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This paper introduces the (α,�)-descent, an iterative algorithm which
operates on measures and performs α-divergence minimisation in a Bayesian
framework. This gradient-based procedure extends the commonly-used vari-
ational approximation by adding a prior on the variational parameters in the
form of a measure. We prove that for a rich family of functions �, this al-
gorithm leads at each step to a systematic decrease in the α-divergence and
derive convergence results. Our framework recovers the Entropic Mirror De-
scent algorithm and provides an alternative algorithm that we call the Power
Descent. Moreover, in its stochastic formulation, the (α,�)-descent allows
to optimise the mixture weights of any given mixture model without any in-
formation on the underlying distribution of the variational parameters. This
renders our method compatible with many choices of parameters updates and
applicable to a wide range of Machine Learning tasks. We demonstrate em-
pirically on both toy and real-world examples the benefit of using the Power
Descent and going beyond the Entropic Mirror Descent framework, which
fails as the dimension grows.

1. Introduction. Bayesian statistics for complex models often induce intractable and
hard-to-compute posterior densities which need to be approximated. Variational methods
such as Variational Inference (VI) [2, 23] and Expectation Propagation (EP) [31, 37] con-
sider this objective purely as an optimisation problem (which is often nonconvex). These
approaches seek to approximate the posterior density by a simpler variational density kθ ,
characterized by a set of variational parameters θ ∈ T, where T is the parameter space. In
these methods, θ is optimised such that it minimises a certain objective function, typically
the Kullback–Leibler divergence [25] between the posterior and the variational density.

Modern variational methods improved in three major directions [4, 48] (i) Black-Box in-
ference techniques [38, 39] and Hierarchical Variational Inference methods [40, 47] have
been deployed, expanding the variational family and rendering Variational methods appli-
cable to a wide range of models (ii) Algorithms based on alternative families of divergences
such as the α-divergence [49, 50] and Renyi’s α-divergence [41, 45] have been introduced [1,
15, 19, 27, 29, 30, 46] to bypass practical issues linked to the Kullback–Leibler divergence
[4, 20, 31] (iii) Scalable methods relying on stochastic optimisation techniques [6, 42] have
been developed to enable large-scale learning and have been applied to complex probabilistic
models [5, 13, 20, 26].

In the spirit of Hierarchical Variational Inference, we offer in this paper to enlarge the
variational family by adding a prior on the variational density kθ and considering

q(y) =
∫

T
μ(dθ)kθ (y),
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which is a more general form compared to the one found in [47] where μ is parametrised by
another parametric model. As for the objective function, we work within the α-divergence
family, which admits the forward Kullback–Leibler and the reverse Kullback–Leibler as lim-
iting cases. These divergences belong to the f -divergence family [32, 33] and as such, they
have convexity properties so that the minimisation of the α-divergence between the targeted
posterior density and the variational density q with respect to μ can be seen as a convex
optimisation problem.

The paper is then organised as follows:

• In Section 2, we briefly review basic concepts around the α-divergence family before re-
calling the basics of Variational methods and formulating formally the optimisation prob-
lem we consider.

• In Section 3, we describe the Exact (α,�)-descent, an iterative algorithm that performs α-
divergence minimisation by updating the measure μ. We establish in Theorem 1 sufficient
conditions on � for this algorithm to lead at each step to a systematic decrease in the α-
divergence. We then investigate the convergence of the algorithm in Theorem 2, 3 and 4.
Strikingly, the Infinite-dimensional Entropic Mirror Descent [21], Appendix A, is included
in our framework and we obtain an O(1/N) convergence rate under minimal assumptions,
which improves on existing results and illustrates the generality of our approach. We also
introduce a novel algorithm called the Power Descent, for which we prove convergence to
an optimum and obtain an O(1/N) convergence rate when α > 1.

• In Section 4, we define the Stochastic version of the Exact (α,�)-descent and apply it to
the important case of mixture models [17, 22]. The resulting general-purpose algorithm
is Black-Box and does not require any information on the underlying distribution of the
variational parameters. This algorithm notably enjoys an O(1/

√
N) convergence rate in

the particular case of the Entropic Mirror Descent if we know the stopping time of the
algorithm (Theorem 5).

• Finally, Section 5 is devoted to numerical experiments. We demonstrate the benefit of using
the Power Descent, and thus of going beyond the Entropic Mirror Descent framework. We
also compare our method to a computationally equivalent Adaptive Importance Sampling
algorithm for Bayesian Logistic Regression on a large dataset.

Apart from the proofs leading to Theorem 1, which is central to our approach and is used
to derive several subsequent results, we have deferred all the proofs to the Supplementary
Material, alongside with additional comments.

2. Formulation of the optimisation problem.

2.1. The α-divergence. Let (Y,Y, ν) be a measured space, where ν is a σ -finite measure
on (Y,Y). Let Q and P be two probability measures on (Y,Y) that are absolutely continuous
with respect to ν, that is, Q � ν, P � ν. Let us denote by q = dQ

dν
and p = dP

dν
the Radon–

Nikodym derivatives of Q and P with respect to ν.

DEFINITION 1. Let α ∈ R \ {0,1}. The α-divergence and the Kullback–Leibler (KL)
divergence between Q and P are respectively defined by

Dα(Q ‖ P) =
∫

Y

1

α(α − 1)

[(
q(y)

p(y)

)α

− 1
]
p(y)ν(dy),

DKL(Q ‖ P) =
∫

Y
log
(

q(y)

p(y)

)
q(y)ν(dy),

wherever they are well defined (and otherwise we write +∞).



2252 K. DAUDEL, R. DOUC AND F. PORTIER

As limα→0 Dα(Q ‖ P) = DKL(P ‖ Q) and limα→1 Dα(Q ‖ P) = DKL(Q ‖ P) (see, e.g.,
[45]), the definition of the α-divergence can be extended to 0 and 1 by continuity and we
will use the notation D0(Q ‖ P) = DKL(P ‖ Q) and D1(Q ‖ P) = DKL(Q ‖ P) throughout
the paper. Letting fα be the convex function on (0,+∞) defined by f0(u) = u − 1 − log(u),
f1(u) = 1 − u + u log(u) and fα(u) = 1

α(α−1)
[uα − 1 − α(u − 1)] for all α ∈ R \ {0,1}, we

have that for all α ∈ R,

Dα(Q ‖ P) =
∫

Y
fα

(
q(y)

p(y)

)
p(y)ν(dy).(1)

Written under that form, the right-hand side of (1) corresponds to the general definition of
the α-divergence, that is q and p do not need to be normalised in (1) in order to define a
divergence. We next remind the reader of a few more results about the α-divergence and we
refer to [10, 11, 43, 45] for more details on the α-divergence family.

PROPOSITION 2. The α-divergence is always nonnegative and it is equal to zero if and
only if Q = P. Furthermore, it is jointly convex in Q and P and for all α ∈ R, Dα(Q ‖ P) =
D1−α(P ‖Q).

Special cases of the α-divergence family include the Hellinger distance [18, 28] and the
χ2-divergence [15] which correspond respectively to order α = 0.5 and α = 2.

2.2. Variational inference within the α-divergence family. Assume that we have access
to some observed variables D generated from a probabilistic model p(D |y) parameterised by
a hidden random variable y ∈ Y that is drawn from a certain prior p0(y). Bayesian inference
involves being able to compute or sample from the posterior density of the latent variable y

given the data D :

p(y|D) = p(y,D)

p(D)
= p0(y)p(D |y)

p(D)
,

where p(D) = ∫
Y p0(y)p(D |y)ν(dy) is called the marginal likelihood or model evidence.

For many useful models, the posterior density is intractable due to the normalisation constant
p(D). One example of such a model is Bayesian logistic regression for binary classification.

EXAMPLE 1 (Bayesian logistic regression). We use the same setting as in [17]. We ob-
serve the data D = {c,x} which is made of I binary class labels, ci ∈ {−1,1}, and of L

covariates for each datapoint, xi ∈ RL. The hidden variables y = {w, β} consist of L re-
gression coefficients wl ∈ R, and a precision parameter β ∈ R+. We assume the following
model:

p0(β) = Gamma(β;a, b),

p0(wl|β) = N
(
wl;0, β−1), 1 ≤ l ≤ L,

p(ci = 1|xi ,w) = 1

1 + e−wT xi
, 1 ≤ i ≤ I,

where a and b are hyperparameters (shape and inverse scale, resp.) that we assume to be
fixed. We thus have p(y,D) = p0(y)

∏I
i=1 p(ci |xi , y) with p0(y) = ∏L

l=1 p0(wl|β)p0(β)

and as the sigmoid does not admit a conjugate exponential prior, p(D) is intractable in this
model.
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One way to bypass this problem is to introduce a variational density q in some tractable
density family Q and to find q	 such that

q	 = arginf
q∈Q

Dα(Q ‖ P),

where P and Q denote the probability measures on (Y,Y) with corresponding associated
density p(·|D) and q . This optimisation problem still involves the (unknown) normalisation
constant p(D); however, it can easily be transformed into the following equivalent optimisa-
tion problem:

q	 = arginf
q∈Q

∫
Y
fα

(
q(y)

p(y,D)

)
p(y,D)ν(dy),

which does not involve the marginal likelihood p(D) anymore (see, e.g., [4] and [15, 27]).
The core of Variational Inference methods then consists in designing approximating families
Q, which allow efficient optimisation and which are able to capture complicated structure
inside the posterior density. Typically, q belongs to a parametric family q = kθ where θ is in
a certain parametric space T, that is, the minimisation occurs over the set of densities{

y 	→ kθ (y) : θ ∈ T
}
.

In this paper, we offer to perform instead a minimisation over{
y 	→

∫
T
μ(dθ)kθ (y) : μ ∈ M

}
,

where M is a convenient subset of M1(T), the set of probability measures on T (and in this
case, we equip T with a σ -field denoted by T ). In doing so, we extend the minimising set
to a larger space since a parameter θ can be identified with its associated Dirac measure δθ .
Similarly, a mixture model composed of {θ1, . . . , θJ } ∈ TJ will correspond to taking μ as a
weighted sum of Dirac measures.

More formally, let us consider a measurable space (T,T ). Let p be a measurable positive
function on (Y,Y) and K : (θ,A) 	→ ∫

A k(θ, y)ν(dy) be a Markov transition kernel on T ×Y
with kernel density k defined on T × Y. Moreover, for all μ ∈ M1(T), for all y ∈ Y, we denote
μk(y) = ∫

T μ(dθ)k(θ, y) and we define

�α(μ) =
∫

Y
fα

(
μk(y)

p(y)

)
p(y)ν(dy).(2)

Note that p, k and ν appear as well in �α(μ), that is, �α(μ) = �α(μ;p,q, ν), but we drop
them for notational ease and when no ambiguity occurs. Notice also that we replaced kθ (y)

by k(θ, y) to comply with usual kernel notation. We consider in what follows the general
optimisation problem:

arginf
μ∈M

�α(μ),(3)

and in practice, we will choose p(y) = p(y,D).
At this stage, a first remark is that the convexity of �α is straightforward from the convex-

ity of fα . Therefore, a simple yet powerful consequence of enlarging the variational family
is that the optimisation problem now involves the convex mapping

μ 	→ �α(μ) =
∫

Y
fα

(
μk(y)

p(y)

)
p(y)ν(dy),

whereas the initial optimisation problem was associated to the mapping

θ 	→
∫

Y
fα

(
kθ (y)

p(y)

)
p(y)ν(dy),

which is not necessarily convex.
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We now move on to Section 3, where we describe the (α,�)-descent and state our main
theoretical results.

3. The (α,�)-descent.

3.1. An iterative algorithm for optimising �α . Throughout the paper, we will assume the
following conditions on k, p and ν:

(A1) The density kernel k on T × Y, the function p on Y and the σ -finite measure ν on
(Y,Y) satisfy, for all (θ, y) ∈ T × Y, k(θ, y) > 0, p(y) > 0 and

∫
Y p(y)ν(dy) < ∞.

Under (A1), we immediately obtain a lower bound on �α .

LEMMA 3. Suppose that (A1) holds. Then, for all μ ∈ M1(T), we have

�α(μ) ≥ f̃α

(∫
Y
p(y)ν(dy)

)
> −∞,

where f̃α is defined on (0,∞) by f̃α(u) = ufα(1/u).

PROOF. Since f̃α(u) = ufα(1/u), we have

�α(μ) =
∫

Y
f̃α

(
p(y)

μk(y)

)
μk(y)ν(dy).

Recalling that fα , and hence f̃α , is convex on R>0, Jensen’s inequality applied to f̃α yields
�α(μ) ≥ f̃α(

∫
Y p(y)ν(dy)) > −∞. �

REMARK 4. Assumption (A1) can be extended by discarding the assumption that p(y)

is positive for all y ∈ Y. As it complicates the expression of the constant appearing in the
bound without increasing dramatically the degree of generality of the results, we chose to
maintain this assumption for the sake of simplicity.

Thus, if there exists a sequence of probability measures {μn : n ∈ N	} on (T,T ) such that
�α(μ1) < ∞ and �α(μn) is nonincreasing with n, Lemma 3 guarantees that this sequence
converges to a limit in R. We now focus on constructing such a sequence {μn : n ∈N	}.

For this purpose, let μ ∈ M1(T). We introduce the one-step transition of the (α,�)-descent
which can be described as an expectation step and an iteration step in Algorithm 1.

Given a certain κ ∈ R, a certain function � which takes its values in R>0 and an initial
measure μ1 ∈ M1(T) such that �α(μ1) < ∞, the iterative sequence of probability measures
(μn)n∈N	 is then defined by setting

(4) μn+1 = Iα(μn), n ∈ N	.

A first remark is that under (A1) and for all α ∈ R \ {1}, bμ,α is well defined. As for the
case α = 1, we will assume in the rest of the paper that bμ,1(θ) is finite for all μ ∈ M1(T) and
θ ∈ T. The iteration μ 	→ Iα(μ) is thus well defined if moreover we have

μ
(
�(bμ,α + κ)

)
< ∞.(5)

Algorithm 1: Exact (α,�)-descent one-step transition

1. Expectation step : bμ,α(θ) =
∫

Y
k(θ, y)f ′

α(
μk(y)
p(y)

)ν(dy)

2. Iteration step : Iα(μ)(dθ) = μ(dθ)·�(bμ,α(θ)+κ)

μ(�(bμ,α+κ))
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A second remark is that we recover the Infinite-Dimensional Entropic Mirror Descent
algorithm applied to the Kullback–Leibler (and more generally to the α-divergence) objective
function by choosing � of the form

�(v) = e−ηv.

We refer to [21], Appendix A, for some theoretical background on the Infinite-Dimensional
Entropic Mirror Descent. In this light, bμ,α can be understood as the gradient of �α . Algo-
rithm 1 then consists in applying a transform function � to the gradient bμ,α and projecting
back onto the space of probability measures.

In the rest of the section, we investigate some core properties of the aforementioned se-
quence of probability measures (μn)n∈N	 . We start by establishing conditions on (�, κ) such
that the (α,�)-descent diminishes �α(μn) at each iteration for all μ1 ∈ M1(T) satisfying
�α(μ1) < ∞.

3.2. Monotonicity. To establish that the (α,�)-descent diminishes �α(μn) at each iter-
ation, we first derive a general lower-bound for the difference �α(μ) − �α(ζ ). Here, (ζ,μ)

is a couple of probability measures where ζ is dominated by μ which we denote by ζ � μ.
This first result involves the following useful quantity:

Aα :=
∫

Y
ν(dy)

∫
T
μ(dθ)k(θ, y)f ′

α

(
g(θ)μk(y)

p(y)

)[
1 − g(θ)

]
,(6)

where g is the density of ζ w.r.t μ, that is, ζ(dθ) = μ(dθ)g(θ).

LEMMA 5. Assume (A1). Then, for all μ,ζ ∈ M1(T) such that ζ � μ and �α(μ) < ∞,
we have

(7) Aα ≤ �α(μ) − �α(ζ ).

Moreover, equality holds in (7) if and only if ζ = μ.

PROOF. To prove (7), we introduce the intermediate function

hα(ζ,μ) =
∫

Y
ν(dy)p(y)

∫
T

μ(dθ)k(θ, y)

μk(y)
fα

(
g(θ)μk(y)

p(y)

)
.

Then the convexity of fα combined with Jensen’s inequality implies that

hα(ζ,μ) ≥
∫

Y
ν(dy)p(y)fα

(∫
T μ(dθ)k(θ, y)g(θ)

p(y)

)
= �α(ζ ).(8)

Next, set uθ,y = g(θ)μk(y)
p(y)

and vy = μk(y)
p(y)

. Since the function fα is convex, we have that for
all θ ∈ T, for all y ∈ Y, fα(vy) ≥ fα(uθ,y) + f ′

α(uθ,y)(vy − uθ,y), that is,

fα

(
μk(y)

p(y)

)
≥ fα

(
g(θ)μk(y)

p(y)

)
+ f ′

α

(
g(θ)μk(y)

p(y)

)
μk(y)

p(y)

[
1 − g(θ)

]
.(9)

Now integrating over T with respect to μ(dθ)k(θ,y)
μk(y)

and then integrating over Y with respect to
p(y)ν(dy) in (9) yields

�α(μ) ≥ hα(ζ,μ) + Aα.(10)

Combining this result with (8) gives (7). The case of equality is obtained using the strict
convexity of fα in (8) and (9) which shows that g is constant μ-a.e. so that ζ = μ. �
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We now plan on setting ζ = Iα(μ) in Lemma 5 and obtain that one iteration of the (α,�)-
descent yields �α ◦ Iα(μ) ≤ �α(μ). Based on the lower-bound obtained in Lemma 5, a
sufficient condition is to prove that taking g ∝ �(bμ,α + κ) in (6) implies Aα ≥ 0. For this
purpose, let us denote by Domα an interval of R such that for all θ ∈ T, for all μ ∈ M1(T),
bμ,α(θ) + κ and μ(bμ,α) + κ ∈ Domα and let us make an assumption on (�, κ).

(A2) The function � : Domα → R>0 is decreasing, continuously differentiable and satis-
fies the inequality [

(α − 1)(v − κ) + 1
]
(log�)′(v) + 1 ≥ 0, v ∈ Domα.

We now state our first main theorem.

THEOREM 1. Assume (A1) and (A2). Let μ ∈ M1(T) be such that (5) holds and �α(μ) <

∞. Then the two following assertions hold:

(i) We have �α ◦ Iα(μ) ≤ �α(μ).
(ii) We have �α ◦ Iα(μ) = �α(μ) if and only if μ = Iα(μ).

PROOF. To prove (i), we set g ∝ �(bμ,α + κ) in (6) and we will show that Aα ≥ 0. Then
the proof is concluded by setting ζ = Iα(μ) in Lemma 5 as

(11) �α ◦ Iα(μ) ≤ �α(μ) − Aα ≤ �α(μ).

We study the cases α = 1 and α ∈ R \ {1} separately.

(a) Case α = 1. In this case, f ′
1(u) = logu and we have

A1 =
∫

Y
ν(dy)

∫
T
μ(dθ)k(θ, y) log

(
g(θ)μk(y)

p(y)

)[
1 − g(θ)

]

=
∫

Y
ν(dy)

∫
T
μ(dθ)k(θ, y)

[
logg(θ) + f ′

1

(
μk(y)

p(y)

)][
1 − g(θ)

]

=
∫

T
μ(dθ)

[
logg(θ) +

∫
Y
k(θ, y)f ′

1

(
μk(y)

p(y)

)
ν(dy)

][
1 − g(θ)

]

=
∫

T
μ(dθ)

[
logg(θ) + bμ,1(θ) + κ

][
1 − g(θ)

]
,

where we used that μ[κ(1−g)] = 0 in the last equality. Setting �̃(v) = �(v)/μ(�(bμ,1 +κ))

for all v ∈ Dom1, we have g = �̃ ◦ (bμ,1 + κ). Let us thus consider the probability space
(T,T ,μ) and let V be the random variable V (θ) = bμ,1(θ) + κ . Then E[1 − �̃(V )] = 0 and
we can write

A1 = E
[(

log �̃(V ) + V
)(

1 − �̃(V )
)]=Cov

(
log �̃(V ) + V,1 − �̃(V )

)
.

Under (A2) with α = 1, v 	→ log �̃(v) + v and v 	→ 1 − �̃(v) are increasing on Dom1
which implies A1 ≥ 0.

(b) Case α ∈R \ {1}. In this case, f ′
α(u) = 1

α−1 [uα−1 − 1] and we have

Aα =
∫

Y
ν(dy)

∫
T
μ(dθ)k(θ, y)

1

α − 1

[(
g(θ)μk(y)

p(y)

)α−1
− 1

][
1 − g(θ)

]

=
∫

Y
ν(dy)

∫
T
μ(dθ)k(θ, y)

1

α − 1

(
μk(y)

p(y)

)α−1
g(θ)α−1[1 − g(θ)

]

=
∫

T
μ(dθ)

[
bμ,α(θ) + 1

α − 1

]
g(θ)α−1[1 − g(θ)

]
.
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Again, setting �̃(v) = �(v)/μ(�(bμ,α + κ)) for all v ∈ Domα , we have g = �̃ ◦ (bμ,α + κ).
Let us consider the probability space (T,T ,μ) and let V be the random variable V (θ) =
bμ,α(θ) + κ . Then we have E[1 − �̃(V )] = 0 and setting κ ′ = κ − 1

α−1 we can write

Aα = E
[(

V − κ ′)�̃α−1(V )
(
1 − �̃(V )

)]=Cov
((

V − κ ′)�̃α−1(V ),1 − �̃(V )
)
.

Under (A2) with α ∈ R \ {1}, v 	→ (v − κ ′)�̃α−1(v) and v 	→ 1 − �̃(v) are increasing on
Domα which implies Aα ≥ 0.

Let us now show (ii). The if part is obvious. As for the only if part, �α ◦ Iα(μ) = �α(μ)

combined with (11) yields

�α ◦ Iα(μ) = �α(μ) − Aα,

which is the case of equality in Lemma 5. Therefore, Iα(μ) = μ. �

Possible choices for (�, κ). At this stage, we have established conditions on (�, κ) such
that �α ◦ Iα(μ) ≤ �α(μ) and identified the case of equality. Notice in particular that the
inequality in (A2) is free from the parameter κ when α = 1, which implies that the function
�(v) = e−ηv satisfies (A2) for all η ∈ (0,1]. As a consequence, the case of the Entropic Mir-
ror Descent with the forward Kullback–Leibler divergence as objective function is included
in this framework.

One can also readily check that �(v) = [(α − 1)v + 1]η/(1−α) satisfies (A2) for all α ∈
R \ {1}, for all κ such that (α − 1)κ ≥ 0 and for all η ∈ (0,1]. We will refer to this particular
choice of � as the Power Descent thereafter. These two examples are summarized in Table 1.

Improving upon Lemma 5. In the following lemma, we derive an explicit lower-bound for
�α(μ) − �α ◦ Iα(μ) in terms of the variance of bμ,α . Let us thus consider the probability
space (T,T ,μ) and denote by Varμ the associated variance operator.

LEMMA 6. Assume (A1) and (A2). Let μ ∈ M1(T) be such that (5) holds and �α(μ) <

∞. Then

Lα,1

2
Varμ(bμ,α) ≤ �α(μ) − �α ◦ Iα(μ),(12)

where

Lα,1 := inf
v∈Domα

{[
(α − 1)(v − κ) + 1

]
(log�)′(v) + 1

}× inf
v∈Domα

−�′(v).

The proof of Lemma 6 builds on the proof of Theorem 1 and can be found in [12], Ap-
pendix A.1.

Lemma 6 can be interpreted in the following way: provided that Lα,1 > 0, (12) states
that the case of equality is reached if and only if the variance of the gradient bμ,α equals
zero. Such a result, which holds for any transform function � satisfying (A2), quantifies the
improvement after one step of the (α,�)-descent.

TABLE 1
Examples of allowed (�, κ) in the (α,�)-descent according to Theorem 1

Divergence considered Possible choices for (�, κ)

Forward KL (α = 1) �(v) = e−ηv , η ∈ (0,1] any κ

α-divergence with α ∈R \ {1} �(v) = [(α − 1)v + 1] η
1−α , η ∈ (0,1] (α − 1)κ ≥ 0
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Interestingly, monotonicity properties akin to Lemma 6 have previously been derived un-
der stronger smoothness assumptions in the context of Projected Gradient Descent steps. For
example, in the particular case where the objective function f is assumed to be β-smooth on
R, for all u ∈ R it holds (see, e.g., [7], equation (3.5)) that

1

β

∥∥∇f (u)
∥∥2 ≤ f (u) − f

(
u − 1

β
∇f (u)

)
.

This result is then used to obtain improved convergence rates for the Projected Gradient
Descent algorithm. Consequently, we are next interested in proving a rate of convergence for
the Exact (α,�)-descent by leveraging Lemma 6.

3.3. Convergence. Let μ1 ∈ M1(T). We want to study the limiting behaviour of the Exact
(α,�)-descent for the iterative sequence of probability measure (μn)n∈N	 defined by (4). To
do so, we first introduce the two following useful quantities:

L−1
α,2 := inf

v∈Domα

(− log�)′(v) and L−1
α,3 := inf

v∈Domα

�(v).

We define M1,μ1(T) as the set of probability measures dominated by μ1. Next, we strengthen
the assumptions on � as follows:

(A3) The function � : Domα → R>0 is L-smooth and the function − log� is concave
increasing.

We are now able to derive our second main result.

THEOREM 2. Assume (A1), (A2) and (A3). Further assume that Lα,1, Lα,2 > 0 and
that 0 < infv∈Domα �(v) ≤ supv∈Domα

�(v) < ∞. Moreover, let μ1 ∈ M1(T) be such that
�α(μ1) < ∞. Then the following assertions hold:

(i) The sequence (μn)n∈N	 defined by (4) is well defined and the sequence (�α(μn))n∈N	

is nonincreasing.
(ii) For all N ∈N	, we have

�α(μN) − �α

(
μ	)≤ Lα,2

N

[
KL
(
μ	 ‖ μ1

)+ L
Lα,3

Lα,1
�1

]
,(13)

where μ	 is such that �α(μ	) = infζ∈M1,μ1 (T) �α(ζ ) and where we have defined �1 =
�α(μ1) − �α(μ	) and KL(μ	 ‖ μ1) = ∫

T log(
dμ	

dμ1
)dμ	.

The proof of Theorem 2, which as hinted previously brings into play Lemma 6, is deferred
to [12], Appendix A.2. We now wish to comment on the constants appearing in (13) and in
particular the two constants KL(μ	 ‖ μ1) and �1 (since the remaining constants Lα,1, Lα,2,
Lα,3 and L all involve the function �, which has not been chosen yet in Theorem 2).

To do so, we consider in Example 2 the finite-dimensional case where μ1 is a weighted
sum of dirac measures. As we shall explain in more detail later on in Section 4, this case is of
particular relevance to us as our procedure can then be used to optimise the mixture weights
of any given mixture model.

EXAMPLE 2 (Simplex framework). Let J ∈ N	, let (θ1, . . . , θJ ) ∈ TJ and let us consider
μ1 = J−1∑J

j=1 δθj
. Then μ	 is of the form

∑J
j=1 λ	

j δθj
where (λ	

1, . . . , λ
	
J ) belongs to the

simplex of dimension J . Moreover, the two quantities KL(μ	 ‖ μ1) and �1 can easily be
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bounded in terms of J . Indeed, using that logu ≤ u − 1 for all u > 0 and that
∑J

j=1 λ	2
j ≤ 1,

we obtain that

KL
(
μ	 ‖ μ1

)= J∑
j=1

λ	
j logλ	

j + logJ ≤ logJ.

As for �1, we have by convexity that

�1 ≤ [μ1 − μ	](bμ1,α)

and, using Pinsker’s inequality as well as the bound on KL(μ	 ‖ μ1) we have established just
above, we can deduce

�1 ≤ [μ1 − μ	](bμ1,α −Eμ1[bμ1,α])
≤ √

2
√

KL
(
μ	 ‖ μ1

)
max

1≤j,j ′≤J

∣∣bμ1,α(θj ) − bμ1,α(θj ′)
∣∣

≤
√

2 logJ max
1≤j,j ′≤J

∣∣bμ1,α(θj ) − bμ1,α(θj ′)
∣∣.

In the next theorem, we state several practical examples of couples (�, κ) which satisfy
the assumptions from Theorem 2.

THEOREM 3. Assume (A1). Define |b|∞,α := supθ∈T,μ∈M1(T) |bμ,α(θ)| and assume that
|b|∞,α < ∞. Let (�, κ) belong to any of the following cases:

(i) Forward Kullback–Leibler divergence (α = 1): �(v) = e−ηv , η ∈ (0,1) and κ is any real
number (Entropic Mirror Descent);

(ii) Reverse Kullback–Leibler (α = 0) and α-Divergence with α ∈R \ {0,1}:
(a) �(v) = e−ηv , η ∈ (0, 1

|α−1||b|∞,α+1) and κ is any real number (Entropic Mirror
Descent);

(b) �(v) = [(α − 1)v + 1] η
1−α , η ∈ (0,1], α > 1 and κ > 0 (Power Descent);

Let μ1 ∈ M1(T) be such that �α(μ1) < ∞. Then the sequence (μn)n∈N	 defined by (4) is well
defined and the sequence (�α(μn))n∈N	 is nonincreasing with a convergence rate character-
ized by (13).

The proof of Theorem 3 can be found in [12], Appendix A.3. In terms of assumptions,
we only require the gradients of the function �α to be bounded in l∞-norm, which is a
standard assumption, and the objective function to be finite at the starting measure μ1, that
is, �α(μ1) < ∞, which again is a mild assumption that can even be discarded for all α �= 0
(see Remark 17 of [12], Appendix D).

Let us now illustrate the benefits of our approach with an example where the different con-
stants appearing in (13) are bounded explicitly and where we compare the convergence rate
we obtain with typical Mirror Descent convergence results from the optimisation literature.

EXAMPLE 3 (Simplex framework and forward Kullback–Leibler). Let J ∈ N	, let
(θ1, . . . , θJ ) ∈ TJ and let us consider μ1 = J−1∑J

j=1 δθj
. In addition, let α = 1 and

�(v) = e−ηv with v ∈ Domα = [−|b|∞,1 + κ, |b|∞,1 + κ] and κ ∈ R. Then we have L1,1 =
(1 − η)ηe−η|b|∞,α−ηκ , L1,2 = η−1, L1,3 = eη|b|∞,α+ηκ and L = η2eη|b|∞,α−ηκ .

In the particular case of the Entropic Mirror Descent, the constant κ does not appear in the
update formula (4) due to the normalisation, so we can choose it however we want without
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impacting the convergence of the algorithm. Notice then that by choosing κ = −3|b|∞,α and
based on Example 2, we obtain the following convergence rate for all η ∈ (0,1):

�α(μN) − �α

(
μ	)≤ logJ

ηN
+

√
2 logJ |b|∞,α

(1 − η)N
.

Thus, in the particular case of Example 3, the dominant term in (13) with respect to the
dimension J of the simplex is in logJ so that we achieve an overall O(

logJ
N

) convergence
rate. Furthermore, the range of possible values for η is stated explicitly, since the result holds
for all η ∈ (0,1).

This is an improvement compared to standard Mirror Descent results, which under similar
assumptions only provide an O(1/

√
N) convergence rate and assume an O(1/

√
N) learning

rate (see [3] or [7], Theorem 4.2.). Indeed, Projected Gradient Descent and Entropic Mirror
Descent typically achieve an O(

√
J/N) and O(

√
log(J )/N) convergence rate respectively

in the Simplex framework. This means that Theorem 3 improves with respect to both N and
J compared to Projected Gradient Descent and that it improves with respect to N for the
Entropic Mirror Descent with a small cost in terms of the dimension J of the simplex.

Moreover, while accelerated versions of the Mirror Descent (e.g., Mirror Prox, see [34] or
[7], Theorem 4.4.) also yield an O(1/N) convergence rate, they require the objective function
to be sufficiently smooth, an additional assumption that we have bypassed when deriving our
results.

The case of the Power Descent for α < 1 is not included in Theorem 3. This case is trickier
and must be handled separately in order to obtain the convergence of the algorithm. For this
purpose, we first introduce the following additive set of assumptions:

(A4) (i) T is a compact metric space and T is the associated Borel σ -field;
(ii) for all y ∈ Y, θ 	→ k(θ, y) is continuous;

(iii) we have
∫

Y supθ∈T k(θ, y) × supθ ′∈T(
k(θ ′,y)
p(y)

)α−1ν(dy) < ∞.

If α = 0, assume in addition that
∫

Y supθ∈T | log(
k(θ,y)
p(y)

)|p(y)ν(dy) < ∞.

Here, condition (A4)(iii) implies that bμ,α(θ) and �α(μ) are uniformly bounded with re-
spect to μ and θ , which is rather weak condition under (A4)(i) since we consider a supremum
taken over a compact set (and T will always be chosen as such in practice). We then have the
following theorem, which states that the possible weak limits of (μn)n∈N	 correspond to the
global infimum of �α .

THEOREM 4. Assume (A1) and (A4). Let α < 1, κ ≤ 0 and set �(v) = [(α − 1)v +
1]η/(1−α) for all v ∈ Domα . Then, for all ζ ∈ M1(T), any η > 0 satisfies (5) and �α(ζ ) < ∞.

Let η ∈ (0,1]. Further assume that there exist μ1,μ
	 ∈ M1(T) such that the (well-defined)

sequence (μn)n∈N	 defined by (4) weakly converges to μ	 as n → ∞. Then the following
assertions hold:

(i) (�α(μn))n∈N	 is nonincreasing,
(ii) μ	 is a fixed point of Iα ,

(iii) �α(μ	) = infζ∈M1,μ1 (T) �α(ζ ).

The proof of Theorem 4 is deferred to [12], Appendix A.4. Intuitively, we expect μ	 to be
a fixed point of Iα based on Theorem 1. The core difficulty of the proof is then to prove As-
sertion (iii) and to do so, we proceed by contradiction: we assume there exists μ̄ ∈ M1,μ1(T)

such that �α(μ	) > �α(μ̄) and we contradict the fact that (μn)n∈N	 converges to a fixed
point.
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TABLE 2
Examples of allowed (�, κ) in the (α,�)-descent according to Theorem 3 and Theorem 4

Divergence considered Possible choice of (�, κ)

Forward KL (α = 1) �(v) = e−ηv , η ∈ (0,1) any κ

α-divergence with α ∈R \ {1}
�(v) = e−ηv , η ∈ (0, 1

|α−1||b|∞,α+1 ) any κ

α > 1, �(v) = [(α − 1)v + 1] η
1−α , η ∈ (0,1] κ > 0

α < 1, �(v) = [(α − 1)v + 1] η
1−α , η ∈ (0,1] κ ≤ 0

The impact of Theorem 3 and Theorem 4 is twofold: not only our results improve on the
O(1/

√
N) convergence rates previously established for Mirror Descent algorithms but they

also allow us to go beyond the typical Entropic Mirror Descent framework by introducing the
Power Descent.

Another interesting aspect is that the range of allowed values for the learning rate η is given
explicitly in some cases (namely, the Power Descent and the Entropic Mirror Descent with
the forward Kullback–Leibler). This is in contrast with usual Mirror Descent convergence
results where the optimal learning rate depends on |b|∞,α , the Lipschitz constant of �α ,
which might be unknown in practice.

The results we obtained thus far are summarized in Table 2 below.
As Algorithm 1 typically involves an intractable integral in the Expectation step, we now

turn to a Stochastic version of this algorithm.

4. Stochastic (α,�)-descent. We start by introducing the notation for the Stochastic
version of Algorithm 1. Let M ∈ N	 and let μ ∈ M1(T). The Stochastic (α,�)-descent algo-
rithm one-step transition is defined as follows in Algorithm 2.

Let us now denote by (�,F,P) the underlying probability space and by E the associated
expectation operator. Given μ̂1 ∈ M1(T), the Stochastic version of the Exact iterative scheme
defined by (4) is then given by

(14) μ̂n+1 = Îα,M(μ̂n), n ∈N	,

where we have defined for all θ ∈ T and for all n ≥ 1,

(15) b̂μ̂n,α,M(θ) = 1

M

M∑
m=1

k(θ, Ym,n+1)

μ̂nk(Ym,n+1)
f ′

α

(
μ̂nk(Ym,n+1)

p(Ym,n+1)

)

with Y1,n+1, . . . , YM,n+1
i.i.d∼ μ̂nk conditionally on Fn and where F1 = ∅ and Fn =

σ(Y1,2, . . . , YM,2, . . ., Y1,n, . . . , YM,n) for k ≥ 2. Notice that we use μ̂nk as a sampler in-
stead of k(θ, ·) in (15). As our algorithm optimises over μ, sampling with respect to μ̂nk is
not only cheaper computationally, but it also gives preference to the interesting regions of the
parameter space.

Algorithm 2: Stochastic (α,�)-descent one-step transition
1. Sampling step : Draw independently Y1, . . . , YM ∼ μk

2. Expectation step : b̂μ,α,M(θ) = 1
M

∑M
m=1

k(θ,Ym)
μk(Ym)

f ′
α(

μk(Ym)
p(Ym)

)

3. Iteration step : Îα,M(μ)(dθ) = μ(dθ)·�(b̂μ,α,M(θ)+κ)

μ(�(b̂μ,α,M+κ))
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A first idea to study this algorithm is to adapt Theorem 2 to the Stochastic case. This
can be done for the Entropic Mirror Descent and a bound on E[�α(μ̂n) − �α(μ	)] of the
form O(1/N) + O(1/

√
M) can be derived for a wide range of constant learning rates η

(see [12], Appendix B.1, for the formal statement of the result and its proof). Maintaining
an O(1/N) bound however requires M ≥ N2, which yields an overall computational cost of
order N3. Another option consists in adapting [35] to our framework. This option involves
a learning rate policy (ηn)n∈N and notably yields an O(1/

√
N) bound for a constant policy

ηn = η0/
√

N , as written in Theorem 5 below.

THEOREM 5. Assume (A1). Let M ∈ N	 and let μ̂1 ∈ M1(T). Given a sequence of pos-

itive learning rates (ηn)n∈N, we let (μ̂n)n∈N	 be defined by dμ̂n+1
dμ̂n

∝ e−ηnb̂μ̂n,α,M and we set

wn = ηn∑N
n=1 ηn

, n ≥ 1. Further assume that

Bα :=
(

sup
μ∈M1(T)

∫
Y

sup
θ,θ ′∈T

k(θ, y)2

k(θ ′, y)

∣∣∣∣f ′
α

(
μk(y)

p(y)

)∣∣∣∣2ν(dy)

)1/2
< ∞,(16)

and define �α(μ	) = infζ∈M1,μ̂1
(T) �α(ζ ). Then, for any N ∈ N	,

E

[
�α

(
N∑

n=1

wnμ̂n

)
− �α

(
μ	)]≤ B2

α

∑N
n=1 η2

n/2∑N
n=1 ηn

+ KL(μ	 ‖ μ̂1)∑N
n=1 ηn

,(17)

In particular, the decreasing policy ηn = η0/
√

n yields an O(log(N)/
√

N) bound in (17).
Furthermore, the constant policy ηn = η0/

√
N yields an O(1/

√
N) bound in (17), which is

minimal for η0 = B−1
α

√
2KL(μ	 ‖ μ̂1).

The proof of Theorem 5 can be found in [12], Appendix B.2, and we give below an exam-
ple satisfying condition (16).

EXAMPLE 4. Consider the case Y = Rd and α = 1. Let r > 0 and let T = B(0, r) ⊂
Rd . Furthermore, let Kh be a Gaussian transition kernel with bandwidth h and denote by
kh its associated kernel density. Finally, let p be a mixture density of two d-dimensional
Gaussian distributions multiplied by a positive constant Z such that for all y ∈ Y, p(y) =
Z × [0.5N (y; θ	

1 , Id) + 0.5N (y; θ	
2 , Id)], where θ	

1 , θ	
2 ∈ T and Id is the identity matrix.

Then (16) holds and we can apply Theorem 5 (see [12], Appendix B.3, for details).

Notice that the O(1/
√

N) convergence rate from Theorem 5 holds under minimal assump-
tions on �α . However, bridging the gap with the O(1/N) convergence rate in Theorem 3
typically requires much stronger smoothness and strong-convexity assumptions on �α which
can be hard to satisfy in practice (see [7], Theorem 6.2, for the statement of this result and [8]
for an example in Online Variational Inference). Bypassing any of these assumptions like we
did in the ideal case in Theorem 3 in order to improve on Theorem 5 constitutes an interesting
area of research which is beyond the scope of this paper.

As for the Stochastic version of Power Descent, we establish the total variation conver-
gence of Îα,M(μ) toward Iα(μ) as M goes to infinity for all μ ∈ M1(T). To do so, consider
i.i.d random variables Y1, Y2, . . . with common density μk w.r.t ν, defined on the same prob-
ability space (�,F,P) and denote by E the associated expectation operator. We then have
Proposition 7 below.
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PROPOSITION 7. Assume (A1). Let α ∈ R \ {1}, η > 0, κ be such that (α − 1)κ ≥ 0 and
set �(v) = [(α − 1)v + 1]η/(1−α) for all v ∈ Domα . Let μ ∈ M1(T) be such that �α(μ) < ∞,
(5) holds and

(18)
∫

T
μ(dθ)E

[{
k(θ, Y1)

μk(Y1)

(
μk(Y1)

p(Y1)

)α−1
+ (α − 1)κ

} η
1−α
]

< ∞.

Then

lim
M→∞

∥∥Îα,M(μ) − Iα(μ)
∥∥

TV = 0, P-a.s.

The proof is deferred to [12], Appendix C.4. The crux of the proof consists in applying
a dominated convergence theorem to nonnegative real-valued (T ⊗F,B(R≥0))-measurable
functions, which requires to consider a Generalized version of the dominated convergence
theorem [12], Lemma 15, and an integrated law of large numbers [12], Lemma 16.

Mixture models. We now address the case where μ̂1 corresponds to a weighted sum of
Dirac measures. This case is of particular interest to us since as we shall see, for any kernel
K of our choice, the (α,�)-descent procedure simplifies and provides an update formula for
the mixture weights of the corresponding mixture model μ̂1K .

Let J ∈ N	 and let θ1, . . . , θJ ∈ T be fixed. We start by introducing the simplex of RJ

SJ =
{
λ = (λ1, . . . , λJ ) ∈ RJ : ∀j ∈ {1, . . . , J }, λj ≥ 0 and

J∑
j=1

λj = 1

}
,

and for all λ ∈ SJ , we define μλ ∈ M1(T) by μλ = ∑J
j=1 λjδθj

. Then μλk(y) =∑J
j=1 λjk(θj , y) corresponds to a mixture model and if we let (μ̂n)n∈N	 be defined by

μ̂1 = μλ and

μ̂n+1 = Îα,M(μ̂n), n ∈N	,

an immediate induction yields that for every n ∈ N	, μ̂n can be expressed as μ̂n =∑J
j=1 λj,nδθj

where λn = (λ1,n, . . . , λJ,n) ∈ SJ satisfies the initialisation λ1 = λ and the
update formula: for all n ∈N	 and all j ∈ {1, . . . , J },

λj,n+1 = λj,n�(b̂μ̂n,α,M(θj ) + κ)∑J
i=1 λi,n�(b̂μ̂n,α,M(θi) + κ)

,(19)

with Y1,n+1, . . . , YM,n+1 drawn independently from μ̂nk conditionally on Fn and b̂μ̂n,α,M(θj )

is given by (15) for all j = 1 . . . J . This leads to Algorithm 3.
In this particular framework, most of the computing effort at each step lies within the

computation of the vector (b̂μ̂n,α,M(θj ))1≤j≤J . Interestingly, these computations can also be
used to obtain an estimate of the Evidence Lower Bound (resp., the Renyi-bound [27]) when
p(y) = p(y,D). These two quantities, which are written explicitly in Remark 18 from [12],
Appendix D, allow us to assess the convergence of the algorithm and provide a bound on the
log-likelihood (see [27], Theorem 1). Note also that if there is a need for very large J , one
can approximate the summation appearing in μ̂nk using subsampling.

An important point is that Algorithm 3 does not require any information on how the
{θ1, . . . , θJ } have been obtained in order to infer the optimal weights as it draws informa-
tion from samples that are generated from μλk. Since the algorithm leaves {θ1, . . . , θJ } un-
changed throughout the optimisation of the mixture weights (we call it an Exploitation step),
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Algorithm 3: Mixture Stochastic (α,�)-descent
Input: p: measurable positive function, K : Markov transition kernel, M : number of
samples, �J = {θ1, . . . , θJ } ⊂ T: parameter set.
Output: Optimised weights λ.

Set λ = [λ1,1, . . . , λJ,1].
while not converged do

Sampling step : Draw independently M samples Y1, . . . , YM from μλk.
Expectation step : Compute Bλ = (bj )1≤j≤J where

(20) bj = 1

M

M∑
m=1

k(θj , Ym)

μλk(Ym)
f ′

α

(
μλk(Ym)

p(Ym)

)

and deduce Wλ = (λj�(bj + κ))1≤j≤J and wλ =∑J
j=1 λj�(bj + κ).

Iteration step : Set

λ ← 1

wλ
Wλ

end

a natural idea is to combine Algorithm 3 with an Exploration step that modifies the parameter
set, which gives Algorithm 4.

Note that this algorithm is very general, as any Exploration step can be envisioned. We
also have several other levels of generality in our algorithm since we are free to choose the
kernel K , the α-divergence being optimised and we have stated different possible choices for
the couple (�, κ).

As a side remark, notice also that we recover the mixture weights update rules from the
Population Monte Carlo algorithm applied to reverse Kullback–Leibler minimisation [16] by
considering the Power Descent with α = 0 and η = 1. We have thus embedded this special
case into a more general framework.

We now move on to numerical experiments in the next section.

Algorithm 4: Complete Exploitation-Exploration Algorithm
Input: p: measurable positive function, α: α-divergence parameter, (�, κ): chosen as
per Table 1, q0: initial sampler, K : Markov transition kernel, (Mt)t : number of samples,
(Jt )t : dimension of parameter set.
Output: Optimised weights λ and parameter set �.
Draw θ1,0, . . . , θJ0,0 from q0. Set t = 0.
while not converged do

Exploitation step : Set � = {θ1,t , . . . , θJt ,t }. Perform Mixture Stochastic
(α,�)-descent and obtain λ.

Exploration step : Perform any exploration step of our choice and
obtain θ1,t+1, . . . , θJt+1,t+1. Set t = t + 1.

end
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5. Numerical experiments. In this part, we want to assess how Algorithm 4 performs
on both toy and real-world examples. To do so, we first need to specify the kernel K and an
algorithm for the Exploration step.

Kernel. Let Kh be a Gaussian transition kernel with bandwidth h and denote by kh its
associated kernel density. Given J ∈ N	 and θ1, . . . , θJ ∈ T, we then work within the approx-
imating family {

y 	→ μλkh(y) =
J∑

j=1

λjkh(y − θj ) : λ ∈ SJ

}
.

Exploration step. At time t = 1 . . . T , we resample among {θ1,t , . . . , θJt ,t } according to the
optimised mixture weights λ. The obtained sample {θ1,t+1, . . . , θJt+1,t+1} is then perturbed
stochastically using the Gaussian transition kernel Kht , which gives us our new parameter
set. The hyperparameter ht is adjusted according to the number of particles so that ht ∝
J

−1/(4+d)
t , where d is the dimension of the latent space (the optimal rate in nonparametric

estimation when the function is at least 2-times continuously differentiable and the kernel has
order 2 [44]).

Next, we are interested in the choice of α. The hyperparameter α allows us to choose
between mass-covering divergences which tend to cover all the modes (α � 0) and mode-
seeking divergences that are attracted to the mode with the largest probability mass (α � 1),
the case α ∈ (0,1) corresponding to a mix of the two worlds (see, e.g., [30]).

Depending on the learning task, the optimal α may differ and understanding how to select
the value of α is still an area of ongoing research. However, the case α < 1 presents the
advantage that b̂μ,α,M is always finite. Indeed, for all α ∈ R \ {1}, we have

bμ,α(θ) = 1

α − 1

∫
Y

k(θ, y)

μk(y)

(
p(y,D)

μk(y)

)1−α

μk(y)ν(dy) − 1

α − 1
,

and as the dimension grows, the conditions of support are often not met in practice, meaning
that there exists A ∈ Y such that p(A,D) = 0 and μk(A) > 0. This implies that whenever
α > 1 we might have that b̂μ,α,M(θ) = ∞ and that the α-divergence (or equivalently the
Renyi-bound as written in Remark 18 from [12], Appendix D) is infinite, which is the sort
of behaviour we would like to avoid. Thus, we restrict ourselves to the case α ≤ 1 in the
following numerical experiments. Note that the limiting case α = 1, corresponding to the
commonly-used forward Kullback–Leibler objective function, also suffers from this poor
behaviour, but is still considered in the experiments as a reference.

We now move on to our first example where we investigate the impact of different choices
of �. The code for all the subsequent numerical experiments is available at https://github.
com/kdaudel/AlphaGammaDescent.

5.1. Toy example. Following Example 4, the target p is a mixture density of two d-
dimensional Gaussian distributions multiplied by a positive constant Z such that

p(y) = Z × [
0.5N (y;−sud , Id) + 0.5N (y; sud , Id)

]
,

where ud is the d-dimensional vector whose coordinates are all equal to 1, s = 2, Z = 2 and
Id is the identity matrix. (Jt )t and (Mt) are kept constant equal to J = M = 100, κ = 0 and
the initial weights are set to be [1/J, . . . ,1/J ]. The number of inner iterations in the (α,�)-
descent is set to N = 10 and for all n = 1 . . .N , we use the adaptive learning rate ηn = η0/

√
n

with η0 = 0.5. We set the initial sampler to be a centered normal distribution with covariance
matrix 5Id . We compare three versions of the (α,�)-algorithm:

• 0.5-Mirror Descent: �(v) = e−ηv with α = 0.5,

https://github.com/kdaudel/AlphaGammaDescent
https://github.com/kdaudel/AlphaGammaDescent
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FIG. 1. Plotted is the average Renyi-bound for the 0.5-Power and 0.5-Mirror Descent in dimension
d = {8,16,32} computed over 100 replicates with η0 = 0.5.

• 0.5-Power Descent: �(v) = [(α − 1)v + 1]η/(1−α) with α = 0.5,
• 1-Mirror Descent: �(v) = e−ηv with α = 1.

For each of them, we run T = 20 iterations of Algorithm 4 and we replicate the experiment
100 times for d = {8,16,32}. The results for the 0.5-Mirror and 0.5-Power Descent are dis-
played on Figure 1.

A first remark is that we are able to observe the monotonicity property from Theorem 2
(the Renyi-bound varies like �α(μn)

α−1) for the 0.5-Power Descent, the jumps in the Renyi-
bound corresponding to an update of the parameter set. Furthermore, we see that the 0.5-
Mirror Descent (which would have been the default choice based on the existing optimisation
literature) converges more slowly than the 0.5-Power Descent in dimension 8. An even more
striking aspect however is that, as the dimension grows, the 0.5-Mirror Descent is unable to
learn and the algorithm diverges.

These two different behaviours for the Power and Mirror Descent can be explained by
rewriting the update formulas for any α < 1 under the form

Mirror : λj,n ∝ e
η

1−α
[(α−1)bμλn

,α(θj )+(α−1)κ]
,

Power : λj,n ∝ e
η

1−α
log[(α−1)bμλn

,α(θj )+(α−1)κ]
.

In the Power case, an extra log transformation has been added, which allows to discriminate
between small values of bμλn ,α . Since the values of bμλn ,α tend to get smaller as the dimension
grows, the impact of adding an extra log transformation becomes increasingly visible: the
Mirror Descent becomes more and more unable to differentiate between the different particles
{θ1, . . . , θJ } and is thus unable to learn.

Finally, we compare how the 0.5-Power and 1-Mirror Descent perform at approximating
the log-likelihood in dimension d = {8,16,32}. The results are plotted on Figure 2. Again,
the 0.5-Power Descent comes across as faster and more stable compared to the 1-Mirror
Descent as the dimension grows. Furthermore, it also does not fail in dimension 32, unlike
the 1-Mirror Descent.

Consequently, we see on this simple yet illustrative example that the Power Descent is a
suitable alternative to the Mirror Descent as the dimension grows.

We are next interested in seeing how the (α,�)-descent performs on a real-data example.
Based on the numerical results obtained so far, we rule out the Mirror Descent for α ≤ 1 and
we focus on the Power Descent in our second example.

5.2. Bayesian logistic regression. We consider the Bayesian Logistic Regression from
Example 1 with a = 1 and b = 0.01.

We test our algorithm for the Covertype dataset (581,012 data points and 54 features,
available at https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html). Comput-

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
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FIG. 2. Plotted is the average Log-likelihood for 0.5-Power and 1-Mirror Descent in dimension d = {8,16,32}
computed over 100 replicates with η0 = 0.5.

ing p(y,D) constitutes the major computation bottleneck here, since p(y,D) = p0(y) ×∏
i p(xi |y) with a very large number of data points. We can conveniently address this prob-

lem by approximating p(y,D) with subsampled mini-batches. We adopt this strategy here
and consider mini-batches of size 100.

We set α = 0.5, N = 1, T = 500, κ = 0, J0 = M0 = 20 and Jt+1 = Mt+1 = Jt + 1
for t = 1 . . . T in Algorithm 4. The initial weights in the (α,�)-descent are set to λinit,t =
[1/Jt , . . . ,1/Jt ] and the learning rate is set to η0 = 0.05.

One thing that is very specific to the Exploration step that we used to run our exper-
iments (and sampling-based Exploration steps algorithms in general) is that the particles
{θ1,t , . . . , θJt ,t } are sampled from a known distribution at each Exploration step. This means
that we are able to infer information on {θ1,t , . . . , θJt ,t } using Importance Sampling (IS)
weights. We thus compare the Power (α,�)-descent with a state-of-the-art Adaptive Impor-
tance Sampling-based (AIS) algorithm (see, e.g., [9, 14, 24, 36]).

We initialise {θ1,0, . . . , θJ0,0} by sampling J0 points from the prior p0(y) = p0(β)p0(w|β)

and set q0 = p0. Given qt at time t , we draw Jt i.i.d. samples (θj,t )1≤j≤Jt from qt and we
define qt+1(y) =∑Jt

j=1 λj,t kht (y − θj,t ) where

(21) λj,t ∝
⎧⎪⎨
⎪⎩

p(θj,t ,D)

qt (θj,t )
(AIS),

�
(
b̂μλinit,t ,α,M(θj,t ) + κ

)
(Power).

Note that these two algorithms are computationally equivalent. Indeed, we choose Jt = Mt

and N = 1, that is, we use an average of one sample from each k(θj,t , ·) to infer information
on the relevance of the {θ1,t , . . . , θJt ,t } with respect to one another. Comparatively, the AIS
algorithm uses information directly available by computing the IS weights for {θ1,t , . . . , θJ,t }.

We replicate the experiments 100 times. The Accuracy and Log-likelihood averaged over
the 100 trials for both algorithms are displayed on Figure 3 and we see that the 0.5-Power
Descent outperforms the AIS algorithm.

6. Conclusion and perspectives. We introduced the (α,�)-descent and studied its con-
vergence. Our framework recovers the Entropic Mirror Descent and allows us to introduce
the Power Descent. Furthermore, our procedure provides a gradient-based method to optimise
the mixture weights of any given mixture model, without any information on the underlying
distribution of the variational parameters. We demonstrated empirically the benefit of going
beyond the Entropic Mirror Descent framework by using the Power Descent algorithm in-
stead, which is a more scalable alternative. To conclude, we state several directions to extend
our work on both a theoretical and a practical level.

Convergence rate. One could seek to establish additional convergence rate results in both
the Exact and Stochastic cases, by for example refining the proof of Theorem 2 in the Stochas-
tic case.
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FIG. 3. Plotted are the average Accuracy and Log-likelihood computed over 100 replicates for Bayesian Logistic
Regression on the Covertype dataset for the 0.5-Power Descent and the AIS algorithm.

Variance reduction. One may want to resort to more advanced Monte Carlo methods in the
estimation of bμn,α for variance reduction purposes, such as reusing the past samples in the
approximation of bμn,α .

Exploration step. Many other methods could be envisioned as an Exploration step and
combined with the (α,�)-descent.
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SUPPLEMENTARY MATERIAL

Supplement to: “Infinite-dimensional gradient-based descent for alpha-divergence
minimisation” (DOI: 10.1214/20-AOS2035SUPP; .pdf).

• The remaining proofs are provided in the Supplementary Material, namely the proofs of
Lemma 6, Theorem 2, 3, 4 and 5, Proposition 7, as well as the proof that Condition (16) is
satisfied in Example 4.

• The Supplementary Material also contains the statement and proof for the O(1/N) +
O(1/

√
M) bound on E[�α(μ̂n)−�α(μ	)] in the particular case of the Stochastic Entropic

Mirror Descent and two additional remarks regarding Theorem 3 and the Renyi-bound.
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