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Abstract 

The Software Defined Radio (SDR) is a class of reprogrammable and reconfigurable radios which can 
be switched from one air-interface to another. It is generally employed in software, which can be easily 
realized on base-station side. On terminal-side, the configurability of the radio has to be maintained in 
hybrid architecture, consist of both software as well as hardware, due to computational cost of software 
solution and limited terminal capabilities. Keeping in view, the reconfigurability needs for SDR, this 
paper presents the design of reconfigurable Viterbi decoder suited for 3GPP, GSM and WLAN 
standards. 
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Abstract – The Software Defined Radio (SDR) is a 
class of reprogrammable and reconfigurable radios 
which can be switched from one air-interface to 
another. It is generally employed in software, which can 
be easily realized on base-station side. On terminal-side, 
the configurability of the radio has to be maintained in 
hybrid architecture, consist of both software as well as 
hardware, due to computational cost of software 
solution and limited terminal capabilities. Keeping in 
view, the reconfigurability needs for SDR, this paper 
presents the design of reconfigurable Viterbi decoder 
suited for 3GPP, GSM and WLAN standards. 

Keywords: Viterbi, reconfigurable decoder, 3GPP, 
GSM, WLAN. 
 

I – Introduction 

The wireless communication networks are developing 
furiously over the last few years, and thus various 
wireless standards have been introduced in order to 
improve the wireless communication networks. With the 
rapid emergence of the wireless communication networks 
there is a surging demand for the communication devices 
that can support several wireless standards and have 
capability to switch from one communication 
environment to another. 

To cater this need, a flexible hardware is under-
development at Institut Eurecom. A complete hardware 
has many functional blocks; like RF front-end, 
ADC/DAC, FFT, equalizer, correlator, interleaver, 
source codec etc, but this paper concentrates on the 
channel decoder. 

As the convolutional codes are used mostly for the 
channel encoding of data to achieve low-error-rate in 
latest wireless communication standards like 3GPP, 
GSM and WLAN; the use of optimal decoding 
algorithm, Viterbi [1], for data reception is adequate. 

The paper is organized as follows: Section-II, 
describes the Viterbi decoding. In Section-III, the 
reconfigurable Viterbi decoder architecture is illustrated. 
Results are overviewed in Section-IV. The paper is 
concluded with Section-V. 

 

II – Viterbi decoding 

Viterbi is the most widely used technique for 
detecting and correcting errors in the communication 

systems based on convolutional coding. If convolutional 
encoder parameters; constraint length (K), code rate (r) 
and generator polynomials (G) of any communication 
system are known, then a decoding system can be 
realized.  

The Viterbi decoder finds the optimal path through 
2K-1 nodes (states), N-stage Trellis diagram. In the Trellis 
diagram, there are two paths entering each node with a 
branch metric value at any stage n. These branch metrics 
are accumulated with the survived path metrics of this 
node of n-1 stage. The two updated path metrics at each 
node are compared, resulting in one survival; the other is 
discarded. Thus every trellis node contains single path 
metric at any time. This practice is repeated for every 
node of the Trellis diagram until N-stages are processed. 
The traceback of the N-stages generate N decoded bits. 
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Figure 1 – Trellis diagram and a butterfly 

Since the computational complexity of the Viterbi 
decoder increases with the constraint length (K) of 
convolutional codes, a suitable architecture for the design 
has to be chosen. 

To reduce the computational complexity in our 
design, the branch metrics are computed using Manhattan 
distance cost metric calculations [2]. Given Y0 and Y1 
the decoder input symbols at stage n, the Manhattan 
distance cost of branch metrics are; 

BM00 = Y0 + Y1;  BM01 = Y0 – Y1 

BM10 = – Y0 + Y1 = – BM01 ;  

BM11 = –Y0 – Y1 = – BM00 

Therefore, a single branch metric can be used to 
compute both the updated path metrics at any trellis 
node, as shown in figure 1 (a). 



Symmetry in the Trellis diagram can be used to 
reduce the number of path metric calculations.  A 
butterfly structure shown in figure 1 (b) is realized in our 
design. Each butterfly transforms to trellis nodes 2i and 
2i+1 of stage n, from nodes i and i+2K-2 of stage n-1, as 
depicted in figure 1 (b). Although there are four trellis 
paths coming from stage n-1 to stage n (two for each 
node), only one branch metric is needed to process the 
whole butterfly. 

The minimum of the two incoming paths is selected 
at each node using following operations; 

PMn
2i = min { PMn-1

i + BMx  , PMn-1
i+2^K-2 - BMx } 

PMn
2i+1 = min { PMn-1

i – BMx  , PMn-1
i+2^K-2 + BMx } 

Once N-stage computation is done, traceback 
operation is performed to extract N decoded bits. It is 
experimentally shown that the processing of 5xK stages 
(where K is constraint length) should be done to achieve 
trusted decoded bits before executing the traceback 
operation [3,4]. Therefore, the N is chosen to be 5xK in 
our design. 

Since traceback is the reverse operation and as a 
result decoder generates decoded bits in inverse order, bit 
swapping is achieved by simply passing all the decoded 
bits through LIFO (Last-in-First-out) in our design. 

 

III – Reconfigurable Viterbi decoder architecture 

In our design, Viterbi decoder is composed of four 
functional blocks: Branch-metric unit (BMU), Add-
compare-select unit (ACSU), Best-state unit (BSU) and 
Survivor-management unit (SMU). The functional block 
diagram of the reconfigurable Viterbi decoder 
architecture is shown in figure 2. 
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Figure 2 – Reconfigurable Viterbi decoder 

 

a) Branch metric Unit (BMU) 

The branch metric unit computes Euclidean distance 
between the received convolutionally coded symbols and 
the ideally transmitted symbols. The received coded 
symbols can either be translated as hard bits or soft bits. 
Since to get the same error performance, soft bits require 
2-3 dB less signal-to-noise power ratio than hard bits [4], 

soft bits processing is chosen to be employed in our 
design. Thus the BMU accepts 3-bit symbol for each 
coded bit. It is known that this level is adequate to 
achieve practically the same performance as with un-
quantized channel values [5, 6]. Moreover 8-level 
quantization causes a loss of less than 0.25dB in the 
signal-noise ratio compared to infinitely fine quantization 
[7], therefore, using more bits to represent a symbol is 
not very useful and we decided to work with 3-bit 
symbols. 

The selection of the Viterbi decoder for the target 
wireless standards: 3GPP, GSM and 802.11a, is done 
using 2-bit input to the BMU. All the possible branch 
words are stored in the Lookup tables (LUTs). Upon 
selection of particular wireless standard, the concerned 
set of branch words are multiplexed out from the LUTs. 

The branch metric are represented on 5-bits. The size 
of the branch metrics has strong relations with the path 
metrics size. Selection of larger path metrics would need 
larger memories for path metrics storage. The 
relationship between branch metrics and path metrics is 
depicted in the next part. 

b) Add-Compare-Select Unit (ACSU) 

The ACSU takes in the branch metrics from the BMU 
and computes the path metrics and the survivor 
(decision) bits at each node in the trellis and stores the 
new (updated) path metrics in the path metric registers as 
input for the next stage. Each computed path metric and 
survivor bit represents an individual node in the trellis. 
This is done by adding the branch metrics with the node 
path metrics, comparing the two newly computed path 
metrics, and selecting the best path metric between the 
two. The best path also identifies the surviving path bit. 
The diagram of one ACS unit is shown in figure 3. 
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Figure 3 – one ACS unit 

The most demanding and complex part of the ACSU 
is its memory management for the updated path metrics. 
Since the updated path metrics are required in the 
processing of the next stage in the trellis, each and every 
path metric has to be stored at a particular position (using 
registers or RAMs) so that when the computation of the 
next stage starts correct path metrics can be called for the 
computation of the correct trellis nodes. In order to 



achieve this, in-place update path metrics scheduling as 
proposed in [8] is employed. 

The ACSU internal block diagram is shown in figure 
4. The basic components of the ACSU are four PEs 
(containing 8 ACS processors; each PE contains 2 of the 
ACS units shown in figure 4), a RAM bank (containing 8 
dual-port RAMs), a Shuffling Network and a Control 
unit. 

 

 

 

 

 

 

 

 

 

 

Figure 4 – ACSU block diagram 

In the ACSU architecture, processing elements (PEs) are 
the main processors which compute the updated path 
metrics. Each PE processes a butterfly in the trellis. The 
PEs receive branch metrics from the BMU and previous 
path metrics from the dual-port RAMs (the BMU inputs 
are not shown in the figure 4). Once updated path metrics 
by the PEs are computed, they are stored in the dual-port 
RAMs again after passing through the shuffle network. 
The choice of the RAMs where the updated path metrics 
are to be stored after computations is carefully designed, 
as we need these path metrics again for the processing of 
the next trellis stage. To keep things simple we always 
store the path metrics of the same states in the same 
RAMs. This is achieved by the shuffling network after 
the PEs that selects the path to the RAMs. For instance, 
while processing 256 nodes trellis (for K=9), dpram0 and 
dpram1 provide path metrics of nodes 0 and 128, 
respectively, to PE0. The PE0 computes updated path 
metrics for nodes 0 and 1 (in the trellis butterfly; ith and 
i+2K-2 trellis nodes become 2i and 2i+1). The updated 
path metrics of nodes 0 and 1 should be stored in the 
same RAMs where they were initially stored, so the 
shuffling network is switched in such a way that the 
updated path metric of node 0 goes to dpram0 and of 
node 1 goes to dpram4. Similarly, for the same trellis, if 
dpram2 and dpram3 provide path metrics of nodes 64 
and 192, respectively, to PE1. The updated path metrics 
for node 128 and 129 are processed by PE1. The shuffle 
network directs the updated path metrics of the nodes 
128 and 129 to dpram1 and dpram5, respectively. 

Due to the fact that the path metrics are saved in a 
finite-length registers, normalization is required to deal 
with overflowing, as path metrics tend to grow while 

computing trellis stages and get overflow. There are 
many path metric normalization techniques described in 
[9]. Modulo-normalization technique is employed in our 
design. This technique is based on the fact that the 
difference between all the path metrics at any trellis stage 
is kept bounded in magnitude by a fixed quantity 
independent of the number of ACS operations already 
performed in the trellis. To realize this, one has to follow 
the relation: 
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where c is the number of bits used to represent path 
metric and Dmax is the maximum difference between the 
path metrics. Dmax is related to branch metrics as  

Dmax = (BMmax – BMmin) (K – 1)           [ii] 

where BMmax and BMmin are maximum and minimum 
branch metrics respectively and K is the constraint 
length. Using above relations, the path metric width in 
our design comes out to be 9-bits. 

c) Best State Unit (BSU) 

Since the traceback operation is started from the best 
state of the trellis, this unit compares all the path metrics 
of the trellis of 2K-1 nodes and identifies the best state. In 
our design, the best state of the trellis is hunted while the 
ACSU is processing the final trellis stage, just before the 
beginning of the traceback operation. The traceback 
operation is initiated after the processing of 5xK trellis 
stages. For instance, with K=9, the traceback is 
initialized when ACSU processed 45 (=9x5) trellis 
stages. And the BSU operates while the 45th stage is 
processed by the ACSU. 

d) Survivor Management Unit (SMU)  

The SMU is responsible for finding the decoded data 
by using survivor bits computed by ACSU. Generally, 
there are two hardware approaches for survivor 
management, namely register exchange and traceback. 
We choose the traceback scheme over the register 
exchange because traceback is more suitable for 
reconfiguration purposes and because of the hardware 
cost of exchange registers for large trellis. In general, the 
survivor management unit organization of the traceback 
algorithm is shown in figure 5. 
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Figure 5 – Traceback memory organization 
traceback decode write

We use single dual-port RAM of size 3k x 8-bits. 
Dual-port RAM is selected in the design, to read and 
write the RAM in the same cycle. Thus the reading and 



writing of the survivor bits is done simultaneously. In 
order to depict the operation of the traceback; let’s 
consider a trellis of 256 nodes (K=9). The operation of 
the RAM is illustrated in figure 6. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6 – The structure and operation of the 
traceback memory 

First writing phase of the survivor bits into the RAM 
takes time T1. Second writing phase is completed in time 
T2 (T1 and T2 are equal). Once two writing phases are 
achieved, the traceback is triggered and takes 180 cycles 
to generate 45 decoded bits. 

Since the decoded bits are obtained in reverse order, 
they are fed into the LIFO to swap their order. 

 

IV – Results 

The presented reconfigurable Viterbi decoder 
architecture is modeled in VHDL and simulated in 
ModelSim SE 5.8d. 

It has been verified that after the initialization and 
early writing phases of the decoder, sequences of 
decoded bits are yielded. Each sequence contains 45 bits 
for K=9 and 35 bits for K=7. At the average one decoded 
bit is obtained after every 32 cycles for K=9 and after 
every 8 cycles for K=7. Hence, at a clock frequency of 
100MHz a throughput of 3.125Mbps and 12.5Mbps is 
achieved for K=9 and K=7 respectively. Of course, 
depending on the target technology, higher frequencies 
could be reached, thus providing higher throughputs. 

The fully validated Viterbi decoder is synthesized for 
Altera’s Stratix family (FPGA) device EP1S40F780C 
speed grade 5. The decoder core uses 1314 logic 
elements (3.2% of the total FPGA resources) and 35072 
memory bits (1.04% of the total resources). Hence, as 
many as 31 Viterbi decoders could fit in the FPGA used. 

Several reconfigurable Viterbi decoder 
implementations have been reported. In [10], a decoder 
for constraint lengths 3 to 7 and code rates 1/2 & 1/3 is 
presented. The throughput of 20Mbps is achieved with 

this implementation. Unlike our design, this design 
realizes fully parallel scheme, where every trellis node is 
computed with a dedicated ACS unit. This approach 
results in large area and high power consumption. 
Utilization of over 89k logic gates is reported. Moreover, 
our design is targeted to the practical constraint length 
values and therefore, we choose to work around 7 and 9.  
No wireless standard is reported to choose constraint 
length 6 or other even number K values. Designing 
architecture for even number constraint lengths would 
probably be a waste of resources. 
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Similarly, in [11] a Viterbi decoder design for K vales 
3 to 9 and code rate 1/2 & 1/3 is reported. Throughput 
rates up to 60.5Mbps for Viterbi decoding and 3.54Mbps 
for Turbo decoding is shown. Fully parallel scheme is 
adopted and thus resulting in larger area and high power 
consumption. However, this design uses a power control 
unit to reduce the power consumption. The design 
requires over 190k logic gates and about 327k bits of 
memory. Compared with our architecture this cost is very 
high. 

Another reconfigurable Viterbi decoder design is 
reported in [12], where an adaptive Viterbi decoding 
algorithm is used. Using this adaptive algorithm, instead 
of computing and retaining all the 2K-1 possible trellis 
paths, only those paths which satisfy certain cost 
conditions are retained for each received symbol at each 
trellis node. Two implementations for K=4 to 9 and 
K=10 to 14 are reported in [12]. Both the 
implementations are based on fully parallel scheme, that 
is, large resource utilization and high power 
consumption. Moreover, very low throughput rates of the 
order of few hundred kbps are reported. 

 

V – Conclusions 

In this paper a reconfigurable Viterbi decoder 
architecture for Eurecom mobile platform is presented. 
The decoder can be reconfigured online for wireless 
standards 3GPP, GSM and WLAN 802.11a. The decoder 
is capable of to decode code rates 1/2 and 1/3. The 
generator polynomials for the target wireless standards; 
3GPP, GSM and WLAN 802.11a; are fed into the 
decoder. In-place addressing scheme for updated path 
metrics as shown in [8] is adopted in the design. To make 
no effect on the processing speed of the decoder modulo 
normalization technique is implemented for path metric 
normalization. The best state unit (BSU) is introduced 
separately in the proposed architecture that features to 
find the best trellis state from all the computed states in 
all times. A single dual-port RAM is used for the trace-
forward and traceback operations simultaneously. This 
choice leads to reduce significant amount of extra 
memory requirements. The presented reconfigurable 
Viterbi decoder has been successfully verified in 
simulations using ModelSim SE 5.8d and synthesized for 
Altera’s Stratix family (FPGA) device EP1S40F780C 
speed grade 5. 
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