

Digital Predistortion for Wideband 5G Transmitters Dang-Kièn Germain Pham

To cite this version:

Dang-Kièn Germain Pham. Digital Predistortion for Wideband 5G Transmitters. 2019. hal-02915057

HAL Id: hal-02915057 <https://telecom-paris.hal.science/hal-02915057v1>

Submitted on 13 Aug 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Une école de l'IMT

Digital Predistortion for Wideband 5G Transmitters

21st March 2019

Germain Pham C²S - COMELEC

dpham@telecom-paristech.fr

- **Introduction**
- **Power amplifier characterization**
- **Power amplifier modeling for digital predistortion**
- The digital predistortion technique
- DPD challenges & Solutions for 5G

Conclusion

Wireless civilization

Sources: 5GPPP, Ericsson Mobility Report –Sources: 5GPPP, Ericsson Mobility Report - Interim Update February 2017 Interim Update February 2017

TELECON
ParisTecl

5G disruptive capabilities

Germain PHAM – C²S - COMELEC

5G Key enabling technologies

- **Wide and contiguous spectrum bandwidth**
- **New flexible resource management and sharing schemes**
- **Flexible air interfaces**
- **New waveforms**
- **Advanced multi-antenna beam-forming and beamtracking and MIMO techniques**
- **Millimeter-waves**
- **Denser cells leading to ultra-dense networks**

5G issue #1 : Spectrum scarcity

Spectrum allocation in France

5G Issue #1 : Spectrum scarcity – « Zoom »

Spectrum sharing must be rigourously respected

Note: les éventuelles bandes de garde de 200 kHz, en haut ou bas de bande, ou entre les attributions de deux opérateurs adjacents ne sont pas mentionnées

TELECON ParisTec

5G issue #2 : Energy consumption

Vodafone energy use (GWh)

Sources: Vodafone Sustainability Reports 2015 & 2018

• 65% in BSs

in 5 years…

Sources: [Alberto Conte, Alcatel-Lucent Bell Labs France 2012], [Birafane et al. 2010]

Predistortion and Challenges in 5G

Predistortion principle

Predistortion challenges in 5G BSs

- High signal bandwidths (>100 MHz) \rightarrow Memory Effects \uparrow
- Spectral efficient modulation formats \rightarrow PAPR \uparrow
- Energy efficient \rightarrow Nonlinearity \uparrow
- Low-cost \rightarrow Cheaper PA with Nonlinearity \uparrow

Predistortion with « inverse » functions

Definition

• $g(x)$ is inverse of $f(x)$ when $g(f(x)) = x$

 $-g(x)$ is usually denoted $f^{-1}(x)$ by mathematicians

 $-g(x)$ does not always exist ! Particularly true for nonlinear functions.

- $g(f(x)) = x$ is usually possible only for a limited range of x
	- \circ Example : $f(x) = x^2$; $g(x) = \sqrt{x}$ only for $x \ge 0$

(Note the different « nature » of $f(\cdot)$ and $g(\cdot)$)

Consequence on predistortion process

For DPD systems we only search for approximate inverse

We need to « know » $f(x)$ to find its inverse $g(x)$

- First, find an adequate approximation of $f(x)$
- Second, find an approximate inverse of $f(x)$

Power amplifier characterization

Considered power amplifier

Abstract view

Device example

General circuit model

PA characteristics – more details

Actual PA example

TYPICAL CHARACTERISTICS - 2110-2200 MHz

Figure 6. Single-Carrier W-CDMA Power Gain, Drain **Efficiency and ACPR versus Output Power**

Source: NXP Semiconductors -- RF Power LDMOS Transistor - A3T21H360W23S

Dynamic characterization with Modulated Signals

Amplitude and Phase transfer function

Dynamic characterization with Modulated Signals Error Vector Magnitude (EVM) Scatter plot 1 0.5 $\frac{\frac{1}{N}\sum_{i=1}^{N}|S_{actual,i} - S_{ideal,i}|^2}{\frac{1}{N}\sum_{i=1}^{N}|S_{ideal,i}|^2}$ $EVM(\%) = \sqrt{\frac{E}{\sqrt{\frac{E}{\omega}}}}$ O -0.5 Example : EVM<12.5% pour LTE-A pour 16-QAM-1

 -1

 -0.5

 0.5

n In-Phase 1

Quadrature

Linearity requirements for 3G/4G/5G base stations

TABLE 1. Linearity requirements in typical 3G/4G base stations.

a. Based on the 16-QAM modulation scheme.

b. Refers to the first adjacent channel leakage power ratio.

^{c.} Refers to the second adjacent channel leakage power ratio.

Source: 2014 - Guan, Zhu - Green Communications: Digital Predistortion for Wideband RF Power Amplifiers

PA modeling for Digital Predistortion

Characterization and modeling method

Source: 2015 - Ghannouchi, Hammi, Helaoui - Behavioral Modeling and Predistortion of Wideband Wireless Transmitters

Modeling accuracy assessment

Measurement setup used for PA characterization.

Time domain metric

• Normalized Mean Square Error

$$
- NMSE = 10 \log_{10} \left(\frac{\sum_{\ell=1}^{L} |y_{model}(l) - y_{meas}(l)|^2}{\sum_{\ell=1}^{L} |y_{meas}(l)|^2} \right)
$$

Nonlinear models – the most popular

Baseband equivalent signal

$$
x(t) = A(t) e^{j\theta(t)} \ (A(t), \theta(t) \in \mathbb{R})
$$

\n- INernoryiess systems
\n- $$
(1)
$$
\n- (2)
\n- (3)
\n- (4)
\n- (4)
\n- (5)
\n- (6)
\n

$$
y(t) = x(t) \cdot G\{A(t)\} = A(t) G_A\{A(t)\} e^{j(\Phi_G\{A(t)\} + \theta(t))}
$$

 $-$ Polar Saleh Model $G_A{A(t)} = \frac{\alpha_a}{1 + \beta_a A^2}$ $\Phi_G\{A(t)\} = \frac{\alpha_\Phi}{1 + \beta_\Phi A^2}$

 $-$ Polynomial $y(t) = \sum_{k=1}^{N} a_k |x(t)|^{k-1} x(t)$ $k=1$ $-$ Odd order only Polynomial $y(t) = \sum a_k |x(t)|^{2k} x(t)$

 $k=0$

Nonlinear models – the most popular

Memory polynomial based models

• Memory polynomial

$$
y_{MP}(n) = \sum_{m=0}^{M} \sum_{k=1}^{K} a_{mk} x(n-m) |x(n-m)|^{k-1}
$$

• Odd orders only memory polynomial

$$
y_{MP}(n) = \sum_{m=0}^{M} \sum_{k=0}^{K} a_{mk} x(n-m) |x(n-m)|^{2k}
$$

Nonlinear models – the most popular

Volterra series models

$$
y_{\text{volterra}}(n) = \sum_{k=1}^{K} \sum_{m_1=0}^{M} \cdots \sum_{m_k=0}^{M} h_k(m_1, \cdots, m_k) \prod_{j=1}^{k} x(n - m_j)
$$

Many variations

• Comparison between memory polynomial based models. (a) Weakly nonlinear memory effects, (b) mildly nonlinear memory effects, and (c) strongly nonlinear memory effects

Paris

Source: 2015 - Ghannouchi, Hammi, Helaoui - Behavioral Modeling and Predistortion of Wideband Wireless Transmitters

The digital predistortion technique

Fundamental elements

Principle (reminder)

- Predistorter's nonlinear characteristics and the PA must match
- Nonlinearity of the PA varies with time due to changes in the drive signal, aging, or drifts
	- $-$ Track variations and update predistortion function

DPD architectures – Closed loop

Closed loop (direct) architecture

Advantages

- No modeling of the PA
- Compensates for time-varying effects

Drawbacks

- Suitable for memoryless systems
- No direct relation between error signal and predistorter's coefficients

'EL ECO

References:

- C. D. Presti, D. F. Kimball and P. M. Asbeck, "Closed-Loop Digital Predistortion System With Fast Real-Time Adaptation Applied to a Handset WCDMA PA Module," in IEEE TMTT ; March 2012.
- Fadhel M. Ghannouchi , Oualid Hammi , Mohamed Helaoui, "Behavioral Modeling and Predistortion of Wideband Wireless Transmitters", John Wiley & Sons ; Jul 2015

DPD architectures – Open loop

Direct (PA) learning architecture

« 2 steps » learning

- PA model is identified first ; then the inverse is derived from the PA
- A theoretical inverse model can be computed as the p-th order inverse
	- $-$ Suitable for memoryless systems

DPD architectures – Open loop

Indirect learning architecture

« 1 step » learning

• the PD function is directly derived by calculating the post-inverse of the PA

ELECC

• Suitable for memory systems

Computation methodology of the inverse

Conventional DPD models

Objective functions and computational aspects

Least-squares (LS):
$$
\min_{A} ||\overrightarrow{y}(n) - \Gamma_{x}(n) \cdot \overrightarrow{A}||^{2}
$$

- Common approaches: Moore–Penrose pseudo-inverse $A^+ = (A^H A)^{-1} A^H$, QR decomposition, SVD
- Significant computational complexity ($\mathcal{O}((M \times K)^3)$)

■ Least-mean-squares (LMS): min \boldsymbol{A} $E[|y(n) - A]$ \rightarrow $H \cdot \vec{\gamma}_x(n) \vert^2$

• Iterative approach:
$$
\frac{e(n)}{A(n+1)} = \vec{y}(n) - \vec{A}^H(n) \cdot \vec{y}_x(n)
$$

$$
= \vec{A}(n) + \mu e^*(n) \vec{y}_x(n)
$$

- Reduced computational complexity ($\mathcal{O}(M \times K)$)
- $-$ Convergence issues (μ)

Objective functions and computational aspects

Recursive (weighted) least-squares (RLS):

$$
\min_{A} \sum_{i=0}^{k} \lambda^{k-i} |y(i) - \overrightarrow{A}^{H}(i) \cdot \overrightarrow{\gamma}_{x}(k)|^{2}
$$

• Iterative approach:

$$
e(k) = y(k) - \overrightarrow{A}^{H}(k-1) \cdot \overrightarrow{y}_{x}(n)
$$

\n
$$
\overrightarrow{s}(k) = \mathbf{S}(k-1) \cdot \overrightarrow{y}_{x}(n)
$$

\n
$$
\overrightarrow{\kappa}(k) = \frac{\overrightarrow{s}(k)}{1 + \overrightarrow{y}_{x}^{H}(n) \cdot \overrightarrow{s}(k)}
$$

\n
$$
\mathbf{S}(k) = \frac{1}{\lambda} [\mathbf{S}(k-1) - \frac{\overrightarrow{\kappa}(k) \cdot \overrightarrow{\kappa}(k)}{\lambda + \overrightarrow{y}_{x}^{H}(n) \cdot \overrightarrow{s}(k)}]
$$

\n
$$
\overrightarrow{A}(k) = \overrightarrow{A}(k-1) + e^{*}(k) \cdot \overrightarrow{\kappa}(k)
$$

- Increased computational complexity $(\mathcal{O}((M \times K)^2))$
- $-$ Robust convergence

Main learning architectures

- DLA
- \cdot ILA
- **Choosing an appropriate minimization method requires a reasonable amount of knowledge of the specific identification problem**
	- Stability, speed of convergence and implementation complexity can largely vary between the different methods.

DPD challenges & Solutions for 5G

TX feedback path : the bottleneck

■ ADC bandwidth feedback limitation

• Learning phase

TX feedback path : Band limited and/or low rate DPD techniques

 Band-limited feedback [Ma, 2014], [Zhang, 2015]

Low rate identification [Hammler, 2014]

TX feedback path : New low rate DPD architecture

Germain PHAM – C²S - COMELEC **39** 21/03/2019 COMELEC Seminar – DPD for Wideband 5G Transmitters

TX feedback path : Solution to the signal reconstruction

TX feedback path : New subband DPD architecture

FFT-based subband digital predistortion

TX feedback path : FFT-based subband DPD – Mitigating subband edge effects

Limited subband signal reconstruction

TX feedback path : FFT-based subband DPD – Linearization performance

Correction performance of FFT-based Limited Subband DPD

Error between ideal PD and FFT-based Limited Subband PD

TX feedback path : FFT-based subband DPD – Linearization performance

RX forward path : the bottleneck

DAC bandwidth limitation

• Correction phase

Basic Principle of Analog RF Predistortion

ARFPD performed mostly in RF, with baseband analog correction signal

• Analog multipliers are used to generate correction signal

For a two-tone signal with memoryless PA

Memory-Aware ARFPD

Roger ISSCC 2013

CMOS IC implementation in 180nm

- Power consumption = 200 mW
- Max. sig. $BW = 20 MHz$
- **EMP based predistorter**

- **Huang et al. TMTT 2015**
- **Measurement-instruments-based ARFPD platform**
	- Max. sig. $BW = 80 MHz$

FIR filter in digital BB added to EMP

Improves linear memory distortion correction performance *L*

$$
Z_{PD,FIR-EMP}[n] = \sum_{l=0}^{L} h_l x[n-l] \times
$$

$$
\sum_{k=0}^{K-1} \sum_{q=0}^{Q} a_{kq} \left| \sum_{l=0}^{L} h_{l} x[n-l-q] \right|^{k}
$$

relecoi

Advantages and Disadvantages of ARFPD

Advantages:

- Digital baseband clocked at normal clock rates
- Relaxed specifications of the entire Tx

Disadvantages:

- In practice only EMP can be used \rightarrow limited performance $-$ MP needs Q number of RF delays and RF vector multipliers
- Analog implementation \rightarrow noise, mismatch, offsets, PVT variations
- Inherent nonlinearity is caused by
	- \sim Signal amplitude expansions and compressions, ex: (0.1)² = 0.01 and 10² = 100, require high dynamic range
	- $-$ Internal bandwidth expansion, ex: correction up to IMD5 requires 1X, 3X, 5X internal bandwidths

Overall Low

Power!!

TX forward path : improving DPD architecture – The hybrid Mixed-Signal Predistorter (MSPD)

Advantages:

- FIR-MP MSPD provides good linearization performance
- Digital baseband needs to support just the BW
- Relaxed specifications for DACs and reconstruction filters

Disadvantages:

- Modulator and Bandpass filter still need 5X BW
- Analog implementation challenges because of non-idealities

Conclusion

Conclusion

- **Digital predistortion is a hot research topic**
- **Fundametal design considerations of DPD systems have been introduced**
- **It requires trans-disciplinary skills**
	- Analog/RF
	- Data converters
	- **Digital**
- **Many design elements are interacting**
	- Multi-level approach is required
- **New approaches are required for integration with disruptive technologies for 5G**
	- Massive MIMO
	- mmWave

