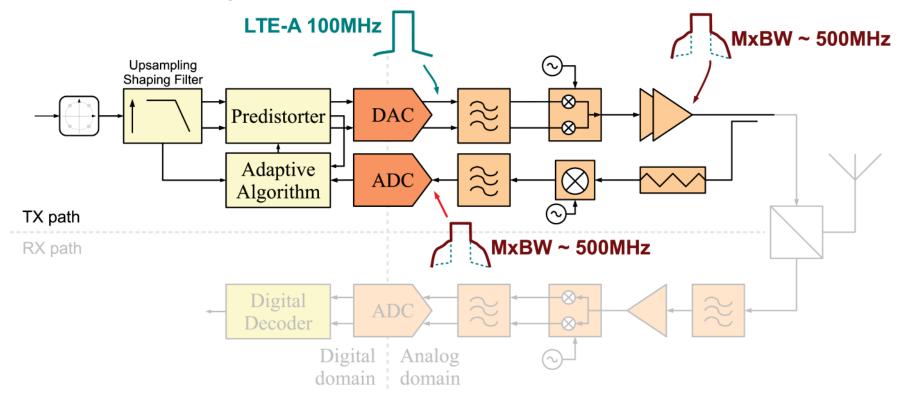
- Increased computational complexity $(\mathcal{O}((M \times K)^2))$
- Robust convergence

21/03/2019

Conclusion

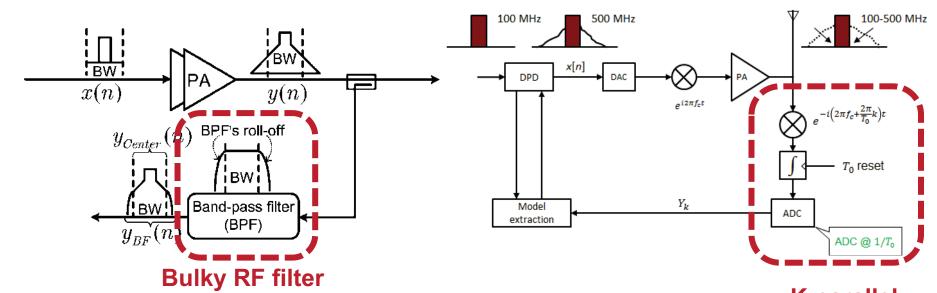
- Main learning architectures
 - DLA
 - ILA
- Choosing an appropriate minimization method requires a reasonable amount of knowledge of the specific identification problem
 - Stability, speed of convergence and implementation complexity can largely vary between the different methods.

DPD challenges & Solutions for 5G



TX feedback path: the bottleneck

ADC bandwidth feedback limitation


Learning phase

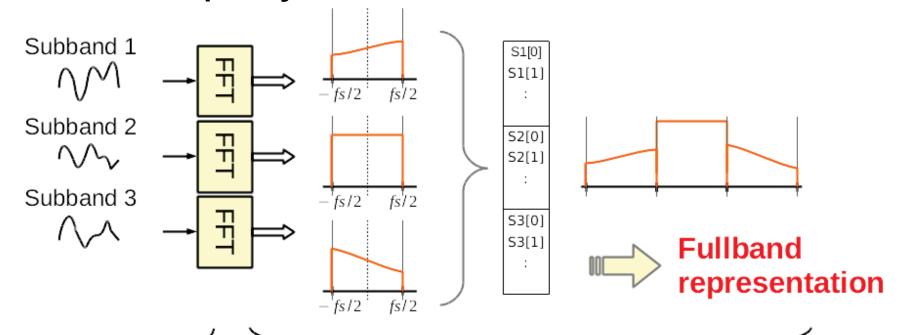
TX feedback path: Band limited and/or low rate DPD techniques

Band-limited feedback [Ma, 2014], [Zhang, 2015] Low rate identification [Hammler, 2014]

Lower ADC sampling rate

- Compute PA model first (
- Sampling frequency of PA model

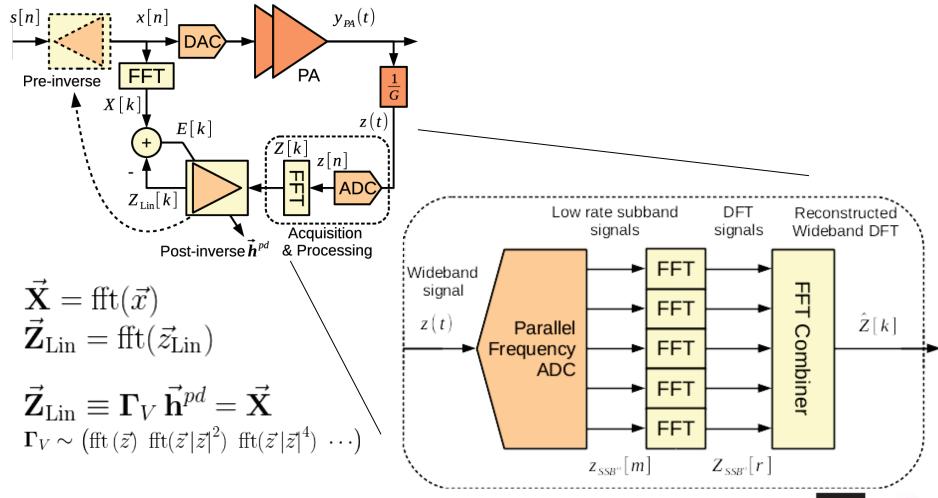
TX feedback path: New low rate DPD architecture



TX feedback path : Solution to the signal reconstruction

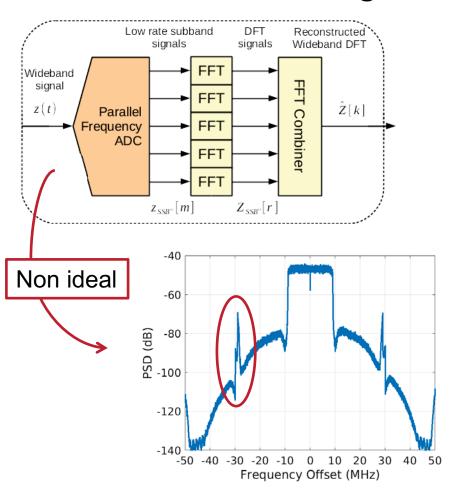
Frequency domain

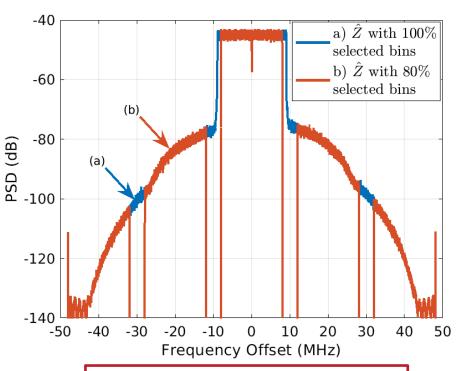
Time-domain


Low sampling frequency Frequency domain

TX feedback path: New subband DPD architecture

FFT-based subband digital predistortion

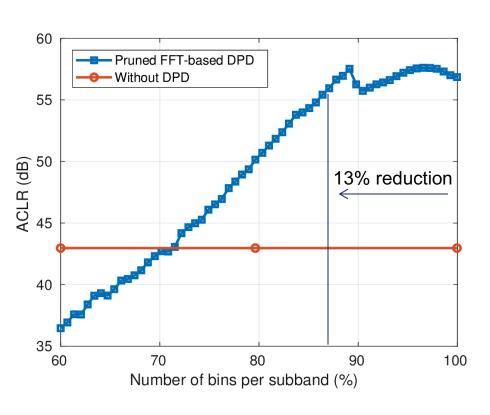




TX feedback path: FFT-based subband DPD

- Mitigating subband edge effects

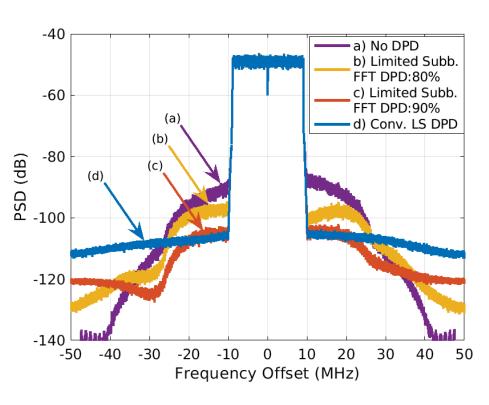
Limited subband signal reconstruction


Exclusion of subband edges

$$ec{\mathbf{Z}}_{\mathrm{Lin}} \equiv \widetilde{\mathbf{\Gamma}_{V}} \overset{\overrightarrow{\mathbf{h}}^{pd}}{\mathbf{h}^{pd}} = \overset{\overrightarrow{\mathbf{X}}}{\mathbf{X}}$$
 $\widetilde{\Gamma_{V}} \sim \left(\widetilde{\mathrm{fft}(ec{z})} \ \widetilde{\mathrm{fft}(ec{z}|ec{z}|^{2})} \ \widetilde{\mathrm{fft}(ec{z}|ec{z}|^{4})} \ \ldots \right)$

TX feedback path: FFT-based subband DPD – Linearization performance

20 principal coeffcients (dB) 0 -10 -30 -40 of PD -50 MSE -60 -70 70 80 90 100 60 Number of bins per subband (%)


Correction performance of FFT-based Limited Subband DPD

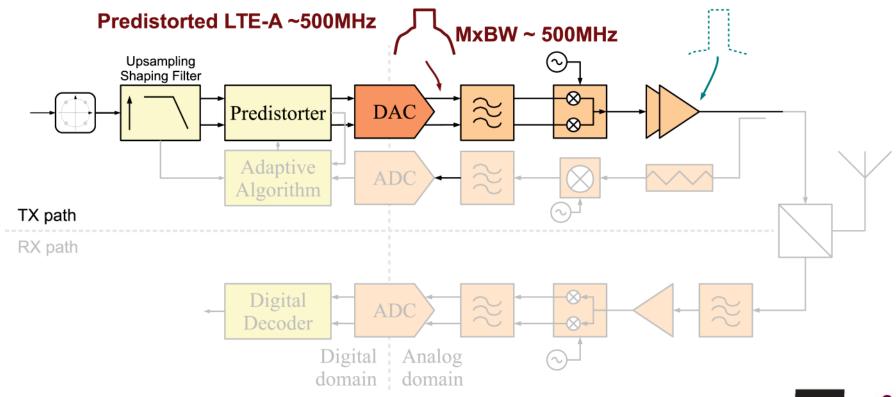
Error between ideal PD and FFT-based Limited Subband PD

TX feedback path: FFT-based subband DPD – Linearization performance

0.6 No DPD Limited Subb. 0.5 FFT DPD:80% Limited Subb. FFT DPD:90% **Jutput magnitude** Conv. LS DPD 0.3 0.55 0.2 0.5 0.45 0.1 1.4 1.6 1.2 0.5 0 1.5 2 Input magnitude

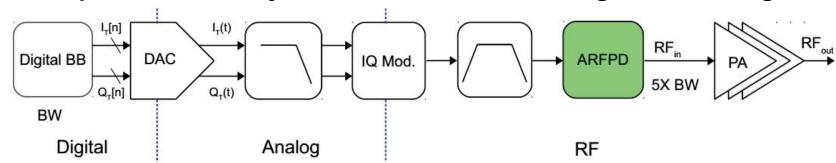
Output spectra comparison

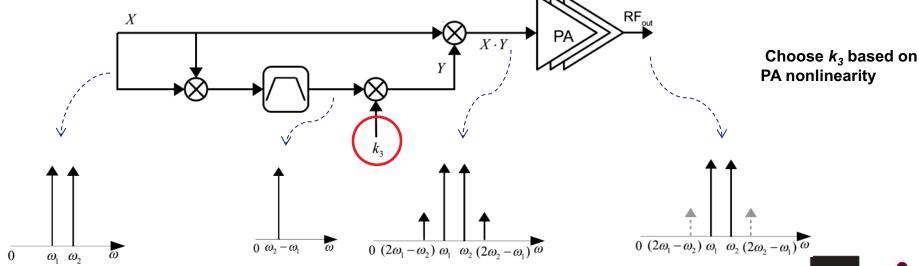
AM/AM comparison



RX forward path: the bottleneck

DAC bandwidth limitation

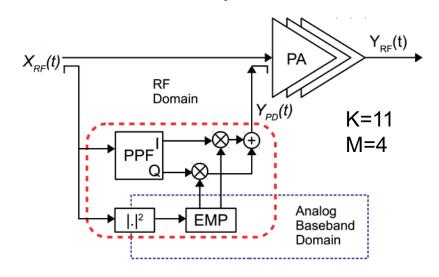

Correction phase



Basic Principle of Analog RF Predistortion

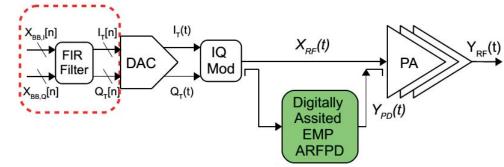
ARFPD performed mostly in RF, with baseband analog correction signal

- Analog multipliers are used to generate correction signal
- For a two-tone signal with memoryless PA



Memory-Aware ARFPD

- Roger ISSCC 2013
- CMOS IC implementation in 180nm
 - Power consumption = 200 mW
 - Max. sig. BW = 20 MHz
- EMP based predistorter


$$z_{PD,EMP}(t) = x(t) \sum_{k=0}^{K-1} \sum_{q=0}^{Q} a_{kq} \left| x(t - t_p) \right|^k$$

- Huang et al. TMTT 2015
- Measurement-instruments-based ARFPD platform
 - Max. sig. BW = 80 MHz
- FIR filter in digital BB added to EMP
 - Improves linear memory distortion correction performance

$$z_{PD,FIR-EMP}[n] = \sum_{l=0}^{L} h_l x[n-l] \times$$

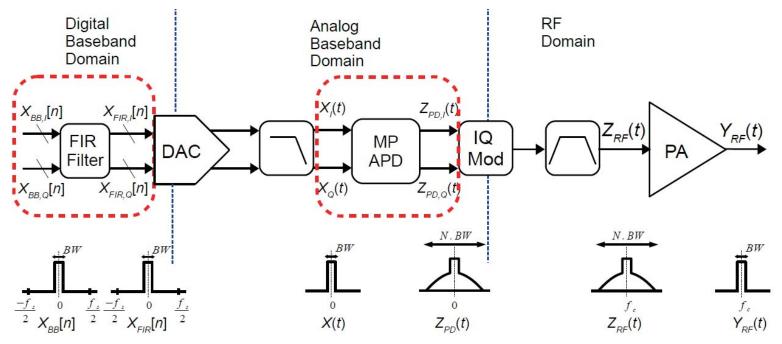
$$\sum_{k=0}^{K-1} \sum_{q=0}^{Q} a_{kq} \left| \sum_{l=0}^{L} h_{l} x [n-l-q] \right|^{k}$$

21/03/2019

Advantages and Disadvantages of ARFPD

Advantages:

- Digital baseband clocked at normal clock rates
- Relaxed specifications of the entire Tx


Disadvantages:

- In practice only EMP can be used → limited performance
 - MP needs Q number of RF delays and RF vector multipliers
- Analog implementation → noise, mismatch, offsets, PVT variations
- Inherent nonlinearity is caused by
 - Signal amplitude expansions and compressions, ex: $(0.1)^2 = 0.01$ and $10^2 = 100$, require high dynamic range
 - Internal bandwidth expansion, ex: correction up to IMD5 requires 1X, 3X,
 5X internal bandwidths

TX forward path: improving DPD architecture – The hybrid Mixed-Signal Predistorter (MSPD)

Advantages:

- FIR-MP MSPD provides good linearization performance
- Digital baseband needs to support just the BW
- Relaxed specifications for DACs and reconstruction filters

Disadvantages:

- Modulator and Bandpass filter still need 5X BW
- Analog implementation challenges because of non-idealities

Conclusion

21/03/2019

Conclusion

- Digital predistortion is a hot research topic
- Fundametal design considerations of DPD systems have been introduced
- It requires trans-disciplinary skills
 - Analog/RF
 - Data converters
 - Digital
- Many design elements are interacting
 - Multi-level approach is required
- New approaches are required for integration with disruptive technologies for 5G
 - **Massive MIMO**
 - mmWave

