
HAL Id: hal-02893256
https://telecom-paris.hal.science/hal-02893256

Submitted on 8 Jul 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Reconfigurable Viterbi Decoder for Mobile Platform
Reconfigurable Viterbi Decoder for Mobile Platform

Rizwan Rasheed, Aawatif Menouni Hayar, Renaud Pacalet

To cite this version:
Rizwan Rasheed, Aawatif Menouni Hayar, Renaud Pacalet. Reconfigurable Viterbi Decoder for Mobile
Platform Reconfigurable Viterbi Decoder for Mobile Platform. 7th IFIP International Conference on
Mobile and Wireless Communications Networks (MWCN), Sep 2005, Marrakech, Morocco. �hal-
02893256�

https://telecom-paris.hal.science/hal-02893256
https://hal.archives-ouvertes.fr

Reconfigurable Viterbi Decoder for Mobile Platform
Rizwan RASHEED, Mobile Communications Department, Institut Eurecom, Sophia Antipolis, France

Aawatif MENOUNI HAYAR, Mobile Communications Department, Institut Eurecom, Sophia Antipolis, France
Renaud PACALET, GET/ENST, CNRS LTCI, Sophia Antipolis, France

{ rizwan.rasheed, aawatif.menouni }@ eurecom.fr, renaud.pacalet@enst.fr

Contact details of the first Author:

Rizwan Rasheed
Mobile Communications Department,
Institut Eurecom,
229 Route des Cretes – BP 193,
06904 Sophia Antipolis,
France

T. + 33 (0) 4 93 00 29 39
F. + 33 (0) 4 93 00 26 27
Email. rizwan.rasheed@eurecom.fr

Abstract

The Software Defined Radio (SDR) is a class of reprogrammable and reconfigurable radios which can
be switched from one air-interface to another. It is generally employed in software, which can be easily
realized on base-station side. On terminal-side, the configurability of the radio has to be maintained in
hybrid architecture, consist of both software as well as hardware, due to computational cost of software
solution and limited terminal capabilities. Keeping in view, the reconfigurability needs for SDR, this
paper presents the design of reconfigurable Viterbi decoder suited for 3GPP, GSM and WLAN
standards.

Keywords

Viterbi, reconfigurable decoder, 3GPP, GSM, WLAN.

Reconfigurable Viterbi Decoder for Mobile Platform
Rizwan RASHEED, Mobile Communications Department, Institut Eurecom, Sophia Antipolis, France

Aawatif MENOUNI HAYAR, Mobile Communications Department, Institut Eurecom, Sophia Antipolis, France
Renaud PACALET, GET/ENST, CNRS LTCI, Sophia Antipolis, France

{ rizwan.rasheed, aawatif.menouni }@ eurecom.fr, renaud.pacalet@enst.fr

Abstract – The Software Defined Radio (SDR) is a
class of reprogrammable and reconfigurable radios
which can be switched from one air-interface to
another. It is generally employed in software, which can
be easily realized on base-station side. On terminal-side,
the configurability of the radio has to be maintained in
hybrid architecture, consist of both software as well as
hardware, due to computational cost of software
solution and limited terminal capabilities. Keeping in
view, the reconfigurability needs for SDR, this paper
presents the design of reconfigurable Viterbi decoder
suited for 3GPP, GSM and WLAN standards.

Keywords: Viterbi, reconfigurable decoder, 3GPP,
GSM, WLAN.

I – Introduction

The wireless communication networks are developing
furiously over the last few years, and thus various
wireless standards have been introduced in order to
improve the wireless communication networks. With the
rapid emergence of the wireless communication networks
there is a surging demand for the communication devices
that can support several wireless standards and have
capability to switch from one communication
environment to another.

To cater this need, a flexible hardware is under-
development at Institut Eurecom. A complete hardware
has many functional blocks; like RF front-end,
ADC/DAC, FFT, equalizer, correlator, interleaver,
source codec etc, but this paper concentrates on the
channel decoder.

As the convolutional codes are used mostly for the
channel encoding of data to achieve low-error-rate in
latest wireless communication standards like 3GPP,
GSM and WLAN; the use of optimal decoding
algorithm, Viterbi [1], for data reception is adequate.

The paper is organized as follows: Section-II,
describes the Viterbi decoding. In Section-III, the
reconfigurable Viterbi decoder architecture is illustrated.
Results are overviewed in Section-IV. The paper is
concluded with Section-V.

II – Viterbi decoding

Viterbi is the most widely used technique for
detecting and correcting errors in the communication

systems based on convolutional coding. If convolutional
encoder parameters; constraint length (K), code rate (r)
and generator polynomials (G) of any communication
system are known, then a decoding system can be
realized.

The Viterbi decoder finds the optimal path through
2K-1 nodes (states), N-stage Trellis diagram. In the Trellis
diagram, there are two paths entering each node with a
branch metric value at any stage n. These branch metrics
are accumulated with the survived path metrics of this
node of n-1 stage. The two updated path metrics at each
node are compared, resulting in one survival; the other is
discarded. Thus every trellis node contains single path
metric at any time. This practice is repeated for every
node of the Trellis diagram until N-stages are processed.
The traceback of the N-stages generate N decoded bits.

-BM00

BM00

-BM01

BM01

-BM01

BM01

-BM00

BM00

Stage n Stage n-1

00 00

PMn
2i+1

PMn-1
i+2^K-2

BMx

-BMx
-BMx

BMx

i+2K-2

i

PMn-1
i PMn

2i

2i
01 01

10 10
2i+1

11 11
Stage n-1 Stage n

 (a) (b)

Figure 1 – Trellis diagram and a butterfly

Since the computational complexity of the Viterbi
decoder increases with the constraint length (K) of
convolutional codes, a suitable architecture for the design
has to be chosen.

To reduce the computational complexity in our
design, the branch metrics are computed using Manhattan
distance cost metric calculations [2]. Given Y0 and Y1
the decoder input symbols at stage n, the Manhattan
distance cost of branch metrics are;

BM00 = Y0 + Y1; BM01 = Y0 – Y1

BM10 = – Y0 + Y1 = – BM01 ;

BM11 = –Y0 – Y1 = – BM00

Therefore, a single branch metric can be used to
compute both the updated path metrics at any trellis
node, as shown in figure 1 (a).

Symmetry in the Trellis diagram can be used to
reduce the number of path metric calculations. A
butterfly structure shown in figure 1 (b) is realized in our
design. Each butterfly transforms to trellis nodes 2i and
2i+1 of stage n, from nodes i and i+2K-2 of stage n-1, as
depicted in figure 1 (b). Although there are four trellis
paths coming from stage n-1 to stage n (two for each
node), only one branch metric is needed to process the
whole butterfly.

The minimum of the two incoming paths is selected
at each node using following operations;

PMn
2i = min { PMn-1

i + BMx , PMn-1
i+2^K-2 - BMx }

PMn
2i+1 = min { PMn-1

i – BMx , PMn-1
i+2^K-2 + BMx }

Once N-stage computation is done, traceback
operation is performed to extract N decoded bits. It is
experimentally shown that the processing of 5xK stages
(where K is constraint length) should be done to achieve
trusted decoded bits before executing the traceback
operation [3,4]. Therefore, the N is chosen to be 5xK in
our design.

Since traceback is the reverse operation and as a
result decoder generates decoded bits in inverse order, bit
swapping is achieved by simply passing all the decoded
bits through LIFO (Last-in-First-out) in our design.

III – Reconfigurable Viterbi decoder architecture

In our design, Viterbi decoder is composed of four
functional blocks: Branch-metric unit (BMU), Add-
compare-select unit (ACSU), Best-state unit (BSU) and
Survivor-management unit (SMU). The functional block
diagram of the reconfigurable Viterbi decoder
architecture is shown in figure 2.

ACSU

BSU

Figure 2 – Reconfigurable Viterbi decoder

a) Branch metric Unit (BMU)

The branch metric unit computes Euclidean distance
between the received convolutionally coded symbols and
the ideally transmitted symbols. The received coded
symbols can either be translated as hard bits or soft bits.
Since to get the same error performance, soft bits require
2-3 dB less signal-to-noise power ratio than hard bits [4],

soft bits processing is chosen to be employed in our
design. Thus the BMU accepts 3-bit symbol for each
coded bit. It is known that this level is adequate to
achieve practically the same performance as with un-
quantized channel values [5, 6]. Moreover 8-level
quantization causes a loss of less than 0.25dB in the
signal-noise ratio compared to infinitely fine quantization
[7], therefore, using more bits to represent a symbol is
not very useful and we decided to work with 3-bit
symbols.

The selection of the Viterbi decoder for the target
wireless standards: 3GPP, GSM and 802.11a, is done
using 2-bit input to the BMU. All the possible branch
words are stored in the Lookup tables (LUTs). Upon
selection of particular wireless standard, the concerned
set of branch words are multiplexed out from the LUTs.

The branch metric are represented on 5-bits. The size
of the branch metrics has strong relations with the path
metrics size. Selection of larger path metrics would need
larger memories for path metrics storage. The
relationship between branch metrics and path metrics is
depicted in the next part.

b) Add-Compare-Select Unit (ACSU)

The ACSU takes in the branch metrics from the BMU
and computes the path metrics and the survivor
(decision) bits at each node in the trellis and stores the
new (updated) path metrics in the path metric registers as
input for the next stage. Each computed path metric and
survivor bit represents an individual node in the trellis.
This is done by adding the branch metrics with the node
path metrics, comparing the two newly computed path
metrics, and selecting the best path metric between the
two. The best path also identifies the surviving path bit.
The diagram of one ACS unit is shown in figure 3.

Adder

Adder

Comp.

M
U
X

Surviving
bit

Path
metric 1

Path
metric 0

Branch
metric 1

Branch
metric 0

Wireless
standard
selection

Decoded
bits

Received
coded
symbols

SMU

BMU

Updated
path metric

Figure 3 – one ACS unit

The most demanding and complex part of the ACSU
is its memory management for the updated path metrics.
Since the updated path metrics are required in the
processing of the next stage in the trellis, each and every
path metric has to be stored at a particular position (using
registers or RAMs) so that when the computation of the
next stage starts correct path metrics can be called for the
computation of the correct trellis nodes. In order to

achieve this, in-place update path metrics scheduling as
proposed in [8] is employed.

The ACSU internal block diagram is shown in figure
4. The basic components of the ACSU are four PEs
(containing 8 ACS processors; each PE contains 2 of the
ACS units shown in figure 4), a RAM bank (containing 8
dual-port RAMs), a Shuffling Network and a Control
unit.

Figure 4 – ACSU block diagram

In the ACSU architecture, processing elements (PEs) are
the main processors which compute the updated path
metrics. Each PE processes a butterfly in the trellis. The
PEs receive branch metrics from the BMU and previous
path metrics from the dual-port RAMs (the BMU inputs
are not shown in the figure 4). Once updated path metrics
by the PEs are computed, they are stored in the dual-port
RAMs again after passing through the shuffle network.
The choice of the RAMs where the updated path metrics
are to be stored after computations is carefully designed,
as we need these path metrics again for the processing of
the next trellis stage. To keep things simple we always
store the path metrics of the same states in the same
RAMs. This is achieved by the shuffling network after
the PEs that selects the path to the RAMs. For instance,
while processing 256 nodes trellis (for K=9), dpram0 and
dpram1 provide path metrics of nodes 0 and 128,
respectively, to PE0. The PE0 computes updated path
metrics for nodes 0 and 1 (in the trellis butterfly; ith and
i+2K-2 trellis nodes become 2i and 2i+1). The updated
path metrics of nodes 0 and 1 should be stored in the
same RAMs where they were initially stored, so the
shuffling network is switched in such a way that the
updated path metric of node 0 goes to dpram0 and of
node 1 goes to dpram4. Similarly, for the same trellis, if
dpram2 and dpram3 provide path metrics of nodes 64
and 192, respectively, to PE1. The updated path metrics
for node 128 and 129 are processed by PE1. The shuffle
network directs the updated path metrics of the nodes
128 and 129 to dpram1 and dpram5, respectively.

Due to the fact that the path metrics are saved in a
finite-length registers, normalization is required to deal
with overflowing, as path metrics tend to grow while

computing trellis stages and get overflow. There are
many path metric normalization techniques described in
[9]. Modulo-normalization technique is employed in our
design. This technique is based on the fact that the
difference between all the path metrics at any trellis stage
is kept bounded in magnitude by a fixed quantity
independent of the number of ACS operations already
performed in the trellis. To realize this, one has to follow
the relation:

A0 A1

SWT9 9

9x8

dpram7

dpram5

dpram3

dpram1

dpram6

dpram4

dpram2

dpram0

* Branch metric inputs to and survivor bits
output from the PEs are not shown.

Control Unit

dpram7

dpram6

dpram5

dpram4

dpram3

dpram2

dpram1

dpram0

PE3

PE1

PE2

PE0

2c-1 – 1 > Dmax [i]

where c is the number of bits used to represent path
metric and Dmax is the maximum difference between the
path metrics. Dmax is related to branch metrics as

Dmax = (BMmax – BMmin) (K – 1) [ii]

where BMmax and BMmin are maximum and minimum
branch metrics respectively and K is the constraint
length. Using above relations, the path metric width in
our design comes out to be 9-bits.

c) Best State Unit (BSU)

Since the traceback operation is started from the best
state of the trellis, this unit compares all the path metrics
of the trellis of 2K-1 nodes and identifies the best state. In
our design, the best state of the trellis is hunted while the
ACSU is processing the final trellis stage, just before the
beginning of the traceback operation. The traceback
operation is initiated after the processing of 5xK trellis
stages. For instance, with K=9, the traceback is
initialized when ACSU processed 45 (=9x5) trellis
stages. And the BSU operates while the 45th stage is
processed by the ACSU.

d) Survivor Management Unit (SMU)

The SMU is responsible for finding the decoded data
by using survivor bits computed by ACSU. Generally,
there are two hardware approaches for survivor
management, namely register exchange and traceback.
We choose the traceback scheme over the register
exchange because traceback is more suitable for
reconfiguration purposes and because of the hardware
cost of exchange registers for large trellis. In general, the
survivor management unit organization of the traceback
algorithm is shown in figure 5.

2K-1

0

Decision
bits

Figure 5 – Traceback memory organization
traceback decode write

We use single dual-port RAM of size 3k x 8-bits.
Dual-port RAM is selected in the design, to read and
write the RAM in the same cycle. Thus the reading and

writing of the survivor bits is done simultaneously. In
order to depict the operation of the traceback; let’s
consider a trellis of 256 nodes (K=9). The operation of
the RAM is illustrated in figure 6.

Figure 6 – The structure and operation of the
traceback memory

First writing phase of the survivor bits into the RAM
takes time T1. Second writing phase is completed in time
T2 (T1 and T2 are equal). Once two writing phases are
achieved, the traceback is triggered and takes 180 cycles
to generate 45 decoded bits.

Since the decoded bits are obtained in reverse order,
they are fed into the LIFO to swap their order.

IV – Results

The presented reconfigurable Viterbi decoder
architecture is modeled in VHDL and simulated in
ModelSim SE 5.8d.

It has been verified that after the initialization and
early writing phases of the decoder, sequences of
decoded bits are yielded. Each sequence contains 45 bits
for K=9 and 35 bits for K=7. At the average one decoded
bit is obtained after every 32 cycles for K=9 and after
every 8 cycles for K=7. Hence, at a clock frequency of
100MHz a throughput of 3.125Mbps and 12.5Mbps is
achieved for K=9 and K=7 respectively. Of course,
depending on the target technology, higher frequencies
could be reached, thus providing higher throughputs.

The fully validated Viterbi decoder is synthesized for
Altera’s Stratix family (FPGA) device EP1S40F780C
speed grade 5. The decoder core uses 1314 logic
elements (3.2% of the total FPGA resources) and 35072
memory bits (1.04% of the total resources). Hence, as
many as 31 Viterbi decoders could fit in the FPGA used.

Several reconfigurable Viterbi decoder
implementations have been reported. In [10], a decoder
for constraint lengths 3 to 7 and code rates 1/2 & 1/3 is
presented. The throughput of 20Mbps is achieved with

this implementation. Unlike our design, this design
realizes fully parallel scheme, where every trellis node is
computed with a dedicated ACS unit. This approach
results in large area and high power consumption.
Utilization of over 89k logic gates is reported. Moreover,
our design is targeted to the practical constraint length
values and therefore, we choose to work around 7 and 9.
No wireless standard is reported to choose constraint
length 6 or other even number K values. Designing
architecture for even number constraint lengths would
probably be a waste of resources.

T3-180

T2+180

T2

T1

RAM reading
(traceback)

RAM writing
(forward trace)

3071

2879

1439 0

time

Similarly, in [11] a Viterbi decoder design for K vales
3 to 9 and code rate 1/2 & 1/3 is reported. Throughput
rates up to 60.5Mbps for Viterbi decoding and 3.54Mbps
for Turbo decoding is shown. Fully parallel scheme is
adopted and thus resulting in larger area and high power
consumption. However, this design uses a power control
unit to reduce the power consumption. The design
requires over 190k logic gates and about 327k bits of
memory. Compared with our architecture this cost is very
high.

Another reconfigurable Viterbi decoder design is
reported in [12], where an adaptive Viterbi decoding
algorithm is used. Using this adaptive algorithm, instead
of computing and retaining all the 2K-1 possible trellis
paths, only those paths which satisfy certain cost
conditions are retained for each received symbol at each
trellis node. Two implementations for K=4 to 9 and
K=10 to 14 are reported in [12]. Both the
implementations are based on fully parallel scheme, that
is, large resource utilization and high power
consumption. Moreover, very low throughput rates of the
order of few hundred kbps are reported.

V – Conclusions

In this paper a reconfigurable Viterbi decoder
architecture for Eurecom mobile platform is presented.
The decoder can be reconfigured online for wireless
standards 3GPP, GSM and WLAN 802.11a. The decoder
is capable of to decode code rates 1/2 and 1/3. The
generator polynomials for the target wireless standards;
3GPP, GSM and WLAN 802.11a; are fed into the
decoder. In-place addressing scheme for updated path
metrics as shown in [8] is adopted in the design. To make
no effect on the processing speed of the decoder modulo
normalization technique is implemented for path metric
normalization. The best state unit (BSU) is introduced
separately in the proposed architecture that features to
find the best trellis state from all the computed states in
all times. A single dual-port RAM is used for the trace-
forward and traceback operations simultaneously. This
choice leads to reduce significant amount of extra
memory requirements. The presented reconfigurable
Viterbi decoder has been successfully verified in
simulations using ModelSim SE 5.8d and synthesized for
Altera’s Stratix family (FPGA) device EP1S40F780C
speed grade 5.

References

[1] G. D. Forney, Jr. “The Viterbi Algorithm”,
Proceedings of The IEEE, vol. 61, pp. 268-278, Mar.
1978.

[2] Lou, H., “Viterbi decoder design for the IS-95
CDMA forward link”, Vehicular Technology
Conference, 1996, “Mobile Technology for Human
Race”, IEEE 46th, Vol. 2, Iss., 28 Apr-I May 1996, 1346-
1350.

[3] B. Sklar. “Digital Communications-Fundamentals
and Applications”, Prentice Hall, 2nd edition, 1988.

[4] Robert H. Morelos-Zaragoza, “The Art of Error
Correcting Coding”, John Wiley & Sons Ltd.

[5] J. L. Massey, “Coding and Modulation in Digital
Communications”, Proc. Int. Zurich Seminar on Dig.
Comm., pp. E2(1)-E2(4), Zurich Switzerland, 1974.

[6] I. M. Onyszchuk, K.-M. Cheung and O. Collins,
“Quantization Loss in Convolutional Decoding”, IEEE
Trans. Comm., vol. 441, no. 2, pp. 261-265, Feb. 1993.

[7] I. Bogdan, M. Munteanu, P.A. Ivey, N.L. Seed, N.
Powell, “Power Reduction Techniques for a Viterbi
Decoder Implementation”, ESPLD 2000, Third

International Workshop July 25-28 2000 - Rapallo, Italy,
ISBN 90-5326-036-6, pp 28-48.

[8] M. Biver, H. Kaeslin and C. Tommasini, “In-
place updating of path metrics in Viterbi decoders ”IEEE
Journal of Solid-State Circuits, vol. 24, no. 4, pp. 1158-
1159, Aug 1989.

[9] C. Bernard Shung, Paul H. Siegel, Gottfried
Ungerboeck, Hemant K. Thapar “VLSI Architectures for
Metric Normalization in Viterbi Algorithm” IEEE 1990
1723-1728.

[10] K. Chadha, J. Cavallaro, “A Reconfigurable
Viterbi Decoder Architecture”, Conference Record of the
Asilomar Conference on Signals, Systems and
Computers 1 , 66-71.

[11] J. Cavallaro, M. Vaya, “VITURBO: A
Reconfigurable Architecture for Viterbi and Turbo
Decoding”, ICASSP, IEEE International Conference on
Acoustics, Speech and Signal Processing - Proceedings
2, 497-500.

[12] S. Swaminathan, R. Tessier, D. Goeckel, W.
Burlesson, “A Dynamically Reconfigurable Adaptive
Viterbi Decoder”, ACM/SIGDA International
Symposium on Field Programmable Gate Arrays -
FPGA, 227-236

