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Abstract. We consider a heterogeneous cellular network wherein mul-
tiple small cell millimeter wave (mmW) base stations (BSs) coexist with
legacy sub-6GHz macro BSs. In the mmW band, small cells use multiple
narrow beams to ensure sufficient coverage and User Equipments (UEs)
have to select the best small cell and the best beam in order to access
the network. This process usually based on exhaustive search may intro-
duce unacceptable latency. In order to address this issue, we rely on the
sub-6GHz macro BS support and propose a deep neural network (DNN)
architecture that utilizes basic components from the Channel State In-
formation (CSI) of sub-6GHz network as input features. The output of
the DNN is the mmW BS and beam selection that can provide the best
communication performance. In the set of features, we avoid using the
UE location, which may not be readily available for every device. We
formulate a mmW BS selection and beam selection problem as a classi-
fication and regression problem respectively and propose a joint solution
using a branched neural network. The numerical comparison with the
conventional exhaustive search results shows that the proposed design
demonstrate better performance than exhaustive search in terms of la-
tency with at least 85% accuracy.

Keywords: millimeter wave · beam selection · deep neural network ·
heterogeneous network · sub-6GHz.

1 Introduction

Millimeter Wave (mmW) communication is considered as a promising technique
to solve the unprecedented challenge of increasing demand for high data rates
in future cellular networks. However, it suffers from limited coverage and in the
ultra-dense environment it is significantly prone to blockages such as high density
objects like walls, glass, humans, etc. Thus, in-order to provide flexible coverage
and minimize the infrastructural cost, it is proposed that mmW networks will
be deployed in a multi-tier heterogeneous network, where multiple small cell
mmW base stations (BSs) coexist with multiple legacy sub-6GHz macro BSs [9].
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The legacy network operating in sub-6GHz frequencies can handle operations
like resource allocation, mobile data offloading, control signalling etc., while the
potential mmW BSs can handle massive data traffic [9, 13]. In this paper, we
propose a solution for optimal resource allocation for a heterogeneous cellular
network that enables reliable communication while leveraging the benefits of
high data rates from mmW bands.

Beamforming is important in mmW systems in order to overcome the path
loss due to shorter wavelength. With the large number of antenna elements asso-
ciated with mmW transceivers, multiple beams are possible, which can perform
directional beamforming and achieve high gain. Thus to ensure high perfor-
mance, choosing the suitable BS to user equipment (UE) beam-pair from the
set of all the possible directional beams is a crucial task. Beam selection has
been conventionally addressed using exhaustive search or multi-level selection
approach as in [12, 15]. However, with these techniques, large number of beams
at mmW BSs leads to large beam training overhead and hence unacceptable la-
tency to access the mmW network. Access latency is in turn significantly lower
in case of communication at sub-6GHz frequencies. To overcome this challenge,
out-of-band spatial information has been used for reducing beam-selection over-
head [1]. In recent years, in order to predict the optimal beam and significantly
overcome the training overhead, the use of deep learning (DL) and machine learn-
ing (ML) tools has proved to be very promising in establishing mmW links [3].
In this paper, we thus propose a deep neural network (DNN)-based mmW BS
and beam selection for heterogeneous network by utilizing basic features from
the Channel State Information (CSI) available only at sub-6GHz BSs.

DL and ML techniques have been hugely explored for various communica-
tion applications which include, channel estimation, design of auto-encoders,
spectrum allocation, etc. [7]. In the context of mmW communications, such
techniques have been reported for applications such as beam selection, block-
age detection, channel estimation, or proactive handover. Various DL and ML
techniques to reduce the beam selection overhead in mmW communications use
location information, channel information, out-of-band information or measure-
ments from different sensors such as LIDAR, camera, or GPS. Specifically, au-
thors in [6] and [5] have proposed the use of deep convolutional neural networks
to perform beam selection task in distributed and centralized architecture re-
spectively. In [11], authors have considered the use of situational knowledge
about the environment and location of UEs and proposed the use of ensemble
learning-based classification to identify the optimal mmW beam. Later, in [4],
authors proposed the applicability of deep learning techniques such as k-nearest
neighbours (KNN), support vector classifier (SVC) and multi-layer perceptron
by using angle of arrival information to perform the beam-selection task. All
these works however assume single-layer networks and ignore the macro-layer
of sub-6GHz BSs that will be required for a continuous connectivity. Only two
references are dealing with ML/DL-based beam selection in heterogeneous net-
works [3,14]. Authors in [14] have considered the CSI over sub-6GHz and kernel-
based ML algorithms to assist handovers for target vehicle discovery problem



and overcome coverage blindness. In [3], authors have proposed the use of sub-
6GHz channel and location information for performing the beam-selection and
blockage prediction task. However, the solution in [3] is limited to a single BS -
single UE communication scenario, where the BS employs co-located sub-6GHz
and mmW transceivers. In this paper, we extend the work done in [3] by con-
sidering multiple coordinating sub-6GHz and mmW BSs to perform resource
allocation for each UE in the network.

Furthermore, location is an important feature that independently can be
utilized to perform the task. Most of the previously discussed work on beam
selection including [3], considers the availability of the UE location. However, this
information may not always be readily available for many cellular devices. Also,
location sensors usually has low accuracy and can result in incorrect outputs [8].
Hence, we aim to intentionally eliminate the availability of location information
from the set of input features and design the proposed DNN based BS and beam
selection framework for a heterogeneous mmW network.

The main contributions of this paper are listed as follows:

1. To guarantee reliable communication and enhanced coverage in mmW com-
munication, we consider the heterogeneous architecture and propose DNN-
based BS and beam selection by leveraging basic signal components ex-
tracted from the sub-6GHz channel as the input features. We consider mul-
tiple coordinated sub-6GHz BSs for optimal mmW resource allocation in
order to serve any UE in the network.

2. We propose a branched DNN-structure, which divides the problem into two
sub-problems of BS selection and beam selection and is well-adapted for this
application.

3. We eliminate the use of location information from the set of input features
to perform the considered task. The feature vector considered as input to
the network include: the azimuth and elevation angle of arrival (AoA) from
the BS, the receive signal power, the signal phase and the propagation delay.

The remainder of this paper is organized as follows. Sec. 2 describes the
network and transceiver model. The proposed problem is formulated in Sec. 3
and then the deep neural network model is discussed in Sec. 4. Sec. 5 presents the
simulation environment and performance evaluation and finally Sec. 6 concludes
the paper.
Notations: Throughout this paper, we use bold-faced lowercase letters to denote
column vectors and bold-faced uppercase letters to denote matrices. For any
matrix X, XT denotes the transpose operation.

2 System Model

We consider a heterogeneous cellular network wherein multiple sub-6GHz BSs
and mmW BSs operate together in order to serve UEs in the network as shown
in the Fig. 1. We assume that there are Bµ sub-6GHz BSs, each equipped with
Nµ antenna elements. All the sub-6GHz BSs operate in a coordinated manner for



Fig. 1: System model: Heterogeneous network architecture with mmW small cells
coexisting with sub-6GHz macro BSs. Dashed lines represent the connection of
coordinating sub-6GHz BSs with a central cloud processor whereas solid lines
represent the connection between any sub-6GHz and mmW BS in a network.

their processing such as channel estimation or precoder design, along with DNN
computations being performed at a central cloud processor unit. We assume that
there are Bm mmW BSs distributed in the network region that are coordinated
with the sub-6GHz BSs to provide high speed data transfer to the UEs in the
network. Each of the mmW BS is assumed to be equipped with Nm transceiver
antennas. We assume that UEs have a single antenna in both bands1.

The communication scenario that we study is as follows. A UE is initially
connected to a sub-6GHz BS and periodically transmits pilot signals to all macro
BSs. Whenever the UE is approaching towards mmW BSs, the coordinated sub-
6GHz BSs command the best mmW BS and the best beam that maximizes the
achievable rate for this user.

Based on this scenario, the signal received by the macro sub-6GHz BSs at
the k-th OFDM sub-carrier, k = 1, 2, · · · ,K can be given by:

yµ[k] = hµ[k]ds + nµ[k], (1)

where ds is the uplink pilot transmitted over the hµ sub-6GHz channel gain ma-
trix and nµ is the additive Gaussian noise vector with zero-mean and covariance
matrix σ2

µI at the sub-6GHz BS antenna arrays. The processing at the sub-6Ghz
is performed in the baseband domain as the macro BSs are assumed to employ
fully-digital architecture.

However, due to the high cost and power consumption of mixed signal RF
components at mmW frequencies, mmW transceivers are assumed to employ
either fully-analog architecture where the transceiving unit is associated with
single RF chain or it employs hybrid analog-digital architecture with a number

1 UEs may be equipped with several antennas but we don’t address in this paper the
beam alignment problem and we focus on the beam selection at the BS. Once the
BS beam is known, the UE may for example perform exhaustive search to select its
own beam.



of RF chains less than Nm. In this work, mmW BSs adopt fully-analog beam-
forming architecture where, at a given time instant, the signal is transmitted
through a single beam which is selected from a finite set V of M predefined
beams, where V is the codebook. The total transmit power at the mmW BS
is PT . Thus for the downlink transmission, where the mmW BS communicates
with the UE, the signal received at the UE can be given as:

ym[k] = Hm[k]vm[k]dm + nm[k], (2)

where Hm is the mmW channel gain matrix, vm is the beamforming vector, dm
is the data transmitted by the mmW BS and nm is the additive Gaussian noise
at UE with zero-mean and covariance matrix σ2

mI.
We assume that the mmW channel is modelled as a geometric channel [2]

which can be given as:

Hm[k] =

L∑
l=1

√
ρl
K
ej(κl+

2πk
K ΓlBm)a(θl, φl) (3)

where
√

ρl
K is the path gain for the l-th channel path in the k-th OFDM sub-

carrier and κl and Γl represents the path phase and propagation delay for the
l-th channel path respectively. L is the total number of channels paths. The
array response vector at the BS is denoted by a(θl, φl), where θl and φl is the
azimuthal and the elevation AoA respectively. The detailed study of the utilized
channel model can be obtained in [2]. The sub-6GHz channel is modelled in the
same way.

3 Problem Formulation

Given the uplink channel information at sub-6GHz BSs, we aim at designing an
optimal mmW BS and beam predictor such that it maximizes the achievable
sum-rate for each user in the network. Thus the optimal beamforming vector
vom can be obtained as:

vom = arg max
vm∈V

K∑
k=1

log2 (1 + γ|Hm[k]Tvm|2) (4)

where γ = PT /Kσ
2
m. To design this optimal predictor we aim to find a mapping

from sub-6GHz channel to mmW BS and beam selection. [3] has shown that, un-
der the assumption that there is a bijective mapping between sub-6GHz channel
and user location, there also exists a bijective mapping between sub-6GHz chan-
nel and mmW channel. Motivated by this result, we rely on sub-6GHz channel
features to deduce the resources in mmW band. We can thus define two mapping
functions ζBS , ζb as follows:

ζBS : fµ → PBS (5)

ζb : fµ → rb (6)



Fig. 2: Deep Neural Network (DNN) model for optimal mmW BS and beam
selection.

where fµ is a feature vector of size nf extracted from the CSI in the sub-6GHz
band, PBS is a probability mass function on the set of mmW BSs and rb is a
vector of achievable rates for every possible beam out of M at a mmW BS. To
find this mapping, we utilize the DNN-based approach which are well-suited for
obtaining the non-linear relationships between different data distributions [10].
The ζBS mapping is formulated as a classification problem, in which each input
feature is mapped into a finite set of labels; each label representing candidate
mmW BSs, while ζb mapping is obtained by solving this sub-problem as a re-
gression task wherein, a real valued achievable rate is obtained for each beam
for the selected BS from ζBS mapping. The proposed DNN based solution is
presented in details in Sec.4.

4 Deep Neural Network Model

In this section, we discuss the DL model adopted to learn the mapping from sub-
6GHz channel information to mmW-BS identifier and its beam for a given user.
In an environment with multiple mmW BSs and large number of beams, it is
important to have flexibility in the network to incorporate new BSs or beams for
future requirements. To allow this scalability, the overall beam selection problem
can be divided into two sequential sub-problems: optimal mmW BS selection and
then optimal beam selection. In order to incorporate the two sub-problems in
a single neural network, we consider a branched network which takes feature
vectors fµ from sub-6GHz CSI as input and predicts both mmW BS and beams
for that user as shown in Fig 2.



4.1 Base Network

We consider a base network for both the sub-problems to learn the common
feature vectors. The input of this base network is a matrix of dimension Bµ×nf
which gathers all the features for every sub-6GHz BS. We consider a convolution
layer as the first layer of the base network with the kernel of size 1×nf . This layer
acts as a shared weight perceptron layer which is intended to find the correlation
within the feature vector of each coordinating sub-6GHz BS. The output of this
layer is passed through another convolution layer having kernel size Bµ×32. The
second convolution layer is intended to learn the correlation between the different
macro BSs. We then flatten the output and pass the learned features through a
stack of two fully-connected dense layers of size 128 and 256 respectively. All the
layers are with Rectified Linear Unit (ReLU) non-linearity activation function
as in Fig. 2. The output of the final layer of the base network is branched into
two sub-networks that are designed to solve each of the sub-problem of mmW
BS and beam selection as discussed in following subsections.

4.2 mmW BS Selection Network

This sub-network is designed to predict the optimal mmW BS in order to serve
the desired UE in the communication area. The input to this network are the fea-
tures learned from the base network. This input vector is further passed through
two fully-connected dense layers of size 128 and 64 respectively, for the optimal
BS selection specific feature learning. These learned features are then projected
onto the Bm feature space using a final dense layer. The output of this layer is
then fed to a softmax activation which results in a probability distribution over
the number of mmW BSs. The BS with the highest probability is selected as the
optimal BS.

4.3 Beam Selection Network

The beam selection sub-network utilizes the learned features from the base net-
work in order to predict the best beam. We incorporate two fully-connected
dense layers of size 128 and 64 respectively, each of which is followed by ReLU
activation. Moreover as selection of the best beam also depends or gets im-
pacted by the selected BS, we concatenate the feature from the hidden layer
of the BS selection network with the output of the previous dense layer from
this network as depicted in Fig. 2. These concatenated features provide added
information and hence result in better performance. The output of this layer is
further passed through a fully-connected dense layer of size 128, to learn the
correlation within the concatenated features. Finally, we project these learned
features to M dimensional space and pass it though a ReLU activation layer to
get the regression output for the achievable sum-rate at each beam. The index
with maximum sum-rate value is the selected beam for the selected BS from the
mmW BS selection network.



4.4 Discussions

The proposed branched neural network architecture has been obtained after
experimenting several DNN configurations. In this section, we discuss these ex-
perimented models and provide reasons for adapted changes in the final DNN
model. We initially considered a multi-layer sequential DNN with single output
vector. We took a concatenated vector of features from all sub-6GHz BSs as
input and expected a single vector of achievable rates for each beam at each
mmW BS as an output. Though this network architecture is simple and per-
forms the task directly, we observed that this network show large variations for
small changes in the environment. Moreover, when the number of mmW BSs
increases, the number of output nodes increases dramatically and the system
thus requires extensive training to achieve good performance.

To overcome this issue, we adopted a branched network, where we separately
selected the optimal mmW BS and then the optimal beam by solving both
mappings as a classification problem. Branching the complete problem to two
sub-problems helped in the learning of the system and also showcased small vari-
ations for small changes in the environment. The consideration of BS selection
as a classification problem performed well. It was however much less efficient
for beam selection. The reason lies in the fact that due to the large number of
narrow beams at mmW BSs, the angular difference between any two adjacent
beams is very small, implying that multiple beams can be selected as best beam
for certain user locations. We observed that this overlapping beam behaviour
could not be solved by classification and the network was unable to converge to
a solution.

To tackle this issue, we modified our branched network where this time, we
considered the beam selection as a regression problem. To further improve the
performance of the overall system, we formed a link between the BS selection
branch and the beam selection branch as both of these operations are not mu-
tually independent.

We adopt a soft decision for the BS selection process, i.e., we compute for
every BS the selection probability and retain the one with the highest proba-
bility. In contrast, a hard decision would have selected a BS with a probability
higher than a certain and given threshold. Hard decision has been observed to
be training data centered and can guarantee to provide good solutions for fea-
tures within the bounded range of the training data. However, a hard decision
may fail to give good solutions for feature values outside these bounds. A soft
decision however, will still provide a solution. Also, when all the BSs are equally
probable for selection, a hard decision threshold greater than 1/Bm will not pro-
vide any solution, while a soft decision will select any one of them. Furthermore,
beam selection task is also modelled with soft decision, where the best beam is
selected as the one with highest achievable sum-rate. This allows for multiple
beams selection (by considering the first highest sum-rates), a characteristic we
will use to improve the accuracy of the results, as shown in the next section.



Fig. 3: Simulation Environment [2].

5 Simulation Results and Evaluation

In this section, we illustrate the performance of the proposed DNN based BS
and beam selection in a heterogeneous mmW networks. We first describe the
setting of a simulation environment considered throughout the simulations in
subsection 5.1 and then discuss the performance results in subsection 5.2.

5.1 Simulation Environment

We consider the outdoor simulation environment provided with the available
open source DeepMIMO dataset [2]. From the dataset, we consider two different
ray tracing scenarios ’O1 3p5’ and ’O1 28’ operating at 3.5 GHz and 28 GHz
frequencies respectively, in order to construct a heterogeneous simulation envi-
ronment. We consider two sub-6GHz coordinated BSs and eight mmW BSs. The
deepMIMO dataset generates the channel at these frequencies. Given the CSI,
we extract the basic components and construct the feature vectors from utilizing
only the sub-6GHz channel, which acts as the input to our proposed DNN model.
Essentially, we consider the azimuthal and elevation AoA, signal power, path loss
and signal phase as the extracted features from the sub-6GHz CSI. Intentionally,
we don’t assume the availability of the UE location, as this information may not
be available at the device. The hyperparameters considered for the generation of
the dataset for training and testing are given in Table 1. The outdoor simulation
environment we considered is given in Fig. 3. It is an urban environment with the
BSs placed along the side of the road. We considered a subset of BSs and users
for our experiments, the list of which is given in Table 1. Users are considered
to be present on the road and are densely populated for better data generation.
Building of varying height, width and material are placed along the road pro-
viding blockages and reflections. For both scenarios, we considered 1024 OFDM
subcarriers with an OFDM sampling factor of one, where sampling factor is the



Table 1: Dataset parameters for mmW BSs operating at 28 GHz and macro
sub-6GHz BSs operating at 3.5 GHz.

Parameters 28GHz Scenario 3.5GHz Scenario

Active BSs 2,3,4,5,6,7,8,17 1,18

Active users 1651-2200, 3500-5203 1651-2200, 3500-5203

Number of BS Antennas 256 16

Antenna spacing (×wavelength) 0.5 0.5

Bandwidth (GHz) 0.5 0.02

Number of OFDM subcarriers 1024 1024

OFDM sampling factor 1 1

OFDM limit 64 64

Number of paths 1 1
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Fig. 4: Performance evaluation of the BS selection, beam selection and total
accuracy Vs varying ratio of training data with respect to total training dataset.

rate at which we can sample the OFDM subcarriers. Furthermore, the OFDM
limit specifies the number of sampled subcarriers to be considered. We set this
limit to 64 for both scenarios, which implies that we calculate the channels only
at the first 64 sampled subcarriers. Detailed explanation about the simulation
environment can be referred in [2].

5.2 Performance Evaluation

In this subsection, we present the simulation results demonstrating the per-
formance of the proposed scheme, while analyzing the effect of the number of
selected beams, the training dataset selection, and the location parameter on
accuracy and latency.

In Fig. 4, we evaluate the performance of the proposed DNN-based BS pre-
diction, best beam prediction and overall prediction accuracy, where the total
accuracy is obtained by correct prediction of both BS and beam against the
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Fig. 5: Accuracy Vs number of epochs comparing proposed DNN architecture
based beam selection predicting best 1 beam and best 3 beams without consid-
ering location information in features and proposed DNN architecture predicting
best beam while considering the location information.

varying size of the training dataset. We divide the overall data with a 80:20
ratio where 80% of the total data is used for training whereas the remaining
20% dataset is used for validation/testing purpose. Out of this total available
80% training dataset, we utilise varying training data ratios and observe the
performance in terms of accuracy for the proposed system. The system perfor-
mance illustrates that the network is able to achieve high accuracy for both BS
and beam selection tasks. The achievable BS selection accuracy is around 97%
whereas the beam can be predicted with 88%. The total accuracy of correctly
predicting both the optimal BS and beam is close to 86% when we use complete
training dataset. We observe comparable performance with 50% of training data
as compared to complete training dataset. This means that we can quickly ob-
tain good results offline and apply the algorithm online and then improve the
performance by training over the time.

We compare the performance of the proposed DNN architecture while now
considering the UE location as one of the input features. Fig 5 shows this per-
formance as a function of the number of epochs. We compare the performance
for the best beam and the best three beams with and without location. As ex-
pected, we observe that the location-aided design performs better. However, the
performance can be improved by selecting the best b beams, b = 1...M , hence
reducing the performance gap between the architecture with or without location
parameter. In Fig. 6, we demonstrate the beam selection accuracy with respect to
number of beams predicted for the proposed DNN for varying size of the training
dataset. As expected, it is observed that the beam selection accuracy increases
with the increasing number of predicted beams as well as with the increasing
size of the training data. From this figure, we can further observe and analyse
the effect of latency for the proposed system. Indeed, an exhaustive search would
require to perform M received power measurements (64 in our case), while with
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Fig. 6: Accuracy Vs number of predicted beams by the proposed DNN beam
selection with varying training dataset.

our solution, we can can achieve 85% accuracy by measuring only the best three
beams selected by the network.

6 Conclusion

In this paper, we propose a branched DNN model that jointly performs the
mmW BS prediction and beam selection task in a heterogeneous network ar-
chitecture. We consider that multiple mmW BSs coexist with multiple legacy
sub-6GHz BSs to serve the UE in the network area. The sub-6GHz BSs are as-
sumed to function in a coordinated manner and are supported by the central
cloud processor. We formulate the mmW BS prediction as a classification prob-
lem whereas the optimal beam selection is mapped into a regression problem.
For both the tasks, we utilize the channel components available only at the sub-
6GHz BSs as a set of input features. As the location information may not be
always available or it can be inaccurate due to sensor errors, we intentionally
eliminate the use of location as an input feature for the proposed problem. We
compare the performance of the proposed DNN based design with conventional
exhaustive search and observe the success probability close to 1 for allocating
optimal mmW BS and beam while using reduced computational resources. Com-
parable performance can be achieved with and without user location available
provided that the three best beams are considered. At last, we show that much
fewer beam power measurements are required compared to exhaustive search,
which results in lower latency.
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